

SwiftEC

Shallue-van de Woestijne Indifferentiable Function to Elliptic Curves

Jorge Chavez-Saab jorge.saab@tii.ae

Coauthors: Francisco Rodríguez-Henríquez Mehdi Tibouchi

July 12, 2023

Jorge Chavez-Saab

SwiftEC

Technology Innovation Institute

• • • • • • • • • • • •

1 Introduction

2 Background

3 SwiftEC

4 Implementation

- * ロ * * @ * * 国 * * 国 * うへの

Jorge Chavez-Saab SwiftEC

The most efficient constant-time admissible encoding into a large set of ordinary elliptic curves

- A single-squareroot indifferentiable hash function
- A two-squareroot point representation algorithm

イロト イボト イヨト イヨ

Hashing to Elliptic Curves

Many applications require hashing to a cryptographic group (*e.g.* PAKE schemes, signatures and anything involving Fiat-Shamir transform).

For elliptic curve groups, this is not straightforward.

$$E/\mathbb{F}_q: y^2 = x^3 + ax + b$$

How do we get a random $(x, y) \in E(\mathbb{F}_q)$?

Jorge Chavez-Saab

Technology Innovation Institute

< □ > < 同 > < Ξ > <</p>

Hashing to Elliptic Curves

Naive constructions:

Hash to some $x \in \mathbb{F}_q$, and restart until $y = \sqrt{x^3 + ax + b}$ exists.

Not constant time.

Hash to some n ∈ Z_N and output P = [n]G for some generator G ∈ E(F_q).
 Leaks the discrete log.

SwiftEC

イロト イポト イヨト イヨト

The basic idea: start from a hash h to a set S and compose with an encoding $f : S \to E(\mathbb{F}_q)$.

$$S \xrightarrow{f} E(\mathbb{F}_q)$$

$$S \xleftarrow{f^{-1}} E(\mathbb{F}_q)$$

Technology Innovation Institute

э

(a)

Jorge Chavez-Saab

The basic idea: start from a hash *h* to a set *S* and compose with an encoding $f : S \to E(\mathbb{F}_q)$.

$$S \xrightarrow{f} E(\mathbb{F}_q)$$
SwiftEC

$$S \xleftarrow{f^{-1}} E(\mathbb{F}_q)$$

ElligatorSwift

Jorge Chavez-Saab

SwiftEC

Technology Innovation Institute

(a)

Admissible encodings

What do we need for f(h(x)) to be a secure hash function?

Admissible encoding

The resulting construction is secure if *f* is admissible [BCIMRT10]:

- **Computable:** *f*(*x*) can be evaluated via a deterministic polynomial-time algorithm.
- **Regular:** for $x \in \mathbb{F}_q$ sampled uniformly, the distribution f(x) is statistically indistinguishable from uniform.
- **Samplable:** there exists a PPT algorithm which for any $P \in E(\mathbb{F}_q)$ returns a uniformly random preimage $f^{-1}(P)$.

Jorge Chavez-Saab SwiftEC Technology Innovation Institute

< ロ > < 同 > < 三 > < 三 >

Outline	Introduction	Background	SwiftEC	Implementation	Conclusion	References
0	00000●	0000000	0000000	000	O	

Jorge Chavez-Saab

Outline	Introduction	Background	SwiftEC	Implementation	Conclusion	References
0	00000●	0000000	0000000	000	O	

Jorge Chavez-Saab

SwiftEC

Outline	Introduction	Background	SwiftEC	Implementation	Conclusion	References
0	00000●	0000000	0000000	000	O	

Technology Innovation Institute

Jorge Chavez-Saab

Outline	Introduction	Background	SwiftEC	Implementation	Conclusion	References
0	00000●	0000000	0000000	000	O	

This encoding is one-to-one

Jorge Chavez-Saab

SwiftEC

Technology Innovation Institute

イロト イロト イヨト イヨ

Jorge Chavez-Saab SwiftEC

Given
$$E/\mathbb{F}_q : y^2 = x^3 + ax + b := g(x)$$
 (with $a \neq 0$),
Skałba
2005
Skałba [Ska05] found a rational function $\Psi : \mathbb{F}_q \to V$, where
 $V = \{(x_1, x_2, x_3, z) \in \mathbb{F}_q^4 \mid g(x_1)g(x_2)g(x_3) = z^2\},$
meaning at least one of the x_i is the x-coordinate of a point
in E .
2009
Icart
2010
Squared
Encoding
 $f : \mathbb{F}_q \xrightarrow{\Psi} V \xrightarrow{\text{select square}} E(\mathbb{F}_q)$
2022
Koshelev
2022
Swiftec
Jorge Chavez-Saab
SwifteC

Background

Jorge Chavez-Saab SwiftEC

Outline

Background

Jorge Chavez-Saab SwiftEC

Outline

The "Squared encoding" [BCIMRT10]: $F(t_1, t_2) = f(t_1) + f(t_2),$ where f is leart's encoding, is regular.

2009 Icart 2010 Squared Encoding

Skałba

2022 Koshelev 2022 SwiftEC Generalized to most encodings by [FFSTV13].

✓ Provides an admissible encoding for any curve ✗Domain is twice as large (bad for point representation) ✗Requires two evaluations of f (two square-roots)

Can one obtain an admissible encoding with a single square-root?

Jorge Chavez-Saab SwiftEC

Jorge Chavez-Saab SwiftEC

Problems that arise

Computability: Is there an efficient algorithm to compute $P_u \in C_u$ on input u?

Regularity: Need a proof that the distribution of F(u, t) is close to uniform

Samplability: Need an "inverse" function to recover a pair (u, t) uniformly at random (ElligatorSwift)

イロト イボト イヨト イヨト

Computability of SwiftEC

Encoding to the conic C_u requires knowing a fixed point P_u Now it must be computed on the go.

Theorem 1 (van Hoeij-Cremona [HC06])

The parametrized projective conic

$$C_u$$
: $X^2 + h(u)Y^2 + g(u)Z^2 = 0$

admits a rational point X(u), Y(u), Z(u) iff: 1 -h is a square in $\mathbb{F}_q[u]/(g)$ 2 -g is a square in $\mathbb{F}_q[u]/(h)$

Jorge Chavez-Saab SwiftEC Technology Innovation Institute

イロト イポト イヨト イヨト

Computability of SwiftEC

In our case,
$$h(u) = 3u^2 + 4a$$
 and $-g(u) = u^3 + au + b$.

Theorem 2 (this work)

The conditions for Theorem 1 are equivalent to:

$$1 \quad q \equiv 1 \mod 3$$

2 The discriminant $\Delta_E := -16(4a^3 + 27b^2)$ is a square in \mathbb{F}_q

(日) (四) (三) (三)

Technology Innovation Institute

3 At least one of $\nu_{\pm} := \frac{1}{2}(-b \pm \sqrt{-3\Delta_E}/36)$ is a square

Jorge Chavez-Saab

Computability of SwiftEC

- Compatible curves: P256, secp256k1, as well as all BN and BLS curves as long as $q \equiv 1 \mod 3$.
- Other curves can be rescued by composing with a small isogeny:
 - Curve25519 has non-square Δ_E , but there is a compatible 2-isogenous curve
 - \blacksquare P521 has non-square $\nu_{\pm},$ but there is a compatible 3-isogenous curve
- Curves with $q \neq 1 \mod 3$ cannot be rescued (P384, Ed448-Goldilocks)

イロト イポト イヨト イヨト

Regularity of SwiftEC

For the distribution to be close to uniform, we want

$$\#F^{-1}(x) \approx \frac{\#\text{Domain}}{\#\text{Codomain}} = \frac{q^2}{\#E(\mathbb{F}_q)/2} \approx 2q$$

for each x.

Theorem 2

The map $F(u, t) = f_u(t)$ is regular in the sense that

$$\frac{1}{2}\sum_{(x,y)\in E(\mathbb{F}_q)}\left|\frac{\#F^{-1}(x)}{q^2}-\frac{1}{\#E(\mathbb{F}_q)/2}\right|<\epsilon$$

for

$$\epsilon = (6 + o(1))q^{-1/2}$$

Jorge Chavez-Saab

SwiftEC

Outline	Introduction	Background	SwiftEC	Implementation	Conclusion	References
0	000000	00000000	00000●0	000	O	

Sketch of the proof

Recall the SW map

 $x_1 = \frac{X}{2Y} - \frac{u}{2}$ $x_2 = -\frac{X}{2Y} - \frac{u}{2}$ $x_3 = u + 4Y^2$ $C_u : X^2 + h(u)Y^2 = g(u)$

For fixed \bar{x} , define $C_i(\bar{x})$ the set of points (u, X, Y) such that $x_i = \bar{x}$

- **1** Except for a few \bar{x} , $C_i(\bar{x})$ are hyperelliptic curves of genus 2, so $\#C_i(\bar{x}) \approx q$ by the Hasse-Weil bound
- 2 The number of points where all three x_i are squares is $N(\bar{x}) \approx q/2$ (Perret bound on character sums [Per91])

3
$$\#F^{-1}(\bar{x}) = \#C_1(\bar{x}) + (\#C_2(\bar{x}) - N(\bar{x})) + (\#C_3(\bar{x}) - N(\bar{x}))$$

 $\approx q + (q/2) + (q/2) = 2q$

э

イロト イポト イヨト イヨト

Samplability of SwiftEC

We also introduce the ElligatorSwift algorithm which samples a random preimage $(u, t) \in F^{-1}(x)$.

- 1 Pick random $u \in \mathbb{F}_q$ and $i \in \{1, 2, 3\}$
- **2** Try to invert the map x_i to recover X, Y (restarting if unable)
- 3 If all $g(x_i)$ are squares and $i \neq 1$, restart
- 4 Invert the parametrization of C_u to recover t

$$x \xrightarrow{\operatorname{random} u, i} (X, Y) \xrightarrow{\operatorname{conic} encode} t$$

Jorge Chavez-Saab SwiftEC

Outline	Introduction	Background	SwiftEC	Implementation	Conclusion	References
0	000000	00000000	0000000	•00	O	

Implementation

We have implemented both SwiftEC and ElligatorSwift in ${\tt Sage}^1.$

	Add	Sqr	Mul	Jac	Inv	Sqrt
SwiftEC	25	7	18	2	1	1
X-only proj. SwiftEC	22	9	23	2	0	0

¹https://github.com/Jchavezsaab/SwiftEC

Jorge Chavez-Saab

SwiftEC

Technology Innovation Institute

Preimage Distribution

Jorge Chavez-Saab SwiftEC

Outline 0	Introduction 000000	Background 00000000	SwiftEC 0000000	Implementation ○○●	Conclusion O	References
Bench	marking					

Preliminary results from a C implementation for secp256k1

	ElligatorSquared	SwiftEC
Encode	49.2 <i>µ</i> s	22.1 μ s
Decode	14.7 μ s	6.9 μ s

Technology Innovation Institute

(a)

Jorge Chavez-Saab

- SwiftEC is now the fastest known algorithm for hashing into most elliptic curves
- ElligatorSwift is the fastest known algorithm for elliptic curve point representation
- Both improved on the previous state-of-the-art with more than double the performance

Future work:

• Handle the case $q \equiv 2 \mod 3$ and a few other exceptions.

イロト イポト イヨト イヨト

References

[Per91]	Marc Perret. "Multiplicative character sums and Kummer coverings". In: Acta Arith. 59 (1991), pp. 279–290.
[Ska05]	M. Skałba. "Points on elliptic curves over finite fields". eng. In: Acta Arithmetica 117.3 (2005), pp. 293–301.
[HC06]	Mark van Hoeij and John Cremona. "Solving conics over function fields". In: Journal de Théorie des Nombres de Bordeaux 18.3 (2006), pp. 595–606.
[SW06]	Andrew Shallue and Christiaan E. van de Woestijne. "Construction of Rational Points on Elliptic Curves over Finite Fields". In: <i>Algorithmic Number Theory, 7th International</i> <i>Symposium, ANTS-VII.</i> Ed. by Florian Hess, Sebastian Pauli, and Michael E. Pohst. Vol. 4076. Lecture Notes in Computer Science. Springer, 2006, pp. 510–524.
[Ica09]	Thomas Icart. "How to Hash into Elliptic Curves". In: 2009, pp. 303-316.
[BCIMRT10]	Eric Brier et al. "Efficient Indifferentiable Hashing into Ordinary Elliptic Curves". In: <i>Advances in Cryptology – CRYPTO 2010.</i> Ed. by Tal Rabin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 237–254.
[FFSTV13]	Reza Rezaeian Farashahi et al. "Indifferentiable deterministic hashing to elliptic and hyperelliptic curves". In: <i>Math. Comput.</i> 82.281 (2013), pp. 491–512.
[Kos22]	Dmitrii Koshelev. "Indifferentiable hashing to ordinary elliptic \mathbb{F}_q -curves of $j = 0$ with the cost of one exponentiation in \mathbb{F}_q ". In: <i>Des. Codes Cryptogr.</i> 90.3 (2022), pp. 801–812.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで