Discrete logarithm computation with generic algorithms.

- Section 9.2 of Monain
- Chapter 5 of Washington
- Shanks Baby Step Giant Step (5.2.1)
- Pollard ρ: inspired by Floyd path finding algorithm monograph.
- Pollard - Shalkman: 5.2.3.

These algorithms apply to generic groups G: it can be the multiplicative subgroup of a finite field, or the group of points of an elliptic curve over a finite field.

Notation: G is a group with a multiplication: $x, y \in G \rightarrow x \cdot y \in G$.

\Rightarrow we have exponentiation in G: x^n where $n \in \mathbb{Z}$,

$x^0 = 1$ (the neutral element of G; this is 1 in \mathbb{F}_q^*, this is 0 on $E(\mathbb{F}_p)$).

$x^{-n} = (1/x)^n$ and inversion is in the usual sense in \mathbb{F}_q^*,

inversion is $-P = (x_p, -y_p)$ on an elliptic curve.

Discrete logarithm (D-\log): given G, a generator g, and a target $h \in G$,

compute x in \mathbb{Z}, $1, \ldots, |G| - 1$ such that $g^x = h$ in G.

Example: if $G = \mathbb{F}_p^*$ the multiplicative subgroup of a finite field where p is prime,

then $|G| = p - 1$ and the discrete log is such that $g^x = h$ in \mathbb{F}_p^* (mod p)

- if $G = E(\mathbb{F}_p)$, then $|G| = |E(\mathbb{F}_p)| = p + 1 - t$ where t is the trace of the curve,

and if P is a generator of $E(\mathbb{F}_p)$ (of order $p + 1 - t = q$), then the D-\log is such that

$Q \in E(\mathbb{F}_p)$ has D-$\log \ [\log_p Q] P = Q$ where exponentiation becomes scalar multiplication.

In Sage Math, $P \cdot \text{order}(P)$ computes \mathbb{Z}, the order of the point (costly).

for a point $G \in E$ and another point $P \in E$,

$G \cdot \text{discrete_log}(P)$ computes the discrete log of P in basis G (costly too).
Polihy-Hellman method.

Group homomorphism. Let \(G \) be a multiplicative group of order \(N \).

Suppose we can factor \(N \) into distinct prime factors:

\[
N = \prod_{i} p_i^{e_i} = p_1^{e_1} \cdot p_2^{e_2} \cdots p_n^{e_n}
\]

One can map \(g, h \in G \) to subgroups by exponentiation to the cofactors of the subgroups:

\[
g \rightarrow g^{N/e_i}, \quad h \rightarrow h^{N/e_i}
\]

so we can solve independently the discrete log problem in distinct subgroups of order a prime power \(p_i^{e_i} \):

\[
g_i = g^{p_i^{e_i}}, \quad h_i = h^{p_i^{e_i}}, \quad \text{compute } \log_{g_i}(h_i) \text{ in } g_i^{p_i^{e_i}}
\]

we have

\[
\log g \cdot h \mod p_i^{e_i}
\]

if we have \(n \) processes, we can parallelize over \(n \) tasks the \(d \)-log computation

it means that the complexity in time is not function of \(N \) but function of \(\max e_i \).

Now, we are left with the computation of \(\log_{g_i}(h_i) \mod p_i^{e_i} \).

\[
h_i = g_i^a, \quad \text{where } a = a_0 + a_1 p_i + a_2 p_i^2 + \cdots + a_{e_i-1} p_i^{e_i-1} \text{ in base } p_i.
\]

ex: \(p_i = 2^2 \), \(a = 7 = 4 + 2 \times 3 \) for example.

How to compute the \(a_i \)?

Let's cancel the \(a_1, a_2, \ldots, a_{e_i-1} \) to compute \(a_0 \):

\[
\begin{align*}
\log_{g_i^{p_i^{e_i-1}}}(g_i^{p_i^{e_i-1}}) & = a \cdot p_i^{e_i-1} + a_1 p_i + a_2 p_i^2 + \cdots + a_{e_i-1} p_i^{e_i-1} \\
\log_{h_i^{p_i^{e_i}}}(h_i^{p_i^{e_i}}) & = g_i^{p_i^{e_i-1}}
\end{align*}
\]

but what is the order of \(g_i^{p_i^{e_i-1}} \)? \(g_i^{p_i^{e_i-1}} \) has order \(p_i \) \(\Rightarrow g_i^{p_i^{e_i-1}} = 1 \) hence all the \(a_i \) cancel.

\[
h_i^{p_i^{e_i-1}} = g_i^{a_0 p_i^{e_i-1}} = (g_i^{p_i^{e_i-1}})^{a_0} \quad \text{and} \quad g_i^{p_i^{e_i-1}} \text{ has order } p_i.
\]

we are left with the computation of \(a \cdot d \)-log \(\mod p_i \).
Once we know a_0, we have:

\[h_i = q_i = a_0 + a_1 p_i + a_2 p_i^2 + \ldots + a_{e_i - 1} p_i^{e_i - 1} \]

unknowns

\[h_i = g_i \]

\[h_i = h_i / a_0 \]

raise h_i to the power $p_i^{e_i - 2}$ to cancel all the $a_2, a_3, \ldots a_{e_i - 1}$ coefficients.

we have $h_i = (q_i p_i^{e_i - 1})^{a_n}$ → compute a d-log $a_n \mod p_i$.

the next step will set $h_i = h_i / a_0 + a_1 p_i$, and compute the d-log $a_1 \mod p_i$.

in total, the procedure computes sequentially e_i times a d-log $\mod p_i$.

the complexity is $e_i (\text{time to compute a } d\text{-log } \mod p_i)$.

and it is not parallel this time.

In conclusion, Pollard - Hellman has complexity

\[\max_{1 \leq i \leq n} (e_i \cdot (\text{complexity of } d\text{-log } \mod p_i)) \] where

\[N = \prod_{i=1}^{n} p_i^{e_i} \]

We will see just after that the complexity of computing a d-log $\mod p_i$ is in $O(\sqrt{p_i})$ with generic algorithms.

See Gallant’s book Sect. 13.2 and Alg. 13 for more details.
Baby Step Giant Step to compute a discrete log in a cyclic subgroup.

\[
h = g^a, \text{ and we want to compute } a \mod p.\]

Let \(m = \lceil \sqrt{p} \rceil \) that is the ceiling of \(\sqrt{p} \).

Then \(a = a_0 + a_1 m \) where \(m = \lceil \sqrt{p} \rceil \) and \(0 \leq a_0, a_1 < m \).

(Write the Euclidean division of \(a \) by \(m \) to get \(a_0 \) and \(a_1 \)).

\[
h = g^{a_0 + a_1 m} = g^{a_0} g^{a_1 m} = g^{a_0} (g^m)^{a_1}.
\]

Since \(h \cdot (g^{-m})^{a_1} = g^{a_0} \) baby step: enumerate all \(g^{a_0} \) for \(0 \leq i \leq m \).

Giant step: enumerate all \(h \cdot (g^m)^j \) for \(j = 0, 1, \ldots \) until a match is found.

Requires companion and reach in the baby step database to be as fast as possible.

input: \(g, h \in G \) of order \(p \), output: \(a \) such that \(h = g^a \), or reject \(1 \) (fail).

\(m = \lceil \sqrt{p} \rceil \) \(\lceil \sqrt{p} \rceil \) floor \(\lfloor \sqrt{p} \rfloor \) floor in latex \(\lfloor \sqrt{p} \rfloor \) floor \(\lfloor \sqrt{p} \rfloor \) floor in latex \(\lfloor \sqrt{p} \rfloor \) floor

easily searched structure \(L \) (hash table, binary tree).

\(f = 1 \)

for \(i = 0 \) to \(m \) do:

\(\text{store } (f, i) \in L \) (with \(f \) the key of the hash table for \(f \) in \(L \)).

end for

end for

\(L \) contains all the \(g^i \), \(0 \leq i \leq m \). \(\text{storage } (\log p) \sqrt{p} \).

\(y = h, j = 0 \)

while \(y \) does not match a key in \(L \) do

\(y \leftarrow y \cdot m, \quad j \leftarrow j + 1 \)

end while

if \(\exists (f, i) \in L \) such that \(f = y \) then

return \(i + m \cdot j \)

else

return \(1 \)

end if.

Theorem 13.3.4. Let \(G \) be a group of order \(p \). Suppose the elements of \(G \) are represented with \(O(\log p) \) bits and that the group operations can be performed in \(O(\log p)^2 \) bit operations. The BS & S algo for DLP in \(G \) has running time \(O(\sqrt{p} \log p)^2 \) bit operations. The algo requires \(O(\sqrt{p} \log p) \) bit of storage.
What is a hash table? (What is a binary search tree?)

- A hash table is a data structure that allows for efficient searching, insertion, and deletion of elements.
- It uses a hash function to map keys to indices in an array.

Hash Function: \(f : \mathbb{Z} \rightarrow \{0, 1, ..., m\}^* \)

Hash Table Array: \(T[0, 1, ..., m] \)

Elements: \(\{q_1, q_2, ..., q_n\} \)

Hash Value:
- **Hash Function**: \(h(q_i) \)
- **Conversion**: \(f(q_i) \rightarrow \) some encoding to \(\mathbb{N} \)
- **Hash Value**: \(H(q_i) = f(q_i) \mod (m+1) \)

Initialization: Create an array \(T \) of size \(N = m+1 \).

Insertion: For each new item \(q_i \), compute \(H(q_i) \). We would like to store it at index \(H(q_i) \).

Collision Resolution: What do we do if there is a collision?
- **Hash Table Array**: \(T[H(q_i)] \) is actually a linked list: we store buckets of values that are distinct but sharing the same hash function.
- **Null at Initialization**: \(T[n] \rightarrow \text{NULL} \) at initialization.

Insertion: \(T[n] \rightarrow \begin{cases} 1 \quad (q_i, i) & \rightarrow \begin{cases} 2 \quad (q_i, 2) \end{cases} \end{cases} \) etc.

Searching: Finding an element in \(T \) is done in constant time:
- **Hash Function**: \(h(q_i) \)
- **Search**: Test whether \(T[H(h(q_i))] \) is NULL or some linked list. Search in the linked list.

Binary Search Tree:
- Elements at the left are smaller than the root.
- Elements at the right are larger (greater) than the root.

Lexicographical Ordering:
- Consider lexicographical ordering for examples.
Birthday paradox
Floyd algorithm of cycle path finding in a graph
Pollard's

Theorem (Birthday paradox) 14.1.1 in Galbraith book.

Let S be a set of N elements. If elements are sampled uniformly at random from S then the expected number of samples to be taken before some element is sampled twice is less than $\sqrt{\pi N/2} + 2 \approx 1.253 \sqrt{N}$.

Repeats, match or collision: something sampled twice.

The number of elements that need to be selected from S to get a collision with probability 1/2 is $\sqrt{2 \log(2) N} \approx 1.177 \sqrt{N}$.

Application: $\sqrt{2 \log(2) 365} \approx 22.49$, $\sqrt{\pi 365/2} = 23.94$

Thus with 23 people, the probability to have a birthday collision is $\approx 1/2$.

Note that this is about a collision: the birthday date is not set. (We are not fixing any value in S).

Floyd algorithm (Hare & Tortoise)

Let S be a sequence (a linked list, the values taken by a function)

equipped with a "next" to get the next element of the sequence

The end point is None (None in Python).

def has_cycle(node S):
 if S is None:
 return False
 tortoise = S
 hare = S.next()
 while (tortoise != hare):
 if hare is None:
 return False
 hare = hare.next()
 if hare is None:
 return False
 hare = hare.next()
 tortoise = tortoise.next
 return True

The hare gets twice faster than the tortoise.

• If there is no cycle (no collision) then the hare will reach None (head)

• If there is a cycle:
 • the tortoise gets closer to the cycle at each step
 • the hare, once in the cycle, will never hit "None"
 • So at some point, both will be going inside the cycle, and then the hare will hit the tortoise at some point.
Pollard ρ algorithm applies this idea to finding the discrete logarithm in a cyclic group G of order p.

Find a, b, a', b' such that
\[q^{a_i} h^{b_i} = q^{a_j} h^{b_j} \quad \text{and} \quad b_i \equiv b_j \mod p. \]

\[a_i - a_j = b_j - b_i \implies (a_i - a_j)/(b_j - b_i) \mod p = h. \]

\[\log_q h = \frac{a_i - a_j}{b_j - b_i} \mod p. \]

Alg 16 p. 230 (Galbraith book ch. 14).

```
input: q, h \in G
output: a s.t. h = q^a, a \perp
1. choose a function walk
2. x_0 = q, a_0 = 1, b_1 = 0
3. (x_1, a_1, b_1) = walk(x_0, a_0, b_1)
4. while x_0 \neq x_2:
   5. (x_2, a_2, b_2) = walk(x_1, a_1, b_1)
   6. (x_3, a_3, b_3) = walk(walk(x_2, a_2, b_2))
7. end while
8. if b_3 \equiv b_2 \mod p then
9. return 1
10. else:
11. return (a_2 - a_3)(b_4 - b_2)^{-1} \mod p
12. wait.
```

What do we choose for the walk function?

Define $R_2 \subseteq S$ subset of G of the same size $\#G/S$.

Precompute $g^i = g^{\mu_i} h^{-i}$ for $0 \leq j \leq n - 1$, for a randomly chosen uniform distribution $0 \leq \mu_i, \nu_j < p$.

- Original ρ walk: $x_{i+1} = f(x_i) = \begin{cases} x_i \cdot g^{\mu_i} \nu_j & \text{if } S(x_i) = 0 \\ x_i \cdot g^{\mu_i} & \text{if } S(x_i) = j, j \in \{1, \ldots, n-1\} \end{cases}$
- Additive ρ walk: $x_{i+1} = f(x_i) = x_i + S(x_i)$

Exact: smallest i s.t. $x_i = x_0$. Expected value $0.823 \sqrt{\pi p/2} = (2/\sqrt{\pi}) \sqrt{p}$, $\zeta(n(2))$.

Complexity of best algorithm $\frac{3.093 + o(1)}{\sqrt{p}}$ group operation.

Best method: $\frac{(1.253 + o(1))}{\sqrt{p}}$ group operations.