
Outline Introduction Background SwiftEC Implementation Conclusion References

SwiftEC
Shallue-van de Woestijne Indifferentiable Function to Elliptic

Curves

Jorge Chavez-Saab
jorge.saab@tii.ae

Coauthors:
Francisco Rodŕıguez-Henŕıquez

Mehdi Tibouchi

July 12, 2023

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

1 Introduction

2 Background

3 SwiftEC

4 Implementation

5 Conclusion

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Our contribution

The most efficient constant-time admissible encoding into a large
set of ordinary elliptic curves

A single-squareroot indifferentiable hash function

A two-squareroot point representation algorithm

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Hashing to Elliptic Curves

Many applications require hashing to a cryptographic group (e.g.
PAKE schemes, signatures and anything involving Fiat-Shamir
transform).

For elliptic curve groups, this is not straightforward.

E/Fq : y2 = x3 + ax + b

How do we get a random (x , y) ∈ E (Fq)?

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Hashing to Elliptic Curves

Naive constructions:

Hash to some x ∈ Fq, and restart until y =
√
x3 + ax + b

exists.
Not constant time.

Hash to some n ∈ ZN and output P = [n]G for some
generator G ∈ E (Fq).
Leaks the discrete log.

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings

The basic idea: start from a hash h to a set S and compose with
an encoding f : S → E (Fq).

S
f−−−−→ E (Fq)

S
f −1

←−−−−− E (Fq)

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings

The basic idea: start from a hash h to a set S and compose with
an encoding f : S → E (Fq).

S
f−−−−→ E (Fq)

SwiftEC

S
f −1

←−−−−− E (Fq)

ElligatorSwift

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Admissible encodings

What do we need for f (h(x)) to be a secure hash function?

Admissible encoding

The resulting construction is secure if f is admissible [BCIMRT10]:

Computable: f (x) can be evaluated via a deterministic
polynomial-time algorithm.

Regular: for x ∈ Fq sampled uniformly, the distribution f (x)
is statistically indistinguishable from uniform.

Samplable: there exists a PPT algorithm which for any
P ∈ E (Fq) returns a uniformly random preimage f −1(P).

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encoding to a conic

C : x2 − y2 = 1

x

y

P0

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encoding to a conic

C : x2 − y2 = 1

x

y

P0

P1

t1

P1 ↔ t1

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encoding to a conic

C : x2 − y2 = 1

x

y

P0

P2

t2

P2 ↔ t2

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encoding to a conic

C : x2 − y2 = 1

x

y

P0

P2

t2

This encoding is one-to-one
Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

Hashing to elliptic curve has been a problem of great
interest for almost two decades.

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

Given E/Fq : y2 = x3 + ax + b := g(x) (with a ̸= 0),
Ska lba [Ska05] found a rational function Ψ : Fq → V , where

V = {(x1, x2, x3, z) ∈ F4
q | g(x1)g(x2)g(x3) = z2},

meaning at least one of the xi is the x-coordinate of a point
in E .

f : Fq
Ψ−→ V

select square−−−−−−−→ E (Fq)

Involves degrees up to 26!

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

For some u ∈ Fq, Shallue-van de Woestijne [SW06] found a
one-to-one ivertible function Ψu : Cu → V , where

Cu : X 2 + (3u2 + 4a)Y 2 = −g(u),

given by
x1 =

X

2Y
−

u

2
x2 = −

X

2Y
−

u

2
x3 = u + 4Y 2

z =
g(u + Y 2)

Y
·
(
u2 + u

(
X

2Y
−

u

2

)
+

(
X

2Y
−

u

2

)2

+ a

)

Much simpler formulas.

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

We already know how to encode Cu! (given a fixed point
Pu)

fu : F conic encoding−−−−−−−−−→ Cu(Fq)
Ψu−−→ V (Fq)

select square−−−−−−−→ E (Fq)

✓Family of encodings (one for each u)
✓Main cost is one square-root (for recovering the
y -coordinate)
✓Works for almost all elliptic curves and almost all u
✗Not regular: only fills ≈ 1/8 of the curve

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

Icart’s Encoding [Ica09]: f : t 7→ (x , y) with

x =

(
v2 − b − t6

27

)1/3

+
t2

3
y = tx+v v =

4a− t4

6t

✓Deterministic, closed-form
✗Requires q ≡ 2 mod 3
✗Expensive cubic root
✗Not regular: only fills ≈ 5/8 of the curve

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

The “Squared encoding” [BCIMRT10]:

F (t1, t2) = f (t1) + f (t2),

where f is Icart’s encoding, is regular.

Generalized to most encodings by [FFSTV13].

✓Provides an admissible encoding for any curve
✗Domain is twice as large (bad for point representation)
✗Requires two evaluations of f (two square-roots)

Can one obtain an admissible encoding with a single
square-root?

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

Koshelev [Kos22] obtained a single-square-root admissible
encoding in some constrained scenarios.

✓Works with some BLS curves (pairings)
✗Requires j-invariant equal to 0 and specific conditions for
the base field.

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Encodings to Elliptic Curves

SwiftEC: a single-square-root admissible function that
works with most elliptic curves as long as q ≡ 1 mod 3.

Using the SW family of encodings fu, we define

F (u, t) = fu(t).

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Problems that arise

Computability: Is there an efficient algorithm to compute Pu ∈ Cu

on input u?

Regularity: Need a proof that the distribution of F (u, t) is close to
uniform

Samplability: Need an “inverse” function to recover a pair (u, t)
uniformly at random (ElligatorSwift)

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Computability of SwiftEC

Encoding to the conic Cu requires knowing a fixed point Pu

Now it must be computed on the go.

Theorem 1 (van Hoeij-Cremona [HC06])

The parametrized projective conic

Cu : X 2 + h(u)Y 2 + g(u)Z 2 = 0

admits a rational point X (u),Y (u),Z (u) iff:

1 −h is a square in Fq[u]/(g)

2 −g is a square in Fq[u]/(h)

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Computability of SwiftEC

In our case, h(u) = 3u2 + 4a and −g(u) = u3 + au + b.

Theorem 2 (this work)

The conditions for Theorem 1 are equivalent to:

1 q ≡ 1 mod 3

2 The discriminant ∆E := −16(4a3 + 27b2) is a square in Fq

3 At least one of ν± := 1
2 (−b ±

√
−3∆E/36) is a square

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Computability of SwiftEC

Compatible curves: P256, secp256k1, as well as all BN and
BLS curves as long as q ≡ 1 mod 3.

Other curves can be rescued by composing with a small
isogeny:

Curve25519 has non-square ∆E , but there is a compatible
2-isogenous curve
P521 has non-square ν±, but there is a compatible 3-isogenous
curve

Curves with q ̸≡ 1 mod 3 cannot be rescued (P384,
Ed448-Goldilocks)

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Regularity of SwiftEC

For the distribution to be close to uniform, we want

#F−1(x) ≈ #Domain

#Codomain
=

q2

#E (Fq)/2
≈ 2q

for each x .

Theorem 2

The map F (u, t) = fu(t) is regular in the sense that

1

2

∑
(x ,y)∈E(Fq)

∣∣∣∣#F−1(x)

q2
− 1

#E (Fq)/2

∣∣∣∣ < ϵ

for
ϵ = (6 + o(1))q−1/2

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Sketch of the proof

Recall the SW map

x1 =
X

2Y
−

u

2
x2 = −

X

2Y
−

u

2
x3 = u + 4Y 2 Cu : X 2 + h(u)Y 2 = g(u)

For fixed x̄ , define Ci (x̄) the set of points (u,X ,Y ) such that
xi = x̄

1 Except for a few x̄ , Ci (x̄) are hyperelliptic curves of genus 2,
so #Ci (x̄) ≈ q by the Hasse-Weil bound

2 The number of points where all three xi are squares is
N(x̄) ≈ q/2 (Perret bound on character sums [Per91])

3 #F−1(x̄) = #C1(x̄) + (#C2(x̄)− N(x̄)) + (#C3(x̄)− N(x̄))
≈ q + (q/2) + (q/2) = 2q

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Samplability of SwiftEC

We also introduce the ElligatorSwift algorithm which samples
a random preimage (u, t) ∈ F−1(x).

Recall

x1 =
X

2Y
−

u

2
x2 = −

X

2Y
−

u

2
x3 = u + 4Y 2

1 Pick random u ∈ Fq and i ∈ {1, 2, 3}
2 Try to invert the map xi to recover X ,Y (restarting if unable)

3 If all g(xi ) are squares and i ̸= 1, restart

4 Invert the parametrization of Cu to recover t

x
random u,i7−−−−−−−→ (X ,Y )

conic encode7−−−−−−−−→ t

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Implementation

We have implemented both SwiftEC and ElligatorSwift in
Sage1.

Add Sqr Mul Jac Inv Sqrt

SwiftEC 25 7 18 2 1 1
X-only proj. SwiftEC 22 9 23 2 0 0

1https://github.com/Jchavezsaab/SwiftEC
Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Preimage Distribution

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Benchmarking

Preliminary results from a C implementation for secp256k1

ElligatorSquared SwiftEC

Encode 49.2 µs 22.1 µs
Decode 14.7 µs 6.9 µs

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



Outline Introduction Background SwiftEC Implementation Conclusion References

Conclusions

SwiftEC is now the fastest known algorithm for hashing into
most elliptic curves

ElligatorSwift is the fastest known algorithm for elliptic curve
point representation

Both improved on the previous state-of-the-art with more
than double the performance

Future work:

Handle the case q ≡ 2 mod 3 and a few other exceptions.

Jorge Chavez-Saab Technology Innovation Institute

SwiftEC



References

[Per91] Marc Perret. “Multiplicative character sums and Kummer coverings”. In: Acta Arith. 59
(1991), pp. 279–290.

[Ska05] M. Ska lba. “Points on elliptic curves over finite fields”. eng. In: Acta Arithmetica 117.3
(2005), pp. 293–301.

[HC06] Mark van Hoeij and John Cremona. “Solving conics over function fields”. In: Journal de
Théorie des Nombres de Bordeaux 18.3 (2006), pp. 595–606.

[SW06] Andrew Shallue and Christiaan E. van de Woestijne. “Construction of Rational Points on
Elliptic Curves over Finite Fields”. In: Algorithmic Number Theory, 7th International
Symposium, ANTS-VII. Ed. by Florian Hess, Sebastian Pauli, and Michael E. Pohst.
Vol. 4076. Lecture Notes in Computer Science. Springer, 2006, pp. 510–524.

[Ica09] Thomas Icart. “How to Hash into Elliptic Curves”. In: 2009, pp. 303–316.

[BCIMRT10] Eric Brier et al. “Efficient Indifferentiable Hashing into Ordinary Elliptic Curves”. In:
Advances in Cryptology – CRYPTO 2010. Ed. by Tal Rabin. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 237–254.

[FFSTV13] Reza Rezaeian Farashahi et al. “Indifferentiable deterministic hashing to elliptic and
hyperelliptic curves”. In: Math. Comput. 82.281 (2013), pp. 491–512.

[Kos22] Dmitrii Koshelev. “Indifferentiable hashing to ordinary elliptic Fq -curves of j = 0 with the
cost of one exponentiation in Fq”. In: Des. Codes Cryptogr. 90.3 (2022), pp. 801–812.


	Outline
	Introduction
	Background
	SwiftEC
	Implementation
	Conclusion
	References

