Today: *j*-invariant, § 2.7 p 86
- captures the property of 2 curves being isomorphic.
- endomorphism of an EC, § 2.9 p 50
- GLV scalar multiplication and multi-scalar multi. algorithm.
- Sage Math demo

What does it mean for two curves to be isomorphic?

There is an invertible change of variables between the two equations.

\[K(C) \text{ is a function field of degree of transcendence } 1, \text{ that is there is one free variable } \]

\[K(C) = \frac{K[X,Y]}{(f(X,Y))} \text{ where } f: F(X,Y) = 0 \text{ and } F \text{ is irreducible.} \]

\[K(C) \text{ is a function field of degree of transcendence } 1, \text{ that is there is one free variable } \]

\[K(C) = \frac{Q[X,Y]}{(f(X,Y))} \text{ where } f: y^2 - x^3 - ax - b = 0. \]

They are isomorphic of curves \(C_1, C_2 \) if there is a variable \(x \) that can take any degree.

Isomorphism of curves \(C_1, C_2 \) isomorphic of function fields.

That's all for the math algebraic point of view.

ISO MORPHISM.

Two elliptic curves \(E_1 \) and \(E_2 \) defined over \(K \) and given by (long) Weierstrass equations

\[E_1: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \]
\[E_2: y^2 + a_1' xy + a_3' y = x^3 + a_2' x^2 + a_4' x + a_6' \]

are said to be isomorphic over \(K \) if there exist \(u, v, s, t \in K, u \neq 0, s.t. \)

the change of variables \((x, y) \mapsto (u^3 x + v, u^3 y + u^2 s x + t) \)

transforms the equation of \(E_1 \) into the equation of \(E_2 \) (up to multi. by \(\pm 1 \) scalar).

If \(E_2 = E_1 \) this is an automorphism.

In short Weierstrass form \(\bar{E}_1: y^2 = x^3 + ax + b \) and \(\bar{E}_2: y^2 = x^3 + a' x + b \)

\(E_1 \) and \(E_2 \) are isomorphic \(\iff (x, y) \mapsto (u^2 x, u^3 y) \).

Sage Math: - isomorphism to return \((u, v, s, t)\) above.
The j-invariant is invariant under automorphisms.

Definition. $E/K: y^2 = x^3 + ax + b$ an elliptic curve.

Its j-invariant is

$$j(E) = \frac{1728 \cdot 4a^3}{4a^3 + 27b^2}$$

- **well-defined as the denominator is $-\Delta = 4a^3 + 27b^2 \neq 0$**

⚠️ Two elliptic curves of the same order are not isomorphic. But isogenous: They don't necessarily have the same group structure. They don't have the same j-invariant.

⚠️ Two E.C. of the same j-invariant have the same number of points in \bar{K} (algebraic closure).

Example of non-isogenous curves: $E_1: y^2 = x^3 - 6x + 4$ has a 2-torsion point $(2, 0)$

1. 2-torsion is \((x, y) \rightarrow \left(\frac{x^2 - 2x + 6}{x-2}, \frac{(x^2 - 4x - 2)y}{x-2} \right)
2. \(j(E_1) = 3456\)
3. \(j(E_2) = 23328\)

$$x: E_2 \sim E_1, (x, y) \rightarrow \left(\frac{x^2/4 + x + 3}{x+4}, \frac{x^3/8 + x + 1/2}{(x+4)^2} y \right)$$

2 special cases:

- **$j = 1728$ or $a_4 = 0$, a_6 any $\neq 0$ in K, all curves $y^2 = x^3 + a_4 x + a_6$ are isomorphic.**

- **$j = 0$ or $a_4 = 9$, $a_6 \neq 0$ any value of K. All curves $y^2 = x^3 + a_6$ are isomorphic over $K_{alg.}$ closure.**

Theorem 2.19. Let $E_1: y^2 = x^3 + a_4 x + a_6$ and $E_2: y^2 = x^3 + a_2 x + b_2$ be two elliptic curves with j-invariant j_1 and j_2 resp.

If $j_1 = j_2$ then there exists $\mu \neq 0$ in \bar{K} s.t. $a_4 = \mu^4 a_2$, $b_2 = \mu^6 b_1$.

The transformation is $(x, y) = (\mu^2 x, \mu^3 y)$ and changes E_1 to E_2 (equivalence).

Proof.

$$j_1 = 1728 \cdot \frac{4a_4^3}{4a_4^3 + 27b_4^2}$$

$$j_2 = 1728 \cdot \frac{4a_2^3}{4a_2^3 + 27b_2^2}$$

Assume $a_2 \neq 0$ and $a_4 \neq 0$.

$$j_1 = j_2 \text{ and } a_2 a_4 \neq 0 \Rightarrow \frac{4a_4^3 + 27b_4^2}{4a_4^3} = \frac{4a_2^3 + 27b_2^2}{4a_2^3}$$

Let $\frac{a_4}{a_2} = \mu^4$ for some $\mu \neq 0$ in K, then $(\frac{a_4}{a_2})^3 = \mu^6$.

And $\frac{b_2}{b_4} = \frac{a_4}{a_2} = \pm \mu^6 = \frac{b_2}{b_4}$.

If $\frac{b_4}{b_2} = -\mu^6$, change μ into $\mu' = \mu / b_2$ to get $\frac{b_4}{b_2} = \mu' i$ and $\frac{a_4}{a_2} = \mu'^4$.

$$i^2 = -1, i^6 = 1 \text{ and } i^4 = 1.$$
\[y^2 = x^3 + a_1 x + b_1 \quad \text{with} \quad a_1 = a \mu^4 \text{ and } b_1 = b \mu^6. \]

- The isomorphism is in an extension of \(K \) containing \(\mu. \)

Special cases:
- \(j = -1728, \ a_6 = 0 \quad y = x^3 + ax \) are all isomorphic. with \(\mu^4 = a, \) then
 \[\frac{\partial y}{\partial \mu} = \frac{x^3}{\mu^6} + \frac{a}{\mu^4} x \quad \Rightarrow \quad (\frac{\partial y}{\partial \mu})^2 = (\frac{x}{\mu^2})^3 + \frac{a}{\mu^4} \frac{x}{\mu^2}. \]
- \(j = 0, \ a_4 = 0 \quad y = x^3 + bx \) are all isomorphic. with \(\mu^6 = b, \) then
 \[\frac{\partial y}{\partial \mu} = \frac{x^3}{\mu^6} + \frac{b}{\mu^4} \quad \Rightarrow \quad (\frac{\partial y}{\partial \mu})^2 = (\frac{x}{\mu^2})^3 + (\frac{b}{\mu^4}, \frac{x}{\mu^2}). \]

Given \(j; \) there always exists a elliptic curve over \(K \) of \(j \)-invariant; namely

\[\mathcal{E}: \quad y^2 = x^3 + \frac{3j}{1728-j} x + \frac{2j}{1728-j}. \]

Exercise: can we always change \(\mathcal{E}, \) \(y^2 = x^3 + ax + b \) into \(\mathcal{E}', \) \(y^2 = x^3 + bx' \) over \(K, \) \(a = -3? \)

We need \(a_4 = a \) and \(\frac{a_4}{a_2} = \mu^6 \in K. \) We need \(a_4 \) to be a 4-th power.

Exercise: simplify the coefficients of \(y^2 - 108x + 1512. \)

a) \(\text{gcd}(108, 1512) = 108 = 3 \cdot 3 \cdot 3, \quad 1512 = 7 \cdot 3 \cdot 3. \)

One finds \(y^2 = x^3 - 3x + 7 \) but the map is defined over \(\mathbb{Q}(\sqrt{169}). \)

SageMath example:
\[y^2 = x^3 - 25x + 111, \quad y^2 = x^3 + 14x + 4. \]

\[\frac{a_4}{a_2} = \frac{-25}{4} = \left(\frac{5}{2}\right)^2 \text{ but is not a 4-th power in } \mathbb{Q}. \] 101 is in \(\mathbb{Q}(\sqrt{169}). \) \(j = -1728. \)

If \(F_1 \) and \(F_2 \) have the same \(j \)-invariant; \(j(F_1) = j(F_2) \) but \(\mu \notin K \) but in some extension of \(K, \) \(F_1 \) and \(F_2 \) are TWIST of each other.
On certain curves, there are endomorphisms other than just the multiplication-by-\(m \) \([m]\) map, and Billet, Petit and Vaudene in 2001 published a paper to accelerate \([m]\) P thanks to an endomorphism.

- If an endomorphism of curves is \((x, y) \mapsto (x, \frac{2}{y}, \frac{1}{y}) \), what is an endomorphism? (in term of rational function of \(x, y \)).
- What is the degree?

Lemma

\[\alpha(x, y) = (r_1(x), r_2(x) - y) \] for two rational functions \(r_1(x), r_2(x) \).

Proof. Assume that \(\alpha \) is an endomorphism of \(E \) given by rational functions

\[\alpha(x, y) = (R_1(x, y), R_2(x, y))^T \] for all \((x, y) \in E(\mathbb{K}) \).

- \(\alpha \) is a homomorphism: \(\alpha(P_0) = P_0 \).
- Assume that \(\alpha \) is non-trivial: \(\alpha(x, y) \neq P_0 \) for some \(x, y \).
- The identity map is \(\text{Id}: (x, y) \mapsto (x, y) \).
- \(y^d \) for any \(d > 1 \) can be replaced by \(y^{(d \mod 2)} \).

\[d = (d \mod 2) + 2 \frac{d}{2} \]

\[y^d = y^{(d \mod 2)} \cdot y^{2 \frac{d}{2}} = y^{(d \mod 2)} \cdot (x^2 + Ax + b)^{\frac{d}{2}} \]

\[m \neq 0 \implies d \mod 2 = \begin{cases} 0 & \text{if } d \quad \text{is even} \\ 1 & \text{if } d \quad \text{is odd} \end{cases} \]

Any even power of \(y \) can be replaced by a function in \(x \), any odd power of \(y \) by \(y \) times any even power of \(x \).

\[R_1(x, y) = \frac{P_1(x) + P_2(x) y}{P_3(x) + P_4(x) y}, \quad R_2(x, y) = \frac{P_3(x) - P_4(x) y}{P_5(x) - P_6(x) y} \]

\[\alpha(P_1 + P_2) = \alpha(P_1) + \alpha(P_2), \]

Now, \(\alpha(x, y) = -\alpha(x, -y) \) if

\[\begin{pmatrix} q_1(x) - q_2(x) y \\ q_3(x) \end{pmatrix} = \begin{pmatrix} q_4(x) - q_5(x) y \\ q_6(x) \end{pmatrix} \]

\[R_1(x, y) = R_1(x, -y) \quad \text{and} \quad R_2(x, -y) = -R_2(x, y) \]

\[\begin{pmatrix} q_1(x) \\ q_3(x) \end{pmatrix}, \quad \begin{pmatrix} q_4(x) \\ q_6(x) \end{pmatrix} \cdot y \begin{pmatrix} r_1(x), \ r_2(x) y \end{pmatrix} \]

\[\square \]
Exercise 2.19 shows that if \(r_1(x) = \frac{\Phi(x)}{q(x)} \) and \(q(x) \) is defined (\(\neq 0 \)),
then \(r_2(x) = \frac{r(x)}{q(x)} \) is defined: \(r(x) \neq 0 \).

If \(q(x_0) = 0 \), then \(\alpha(x_0, y_0) = \infty \).

Definition. The degree of \(\alpha \) is \(\deg(\alpha) = \max(\deg(p(x)), \deg(q(x))) \).

Let \(\alpha: (x, y) \rightarrow (r_1(x), r_2(x), y) \) and \(r_1(x) = \frac{p(x)}{q(x)} \).

\(\alpha \) is SEPARABLE if the derivative \(r_4'(x) \) is not 0.

(Ex. 2.2, remember that \(\frac{p(x)}{q(x)}' = \frac{p'(x)q(x) - p(x)q'(x)}{q^2(x)} \).

In characteristic \(p \): if \(p = 0 \) in \(\mathbb{F}_p \), \(f(x) = \sum_{i=0}^{\infty} a_i x^i \) \(f'(x) = \sum_{i=2}^{\infty} a_i i x^{i-1} \).

\(f'(x) \) is identically 0 if \(a_i i = 0 \) for all \(1 \leq i \leq n \), but since \(a_i \) are not all 0, then \(p \mid i \) for all \(i \), and \(f(x) = \sum_{j=0}^{\infty} a_j x^{p^j} \) \(= g(x^p) \).

Example: The multiplication by 2 is an endomorphism of degree 2. Read p. 52.

The Frobenius endomorphism. Let \(E \) be an elliptic curve defined over a field \(\mathbb{F}_p \).

Definition. The Frobenius map is \(\text{Frob}: E(\mathbb{F}_p) \rightarrow E(\mathbb{F}_p) \)
\((x, y) \rightarrow (x^p, y^p) \) where \(p = \text{char}(\mathbb{F}_p) \).

Ferdinand Georg Frobenius 1849-1917.

Proposition. \(\text{Frob} \) is an endomorphism.

\(\text{Frob} \) is inseparable of degree \(p \).

Proof of \(\text{Frob} \) being an endomorphism. Check that \(\text{Frob}(P + Q) = \text{Frob}(P) + \text{Frob}(Q) \), \(\text{Frob}(P) = 2P \).

i.e. \(\text{Frob} \) commutes with addition and doubling.

Takes the addition formulas (p. 14):
\[
\lambda = \begin{pmatrix}
\lambda_1 - \lambda_2 \\
\lambda_1 - \lambda_2 \\
3 \lambda_1^2 + A \\
2 y_1
\end{pmatrix}
\]
\(x_3 = \lambda^2 - x_1 - x_2 \)
\(y_3 = \lambda(x_1 - x_3) - y_1 \)

\(\text{Frob}(P + Q) = (x_3^p, y_3^p) = \left((\lambda^2 - x_1 - x_2)^p, (\lambda(x_1 - x_3)^p - y_1)^p \right) \).

Remember that \((a + b)^p = a^p + b^p \) in \(\mathbb{F}_p \).

Indeed, \((a + b)^p = \sum_{i=0}^{p} \binom{p}{i} a^{p-i} b^i C_i^p \) where \(C_i^p = \frac{p!}{i!(p-i)!} \).

Hence, \(\text{Frob}(P + Q) = \text{Frob}(P) + \text{Frob}(Q) \) for \(P \neq Q \).

Doubling:
\[
\left(\frac{3 x_1^2 + A}{2 y_1} \right)^p = \left(\frac{3 x_1^2 + A}{2^p y_1^p} \right) = \frac{3 x_1^2 + A}{2 y_1^p}
\]
\(2^p \).

Important point is \(A^p = A \) because \(A \in \mathbb{F}_p \), the field of definition of \(E \).

We proved that \(\text{Frob} \) is an endomorphism.

\(\text{Frob} \) is of degree \(p \) because it is given by \(p \) polynomials of degree \(p \).

\(\text{Frob} \) is not separable: \(f'(x) = x^p, f'(x) = p x^{p-1} = 0 \) in \(\mathbb{F}_p[x] \), hence not separable.
Proposition 2.24.

Let \(\alpha \neq 0 \) be an separable endomorphism of an elliptic curve \(E \). Then

\[
\deg(\alpha) = \# \text{Ker}(\alpha)
\]

where \(\text{Ker}(\alpha) \) is the kernel of the homomorphism \(\alpha : E(K) \to E(K) \). (That is, the preimage of \(\text{ker} \).)

If \(\alpha \neq 0 \) is not separable, then \(\deg(\alpha) > \# \text{Ker}(\alpha) \).