Faster Beta Weil Pairing on BLS Pairing Friendly Curves with Odd Embedding Degree.

Laurian Azebaze Guimagang azebazelaurian@yahoo.fr

SIAM AG23 at Eindhoven
Registration \& travel support for this presentation was provided by the SIAM.

1. Introduction
2. β-Weil Pairing
2.1. Analyse the β-Weil Pairing
2.2. New formula of the β-Weil Pairing
2.3. Application on BLS-27 curves
2.4. Suitable method for the evaluation
3. Conclusion

Definition 1 (Pairing). A pairing is a non degenerate bilinear map $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{3}:(Q, P) \longmapsto e(P, Q)$

- Bilinearity $e\left(P_{1}+P_{2}, Q_{1}\right)=e\left(P_{1}, Q_{1}\right) \cdot e\left(P_{2}, Q_{1}\right)$ and $e\left(P_{1}, Q_{1}+Q_{2}\right)=e\left(P_{1}, Q_{1}\right) \cdot e\left(P_{1}, Q_{2}\right) ;$
- non-degeneracy
if $e(P, Q)=1_{\mathbb{G}_{3}}$ for all $P \in \mathbb{G}_{1}$, implies $Q=\mathcal{O}_{\mathbb{G}_{2}}$ and if $e(P, Q)=1_{\mathbb{G}_{3}}$ for all $Q \in \mathbb{G}_{2}$, implies $P=\mathcal{O}_{\mathbb{G}_{1}}$;
- computability, e can be efficiently computed.
- Weil Pairing introduced by André Weil in 1940 to study the arithmetic on elliptic curves and Abelian varieties.
The Weil pairing is defined as :

$$
\begin{aligned}
e_{W}: E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right)[r] & \longrightarrow \mu_{r} \\
(P, Q) & \longmapsto(-1)^{r} \frac{f_{r, P}(Q)}{f_{r, Q}(P)}
\end{aligned}
$$

- There exist many variants of Weil pairing
- α-Weil pairing by D.F. Aranha et al 2011,
- β-Weil pairing by D.F. Aranha et al. 2012, Fouotsa et al. 2019,
- ω-Weil pairing by C. Zhao et al. 2011.
- Weil pairings are suitable for parallel evaluation.
- Tate pairing introduced by John Tate in 1958.

The Tate pairing

$$
\begin{aligned}
e_{r}: E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right)[r] & \longrightarrow \mu_{r} \\
(P, Q) & \longmapsto f_{r, P}(Q)^{\left(q^{k}-1\right) / r} .
\end{aligned}
$$

- There exist many variants of Tate pairing
- Ate pairing due to F. Hess et al. 2006,
- Optimal Ate pairing due to Vercauteren 2010,
- superoptimal pairing due to Q.Y. Feng et al. 2013.
-

Faster algorithm to compute $f_{r, p}(Q)$ (V. Miller 1985)

$$
f_{1, P}=1, \quad f_{i+j, P}=f_{i, P} \cdot f_{j, P} \cdot \frac{l_{[i] P,[j] P}}{\mathcal{V}_{[i+j] T}}
$$

Algorithm 1: Miller loop

Input: $r=s_{n} 2^{n}+\sum_{i=0}^{n-1} s_{i} 2^{i}, \mathrm{P}, \mathrm{Q}$
Output: $f_{r, P}(Q)$
$f \leftarrow 1$,
$2 T \leftarrow P$,
3 for i from $n-1$ down to 0 do

$$
f \leftarrow f^{2} \cdot \frac{I_{T}, T(Q)}{V_{[2]} T(Q)}, \quad T \leftarrow[2] T
$$

$$
\text { if } s_{i}=1 \text { then }
$$

7 return f.

Algorithm 2: Miller loop

Input: $r=s_{n} 2^{n}+\sum_{i=0}^{n-1} s_{i} 2^{i}, \mathrm{P}, \mathrm{Q}$
Output: $f_{r, P}(Q)$
$1 f \leftarrow 1$,
$2 T \leftarrow P$,
3 for i from $n-1$ down to 0 do
$f \leftarrow f^{2} \cdot \frac{I_{T, T}(Q)}{V_{[2] T}(Q)}$, $T \leftarrow[2] T$ if $s_{i}=1$ then

$$
\left\lfloor f \leftarrow f \cdot \frac{l_{T, P}(Q)}{\mathcal{V}_{T+P}(Q)}, \quad T \leftarrow T+P\right.
$$

7 return f.

The security of pairing based protocol depends :
\rightarrow on DLP over elliptic curve.
\rightarrow on DLP over finite field $\mathbb{F}_{q^{k}}^{*}$.

- T. Kim and R. Barbulescu., Extended tower number field sieve : A new complexity for the medium prime case. August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages 543-571. Springer, 2016.
Where the finite field $\mathbb{F}_{q^{k}}$ verify the conditions
- $q=\exp \left(c \log (Q)^{\prime}(\log (\log (Q)))^{1-l}\right)$ with $c>0$ and $\frac{1}{3}<I<\frac{2}{3}$,
- $k=a \times b$ with $\operatorname{gcd}(a, b)=1$.

They provided some practical examples for $k=6$ and $k=12$ (see that k is even) We focus your studies on Elliptic Curves with odd embedding degree as an alternative for the security of pairing based protocols.

Theorem - Fouotsa E. and Pecha A. and EL Mrabet N.[6],

Let $h(x)=\sum_{i=0}^{w} h_{i} x^{i}$ in $\mathbb{Z}[x]$ and $m=h(p) / r$ such that $m \nmid r$.
The β-Weil pairing is defined as follows:

$$
\beta_{k}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mu_{r}:(P, Q) \mapsto\left[\prod_{i=0}^{e-1}\left(\frac{f_{p, h, Q}\left(\left[p^{i}\right] P\right)}{f_{p, h,\left[p^{i}\right] P}(Q)}\right)^{p^{e-1-i}}\right]^{p^{\prime}-1}
$$

for $e=\frac{k}{d}$ and $m k q^{k-1} \not \equiv\left(\left(q^{k}-1\right) / r\right) \cdot \sum_{i=0}^{l} i c_{i} q^{i-1} \bmod r$.

Lemma.

1. Elimination of the exponents : which come from the remarks that for any $P \in \mathbb{G}_{1}$ and $Q \in \mathbb{G}_{2}$:

$$
f_{p, h, P}^{p^{i}}(Q)=f_{p, h, P}\left(\pi_{p^{i}}(Q)\right) \quad \text { and } \quad f_{p, h, Q}^{p^{i}}(P)=f_{p, h, \pi_{p^{\prime}}(Q)}(P) .
$$

2. Elimination of the denominators.

For all $a \in \mathbb{Z}$ and any k, we obtain the following two relations :
(i) $f_{a, P}^{-1}=f_{a,-P} \cdot \mathcal{V}_{[\text {[] } P} \cdot \mathcal{V}_{P}^{-a}$
(ii) $\quad f_{p, h, P}^{-1}=f_{p, h,-P} \cdot \prod_{j=0}^{w} \mathcal{V}_{[p j] P}^{-h_{j}}$

Theorem - Azebaze L., Fouotsa E., Pecha A., El Mrabet N. [1]

For every elliptic curves the new formula of β-Weil pairing is given as follows $\beta_{k}(P, Q)=$

$$
\left(\prod_{i=0}^{e-1} f_{p, h, \pi_{p^{\delta_{i}}}(Q)}\left(\left[p^{i}\right] P\right) \cdot f_{p, h,\left[p^{i}\right] \bar{P}}\left(\pi_{p^{\delta_{i}}}(Q)\right) \cdot \prod_{j=0}^{w} \mathcal{V}_{\left[p^{i}\right] j P}^{-h_{j}}\left(\pi_{p^{\delta_{i}}}(Q)\right)\right)^{p^{\prime}-1}
$$

where $\bar{P}=-P$ and $\delta_{i}=e-1-i$.

Remark : For k even we found the result of K. Kinoshita and K. Suzuki, Accelerating Beta Weil pairing with precomputation and multi-pairing techniques. September 2-4, 2020, Proceedings, volume 12231 of Lecture Notes in Computer Science, pages 261-281. Springer, 2020.

Corollary - Azebaze L., Fouotsa E., Pecha A., El Mrabet N. [1]

For BLS curves of embedding degrees $k=9,15$ and 27, the polynomial $h(z)$ for the extended Miller's function yields

$$
h(z)=x-z, \quad \text { then } \quad f_{p, h, P}=f_{x, P}
$$

then

$$
\begin{equation*}
\left.\beta_{k}(P, Q)=\left(\prod_{i=0}^{e-1} f_{x, Q_{i}}\left(P_{i}\right) \cdot f_{-x, P_{i}}\left(Q_{i}\right) \cdot \mathcal{V}_{P_{i+1}}\left(Q_{i}\right)\right)\right)^{p^{\prime}-1} \tag{2}
\end{equation*}
$$

where $P_{i}=\left[p^{i}\right] P$ and $Q_{i}=\pi_{p^{\delta_{i}}}(Q)$.

Application on BLS-27 curve

Barreto-Lynn-Scott curves [2]
Parameters of BLS-27 elliptic curve

$$
\begin{aligned}
r & =\frac{1}{3}\left(x^{18}+x^{9}+1\right) \\
p & =\frac{1}{3}(x-1)^{2}\left(x^{18}+x^{9}+1\right)+x, \\
t & =x+1
\end{aligned}
$$

To rich 256-bit level of security,

$$
x=-2^{51}-2^{31}-2^{21}-2^{8}-2^{4} .
$$

This curve admit twists of degree three which enable

- denominator elimination technique,
- computation to be done in subfields.
- Also it is a suitable choice for computing product of pairings (by X. Zhang et al. 2012).

Application on BLS-27 curve

β-Weil pairing in $E\left(\mathbb{F}_{p^{27}}\right)$

$$
\begin{aligned}
& \beta_{k}(P, Q)= \\
& {\left[f_{x, \pi_{\rho^{8}}(Q)}(P) \cdot f_{-x, P}\left(\pi_{p^{8}}(Q)\right) \cdot f_{x, \pi_{\rho^{5}}(Q)}\left(P_{3}\right) \cdot f_{-x, P_{3}}\left(\pi_{p^{5}}(Q)\right) \cdot f_{x, \pi_{\rho^{2}}(Q)}\left(P_{6}\right)\right.} \\
& \quad \cdot f_{-x, P_{6}}\left(\pi_{p^{2}}(Q)\right) \cdot \mathcal{V}_{P_{1}}\left(\pi_{p^{8}}(Q)\right) \cdot \mathcal{V}_{P_{4}}\left(\pi_{p^{5}}(Q)\right) \cdot \mathcal{V}_{P_{7}}\left(\pi_{p^{2}}(Q)\right) \\
& \quad \cdot f_{x, \pi_{p^{7}}(Q)}\left(P_{1}\right) \cdot f_{-x, P_{1}}\left(\pi_{p^{7}}(Q)\right) \cdot f_{x, \pi_{\rho^{4}}(Q)}\left(P_{4}\right) \cdot f_{-x, P_{4}}\left(\pi_{p^{4}}(Q)\right) \cdot f_{x, \pi_{p}(Q)}\left(P_{7}\right) \\
& \quad \cdot f_{-x, P_{7}}\left(\pi_{\rho}(Q)\right) \cdot \mathcal{V}_{P_{2}}\left(\pi_{p^{7}}(Q)\right) \cdot \mathcal{V}_{P_{5}}\left(\pi_{p^{4}}(Q)\right) \cdot \mathcal{V}_{P_{8}}\left(\pi_{p}(Q)\right) \\
& \quad \cdot f_{x, \pi_{\rho^{6}}(Q)}\left(P_{2}\right) \cdot f_{-x, P_{2}}\left(\pi_{p^{6}}(Q)\right) \cdot f_{x, \pi_{p^{3}}(Q)}\left(P_{5}\right) \cdot f_{-x, P_{5}}\left(\pi_{p^{3}}(Q)\right) \cdot f_{x, Q}\left(P_{8}\right) \\
&\left.\quad \cdot f_{-x, P_{8}}(Q) \cdot \mathcal{V}_{P_{3}}\left(\pi_{p^{6}}(Q)\right) \cdot \mathcal{V}_{P_{6}}\left(\pi_{\rho^{3}}(Q)\right) \cdot \mathcal{V}_{P_{9}}(Q)\right]^{p^{9}-1} .
\end{aligned}
$$

consists to compute and store line functions of the Miller function $f_{s, Q}$ or $f_{s, P}$.

```
Algorithm 3: CSL : Compute and Store Line functions [8]
Input: R\in\mp@subsup{\mathbb{G}}{1}{}(\mathrm{ or }R\in\mp@subsup{\mathbb{G}}{2}{2}\mathrm{ ), integer s}
Output: An array g of \lfloor\mp@subsup{log}{2}{}s\rfloor+HW(s) - 1 line functions and sR.
    HW(s) is the hamming weight of s
1 T}\leftarrowR\mathrm{ and j}\leftarrow
2 for }i\leftarrow\lfloor\mp@subsup{\operatorname{log}}{2}{}s\rfloor-1 to 0 do
3 g[j]\leftarrow\ell < ,T,T}\leftarrow2T,j\leftarrowj+
4 if i-th bit of s=\pm1 then
5
Lg[j]\leftarrow\ell 伎, T}\leftarrowT+R,j\leftarrowj+
6 return g,T.
```


Algorithm 4: EPM : Evaluate Product of e-Multi-functions

Input: $\left[\left(g_{0}, P_{0}\right), \ldots,\left(g_{e-1}, P_{e-1}\right),\left(h_{0}, Q_{0}\right), \ldots,\left(h_{e-1}, Q_{e-1}\right)\right]$
$s=\sum_{i=0}^{n} I_{i} 2^{i}$, where $I_{i} \in\{-1,0,1\}$ and $I_{n} \neq 0$
$h_{i}^{\prime} s$ are the precomputed line functions from $f_{s, \bar{P}_{i}}$
$g_{i}^{\prime} s$ are the precomputed line functions from $f_{s, Q_{i}}$
Output: $\prod_{i=0}^{e-1}\left(f_{s, Q_{i}}\left(\left[p^{i}\right] P\right) f_{s, P_{i}}\left(Q_{i}\right)\right)$,
$1 f \leftarrow 1$,
2 for j from $n-1$ down to 0 do
3 $f \leftarrow f^{2}$
4 for i from e-1 down to 0 do
$5 \quad\left\lfloor f \leftarrow f . \prod_{i=0}^{e-1} g_{i}[j]\left(P_{i}\right) \cdot h_{i}[j]\left(Q_{i}\right)\right.$
6
if $l_{j}= \pm 1$ then
for i from e-1 down to 0 do
$f \leftarrow f \cdot \prod_{i=0}^{e-1} g_{i}[j]\left(P_{i}\right) \cdot h_{i}[j]\left(Q_{i}\right)$
9 return f.

For parallel computation using 3 processors, $\beta_{27}(P, Q)$ can be regarded as

$$
\beta_{27}(P, Q)=\left(X^{p^{2}} \cdot Y^{p} \cdot Z\right)^{p^{9}-1}
$$

where

$$
\begin{aligned}
X= & f_{x, \pi_{p^{6}}(Q)}(P) \cdot f_{-x, P}\left(\pi_{p^{6}}(Q)\right) \cdot f_{x, \pi_{p^{3}}(Q)}\left(P_{3}\right) \cdot f_{-x, P_{3}}\left(\pi_{p^{3}}(Q)\right) \cdot f_{x, Q}\left(P_{6}\right) \\
& \cdot f_{-x, P_{6}}(Q) \cdot H_{1}, \\
Y= & f_{x, \pi_{p^{6}}(Q)}\left(P_{1}\right) \cdot f_{-x, P_{1}}\left(\pi_{p^{6}}(Q)\right) \cdot f_{x, \pi_{p^{3}}(Q)}\left(P_{4}\right) \cdot f_{-x, P_{4}}\left(\pi_{p^{3}}(Q)\right) \cdot f_{x, Q}\left(P_{7}\right) \\
& \cdot f_{-x, P_{7}}(Q) \cdot H_{2} \\
Z= & f_{x, \pi_{p^{6}}(Q)}\left(P_{2}\right) \cdot f_{-x, P_{2}}\left(\pi_{p^{6}}(Q)\right) \cdot f_{x, \pi_{p^{3}}(Q)}\left(P_{5}\right) \cdot f_{-x, P_{5}}\left(\pi_{p^{3}}(Q)\right) \cdot f_{x, Q}\left(P_{8}\right) \\
& \cdot f_{-x, P_{8}}(Q) \cdot H_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
H_{1} & =\mathcal{V}_{P_{1}}\left(\pi_{p^{6}}(Q)\right) \cdot \mathcal{V}_{P_{4}}\left(\pi_{p^{3}}(Q)\right) \cdot \mathcal{V}_{P_{7}}(Q) \\
H_{2} & =\mathcal{V}_{P_{2}}\left(\pi_{p^{6}}(Q)\right) \cdot \mathcal{V}_{P_{5}}\left(\pi_{p^{3}}(Q)\right) \cdot \mathcal{V}_{P_{8}}(Q) \\
H_{3} & =\mathcal{V}_{P_{3}}\left(\pi_{p^{6}}(Q)\right) \cdot \mathcal{V}_{P_{6}}\left(\pi_{p^{3}}(Q)\right) \cdot \mathcal{V}_{P_{9}}(Q)
\end{aligned}
$$ ginal β - Weil pairing and the proposed β - Weil paiRING.

TABLE 1 - Theoretical cost of the optimal Ate pairings, the original β-Weil pairing and the proposed β-Weil pairing.

curve	pairing	Serial computation	Parallel computation
BLS-27	Optimal Ate		(with 3 processors)
	original β-Weil pairing	$475463 M+497 I$	$162251 M+166 I$
	Proposed β-Weil pairing	$261608 M+64 I$	$103030 M+64 I$

- For serial computation, the theoretical cost of the proposed β-Weil pairing is 44.78% more benefit than the original β-Weil pairing.
- For parallel computation, the theoretical cost of the proposed β-Weil pairing is faster than Optimal Ate.
- Azebaze G.L., Fouotsa, E., El Mrabet N., and Pecha N.A., Faster Beta Weil Pairing on BLS Pairing Friendly Curves with Odd Embedding Degree. Math. Comput. Sci. 16, 13. Springer Birkhäuser, (2022). https ://doi.org/10.1007/s11786-022-00531-w

Accelerating the β-Weil pairing
\rightarrow Generalise the β-Weil pairing formula given by Kinoshita et al.
\rightarrow Simplify the formula and makes it to be suitable for parallel execution
\rightarrow Provide efficient algorithm for his evaluation
[1] L.G. Azebaze, E. Fouotsa, N. El Mrabet, and A. Pecha.
Faster beta weil pairing on BLS pairing friendly curves with odd embedding degree.
Math. Comput. Sci., 16(2) :13. Springer Birkhäuser, 2022.
[2] P.S.L.M. Barreto, B. Lynn, and M. Scott.
Constructing elliptic curves with prescribed embedding degrees.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Security in Communication Networks, Third International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers, volume 2576 of Lecture Notes in Computer Science, pages 257-267. Springer, 2002.
[3] D. Boneh and M.K. Franklin.
Identity-based encryption from the weil pairing.
In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 213-229, 2001.
[4] Q.Y. Feng, T.C. Ming, G. Baoan, and X.M. Zhi. Super-optimal pairings.
In Mechanical Engineering, Materials and Energy II, volume 281 of Applied Mechanics and Materials, pages 127-133. Trans Tech Publications Ltd, 32013.
[5] G. Fotiadis and E. Konstantinou.

TNFS resistant families of pairing-friendly elliptic curves.
Theoretical Compututer Science, $800: 73-89$. Elsevier, 2019.
[6] E. Fouotsa, A. Pecha, and N. El Mrabet.
Beta Weil pairing revisited.
Afrika Matematika., 30 :371-388. Springer, 2019.
[7] A. Joux.
A one round protocol for tripartite diffie-hellman.
In Algorithmic Number Theory, 4th International Symposium, ANTS-IV, Leiden, The Netherlands, July 2-7, 2000, Proceedings, volume 1838, pages 385-394, 2000.
[8] K. Kinoshita and K. Suzuki.
Accelerating Beta Weil pairing with precomputation and multi-pairing techniques.
In Kazumaro Aoki and Akira Kanaoka, editors, Advances in Information and Computer Security - 15th International Workshop on Security, IWSEC 2020, Fukui, Japan, September 2-4, 2020, Proceedings, volume 12231 of Lecture Notes in Computer Science, pages 261-281. Springer, 2020.
[9] F. Vercauteren.
Optimal pairings.
IEEE Transactions on Information Theory, 56(1) :455-461, 2010.

I would like to thank you for your attention.

I would also like to thank the organizers for inviting me to deliver this presentation.

