Week 5

Weil pairing, André Weil (French), 1940.

The Weil pairing is a bilinear map

\[e: E[\mathbb{Q}] \times E[\mathbb{Q}] \rightarrow \mu_n \subset \overline{\mathbb{Q}} \]

bilinear on the left and right:

\[e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q) \]
\[e(P, Q_1 + Q_2) = e(P, Q_1) \cdot e(P, Q_2) \]

addition on the curve in \(E[\mathbb{Q}] \) becomes multiplication in \(\mu_n \subset \overline{\mathbb{Q}} \).

\(\overline{\mathbb{Q}} \) is the algebraic closure of the field \(\mathbb{Q} \).

\(E[\mathbb{Q}] \) is the group of the points of order \(n \), or the \(n \)-torsion points, over \(\mathbb{Q} \).

\[E[\mathbb{Q}] = \{ P \in E \mid nP = 0 \} = \{ P \in E(\overline{\mathbb{Q}}), \; EnP = 0 \} \]

including 0.

Recall that \(E[\mathbb{Q}] \) is isomorphic to \(\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} \), and \(\# E[\mathbb{Q}] = n^2 \).

Thus, \(\overline{\mathbb{Q}} \) is the algebraic closure of \(\mathbb{Q} \).

The Weil pairing satisfies

\[e(P, P) = 1. \]

This pairing can be used to know if two points of order \(n \) are in the same cyclic subgroup or not. Indeed, from \(e(P, P) = 1 \), we deduce \(e(P, P + P) = 1 \), etc...

\[e(P, aP) = 1 \] for any \(a \neq 0 \). If \(a = \lambda P \) for some \(\lambda \), then \(e(P, aP) = 1. \)

What is \(\mu_n \)? This is the multiplicative group of the \(n \)-th roots of unity.

\[\mu_n = \{ \zeta \in \overline{\mathbb{Q}}, \; \zeta^n = 1 \} \]

Example: \(K = \mathbb{Q} \), \(\mu_4 = \{ 1, i \} \), \(\mu_2 = \{ 1, -1 \} \), \(\mu_6 = \{ 1, w, w^2 \} \) with \(w = \frac{-1 + \sqrt{-3}}{2} \),

\[\mu_4 = \{ 1, -1, i, -i \} \] with \(i^2 = -1 \), \(\mu_6 = \{ 1, -1, w, w^2, -w, -w^2 \} \).

If \(n \) \# \(E(\mathbb{F}_p) \), then a first dimension of the \(n \)-torsion is in \(E(\mathbb{F}_p): E(\mathbb{F}_p)[n] \).

\[E(\mathbb{F}_p)[n] = \{ P \in E(\mathbb{F}_p), \; nP = 0 \} \] over the finite field \(\mathbb{F}_p \).

We need an extension for the other dimension, the \(\infty \)-points of \(n \)-torsion.
EMBEDDING DEGREE

\[y^2 = x^3 + Ax + B \] is an elliptic curve defined over \(\mathbb{F}_p \).

Let \(r \) a divisor of \(\text{#} E(\mathbb{F}_p) \), \(r^2 \) does not divide \(\text{#} E(\mathbb{F}_p) \),
the rank \(r \) is prime.

The pairing is \(e : E(\mathbb{F}_p)[r] \times E[1] \to \mu_r \subset \mathbb{F}_p^\times \)

we know we can find \(r \)-torsion points over \(\mathbb{F}_p \)
find \(\mu_r \)-torsion points we don't know, we need an extension of \(\mathbb{F}_p \)

Let \(k \) be the smallest integer such that \(\mu_r \subset \mathbb{F}_{p^k} \).
\(k \) is the order of \(p \mod r \).
\(r \mid p^k - 1 \).

Notation: \(\mathbb{F}_p \) is the field of \(p \) elements where \(p \) is prime.
\(\mathbb{F}_p^\times \) or \(\mathbb{F}_p^\ast \) is the multiplicative group of \(\mathbb{F}_p \), or the (multiplicative) group of invertible elements, that is \(\mathbb{F}_p \) minus zero: \(\mathbb{F}_p \lessdot \{0\} \).

\[\Rightarrow \text{#} \mathbb{F}_p^\times = p - 1 \] (all non-zero elements: \(1, 2, 3, \ldots, p - 1 \)).

\(\mathbb{F}_p^2 \) is the field of \(p^2 \) elements, this is not "modulo \(p^2 \)" this is: modulo \(p \) and modulo a quadratic irreducible polynomial, for example:

\[\mathbb{F}_p^2 = \mathbb{F}_p [x] / (x^2 + 1) \] if \(p \equiv 3 \mod 4 \) : analogy with \(\mathbb{Q}(i) \), \(i^2 = -1 \).

\[\mathbb{F}_p^2 = \mathbb{F}_p \lessdot \{0\} \] is the multiplicative group of invertible elements.
and \(\text{#} \mathbb{F}_p^2 = p^2 - 1 \).

\(\mathbb{F}_p^{x^k} \) is a degree \(k \) extension of \(\mathbb{F}_p \), where \(\mathbb{F}_p^{x^k} = [\mathbb{F}_p[x] / (x^{p^k} + a_{p^k} x + a_0)] \)

\[\mathbb{F}_p^{x^k} = \{ b_0 + b_1 x + \ldots + b_{p^k - 1} x^{p^k - 1}, b_i \in \mathbb{F}_p, \text{ and } a_0 + a_1 x + \ldots + a_{p^k - 1} x^{p^k - 1} + x^{p^k} = 0 \} \]

\(f(x) = 0 \)

\[\Rightarrow \text{#} \mathbb{F}_p^{x^k} = p^k, \]
\[\text{#} \mathbb{F}_p^{x^k} = p^k - 1. \]
Theorem 1: Let \(E \) be an elliptic curve defined over a field \(F_q \) (finite field) and suppose that \(p \) is a prime that divides \(N = \# E(F_q) \) but does not divide \(q - 1 \). Let \(\ell = q - 1 \). Then \(E(F_q^\ell) \) contains \(\ell^2 \) points of order \(\ell \) if \(\ell \mid q^{k-1} \).

Theorem 2: About the chance for \(\ell \) to be "small.

Let \((p, E)\) be a randomly chosen pair consisting of a prime in the interval \(\frac{M}{2} \leq p \leq M \) and an elliptic curve defined over \(F_p \) having a prime number \(\ell \) of points. The probability that \(\ell \mid p^{k-1} \) for some \(\ell \leq (\log p)^2 \) is less than

\[
\frac{c_3}{M} \left(\log M \right)^3 \left(\log \log M \right)^2
\]

for an effectively computable positive constant \(c_3 \).

In other words, curves with small enough \(\ell \leq (\log p)^2 \) are extremely rare. If \(\ell \) is fixed, the expected number of pairs \((q, E)\) where \(q \) is a prime (or primepower) in the range \(\frac{M}{2} \leq q \leq M \) and \(E \) is an elliptic curve over \(F_q \) such that \(E(F_q) \) has a large subgroup with embedding degree \(\ell \), is \(O(M^{1/2+\varepsilon}) \).

We cannot expect to find them by choosing curves at random.

Above on the embedding degree.

- \(\ell \) is the smallest integer such that \(\mu_n \mid E_{F_k} \).
- In the case where \(p \) is prime, it corresponds to
 \(n \mid \Phi_k(p) \) and \(n \mid \Phi_i(p) \) for all \(1 \leq i \leq k - 1 \),
 where \(\Phi_k \) is the \(k \)-th cyclotomic polynomial.

\[
\Phi_k(x) = \prod_{\zeta \text{ a primitive } k\text{-th root of unity}} (x - \zeta_k)
\]

\(x^{k-1} = \prod_{\text{in } \Phi_{k-1} \text{ including } \zeta_k} \Phi_d(x) \).
Weil pairing and Tate pairing.

\[e_w : E[n] \times E[n] \to \mu_n \subset \overline{K} \]
\[(p, q) \mapsto e_w(p, q) \]

\[e_T : E(F_q)[n] \times E(F_q)[n] \to E(F_q)[n] / E(F_q)[n] \sim \overline{E}_{F_q}^x / (\overline{E}_{F_q}^x)^n \]

Equivalence class

Chapter 11: divisors.

A divisor on an elliptic curve \(E \) defined over a field \(K \) is a formal sum of points

\[D = \sum a_i (P_i), \quad a_i \in \mathbb{Z} \]

where the \((P_i) \) are "symbols" of points \(P_i \) and only a finite number of \(a_i \) are non-zero, i.e. the sum is finite.

We can give a structure, and define

\[D_1 + D_2 = \sum (a_i + a_i') (P_i) \]

just add the multiplicity of the points, where \((P_i) \) are in \(D_1 \) or \(D_2 \).

Degree:

\[\deg \left(\sum a_i (P_i) \right) = \sum a_i \in \mathbb{Z} \to \text{sum of the multiplicities, can be } 0, \text{ a negative or positive}. \]

Sum:

\[\text{sum} \left(\sum a_i (P_i) \right) = \sum a_i P_i \in \overline{E}(\overline{K}) \]

Zero:

\(\text{Div}^0(E) \), the subgroup of divisors of degree 0.

\text{Sum is a surjective morphism: } \text{Div}^0(E) \to \overline{E}(\overline{K}).

That is, any point \(P \in \overline{E}(\overline{K}) \) can be associated to the degree 0 divisor \((P) - (O) \) where \(O \) is the point at infinity,

\[\deg (P) - (O) = 0 \text{ and sum } (P) - (O) = P - O = P. \]

Kernel of \(\text{SUM} \): on which set of points do we have \(\sum a_i P_i = O? \)

Example: a line through three points

\[D = (P) + (Q) + (-P - Q) \text{ has sum } 0 \]

But degree 3 →

\[D^0 = (P) + (Q) + (-P - Q) - 3 O \text{ has sum } 0 \text{ and degree } 0. \]
Remember the proof of associativity with Bezout's Theorem.

We defined a function

\[C_A = \frac{P + A}{P + R} - \frac{Q + R}{Q + A} - \frac{P + Q + R}{P + A + R} \]

we can find the exponents of degree 0:

\[l_{P,Q} \sim \frac{(P) + (Q) + (-P-Q)}{(-3)} \]
\[l_{Q+R} \sim \frac{(Q+R) + (-Q-R)}{(-2)} \]
\[l_{P+Q} \sim \frac{(P+Q) + (R) + (-P+Q-R)}{(-3)} \]

Then a degree 0 divisor of \(C_A \) is the formal sum of the divisors of the lines:

\[D_{C_A} = (P) + (Q) + (-P-Q) + (Q+R) + (-Q-R) + (P+Q) + (R) + (-P+Q-R) \]

and sum (\(D_{C_A} \)) = 0.

In affine coordinates, \(l_{P,Q}(x,y) = \lambda(x-x_0) - \frac{y-y_0}{y_0-x_0}(x-x_0) \), \(\lambda = \frac{x-x_0}{y-y_0} \).

But in projective coordinates, there is a denominator Z.

\[l_{P,Q}(x,y,z) = \lambda \left(\frac{x-x_0}{z} - x_0 \right) - \left(\frac{y-y_0}{z} - y_0 \right) \]

A zero of a function is a point \(P \in E(K) \) such that \(f(P) = 0 \). (f vanishes at P).

A pole of a function is a point \(P \in E(K) \) at which the denominator of \(f \) vanishes.

\(f(P) = \infty \).

More precisely, we will need the order of the zero and poles.

We know that a tangent at \(P \) to the curve has intersection multiplicity 2 at \(P \) (lecture 1, addition law).

It is possible to have functions with zeros and poles of some multiplicity (order) greater than 1. The divisor of a function \(f \neq 0 \) is \(\text{div}(f) = \sum \text{ord}_P(f)(P) \) \(P \in \text{Div}(E) \).

The divisor of a function is a principal divisor. \(P \in E(K) \) \(a \in k \) such that \(a \cdot P \) is a zero or pole.

Proposition 11.1 and Theorem 11.2.

Prop. Let \(E \) be an elliptic curve and let \(f \) be a function on \(E \) that is not identically 0.

1. \(f \) has only finitely many zeros and poles.
2. \(\text{deg} \left(\text{div}(f) \right) = 0 \)
3. If \(f \) has no zeros or poles (so \(\text{div}(f) = 0 \)), then \(f \) is a constant.

Th. Let \(E \) be an elliptic curve. Let \(D \) be a divisor on \(E \) with \(\text{deg}(D) = 0 \). Then there is a function \(f \) on \(E \) with \(\text{div}(f) = D \) if and only if \(\text{sum}(D) = 0 \).
Continuing the example with the lines. Washington p 342-343.

Let \(P_1, P_2, P_3 \) three points of intersection of a line \(L \) with \(E \).

\[
f(x,y) = ax + by + c \quad \text{is the line equation.}
\]

\[
\text{div}(f) = (P_1) + (P_2) + (P_3) - 3(0)
\]

Now we "add" the vertical line. We "add" the divisors and multiply the function.

\[
v(x,y) = x - x_3 \quad \text{is the equation of the vertical at } P_3.
\]

Its divisor is \(\text{div}(v_{P_3}) = (P_3) + (-P_3) - 2(0) \).

\[
\text{div}
\left(\frac{L_{P_1P_2}}{v_{P_3}} \right) = \text{div}
\left(\frac{ax+by+c}{x-x_3} \right) = \text{div}(L_{P_1P_2}) - \text{div}(v_{P_3}) = (P_1) + (P_2) + (P_3) - 3(0)
\]

\[
- (P_3) - (-P_3) + 2(0)
\]

\[
= (P_1) + (P_2) - (P_3) - 0
\]

and we can check that its sum is \(P_1 + P_2 + P_3 = P_1 + P_2 + (-P_1 - P_2) = 0 \) and has degree 0.

\(P_1 + P_2 = -P_3 \) on \(E \), and

\[
(P_1) + (P_2) = (P_1 + P_2) + 0 + \text{div}
\left(\frac{L_{P_1P_2}}{v_{P_1P_2}} \right)
\]

we will use this result in Weil's algorithm.

On our way to define the Weil pairing, we need:

Let \(T \in E[m] \). There exists a function \(f \in \mathcal{O}_E \) such that

\[
\text{div}(f) = m(T) - m(0) \quad \text{pols of order } n \text{ at } 0, \text{ zeros of order at } T.
\]

Let \(T' \) be a preimage of \(T \) under \([n] \), that is \([n] T' = T\) \((T' \text{ is of order } n^2)\).

There is a function \(g \) on \(E \) such that

\[
\text{div}(g) = \sum_{R_i \in E[n^3]} (T' + R_i) - (R_i) = \text{formal sum of the preimage points of } T
\]

under \([n]\) minus the formal sum of points of order \(n \) (preimages of \([n]\) under \([1]\)).

\[
= [n]^*([T]) - [n]^*([0]) \quad (Eulerian, 6.4, 11.6).
\]

\[
\text{div}(g) = (T' + R_1) + (T' + R_2) + (T' + R_3) + \ldots + (T' + R_{m^2})
\]

\[
- (R_1) - (R_2) - (R_3) - \ldots - (R_{m^2})
\]

\(g \) has \(m^2 \) distinct zeros at \(T' + R_i \) and \(m^2 \) distinct poles at \(R_i \); \(R_i \) enumerating the \(m^2 \) points of \([n]\).

Now consider \(f \circ [n] \). The zeros are one point \(S \) such that \(f([n]S) = 0 \), these \(S \) are exactly the \(T' + R_i \). Proof:

The \(T' + R_i \) are zeros of \(n \) of \(f \circ [n] \).

\[
\text{div} \left(f \circ [n] \right) = -m \text{div}(g) \quad \rightarrow \text{up to pull-by-a constant of } K^*, \quad f \circ [n] = g^m.
\]

Now take \(S \in E[n] \), for any \(X \in E \), \(g(X+S)^m = f([n]X + [n]S) = f([n]X) = g(X)^m \).

\(g(X+S)/g(X) \) is not \(n \)th of \(f \).
Miller algorithm.

How to compute the function f such that $\text{div}(f) = n(P) - n(0) = \text{PE}[n]$.

Double- and add. Let $P \in \text{PE}[n]$.

Let f_i a function of division $\text{div}(f_i) = i(P) - (i + j_i)P - (i - 1)Q$.

Then $f_n = n(P) - (n)P - (n - 1)Q = n(P) - n(0)$ because $(n)P = 0$.

$$\text{div}(f_n) = \text{div}(f).$$

$$\text{div}(f_{i+j}) = (i+j)(P) - (i+j+1)P - (i+j-1)Q$$

$$= (i)(P) - (i-1)Q + (j)(P) - (j-1)Q - (i+j)P - (i-1)Q$$

$$\text{div}(f_{i-j}) = \text{div}(f_i) - \text{div}(f_j).$$

$$\text{div}(f_{i+j}) = \text{div}(f_i) + \text{div}(f_j) + \text{div}(f_{i-j}).$$

$$\text{div}(f_{i+j}) = f_i + f_j - \frac{\ell_{i+j}P}{\ell_{i+j}P}.$$

$$f_{i+1} = f_i + \frac{\ell_{i+1}P}{\ell_{i+1}P},$$

where $\ell_{i+1}P$ is the tangent at iP, $v_{i+1}P$ is the line through iP and P, $v_{i+1}P$ is the line through iP and P.

Miller algorithm.

Length of the FOR loop: $\log_2 n$.

big problem: this is a function whose coefficients and degrees of numerator and denominator grow very fast.

Solution: evaluate the function at a point at each step.