SIAM-AG23: 10 - 14 July 2023, Eindhoven, the Netherlands

3 Minisymposia for cryptographers:

- MS Applications of Algebraic Geometry to Post-Quantum Cryptology
- MS53, 66, 80 Elliptic Curves and Pairings in Cryptography
- MS92, 105, 118 Applications of Isogenies in Cryptography

https://www.win.tue.nl/siam-ag23/index.html
https://meetings.siam.org/program.cfm?CONFCODE=AG23

Practical info

Sessions labelled ECC on your A4-program at the back of your nametag

- Session 1: this session, Wednesday 10:30-12:30 Room Audi 1 live stream at https://videocollege.tue.nl/Mediasite/Channel/ siam-2023-event/watch/9f5674a210674102941f8614f5d2eba91d
- Session 2: this afternoon, Wednesday 14:00-16:00 Room Audi 1 https://videocollege.tue.nl/Mediasite/Channel/siam-2023-event/ watch/e7d29808e57f402a825b23107cf071bb1d
- Session 3: tomorrow, Thursday 10:30-12:30 Room Audi 1 https://videocollege.tue.nl/Mediasite/Channel/siam-2023-event/ watch/76dd943096194e8c8391bdac686cd8f91d

Elliptic Curves in Cryptography

Elliptic curves introduced in 1985 by Miller, Koblitz Perfect candidates to build a generic group Many curves, usually over prime fields of sparse binary expansion

- curve 25519 over $\operatorname{GF}\left(2^{255}-19\right)$
- NIST-P curves
- Four \mathbb{Q} over $\operatorname{GF}\left(p^{2}\right), p=2^{127}-1$ Mersenne
- BLS12-381 for pairings ...

Basic crypto operations

Exponentation in a group \mathbb{G} becomes scalar multiplication

$$
m, G \mapsto[m] G=\underbrace{G+G+\ldots+G}_{m \text { times }}
$$

Elliptic curve in Montgomery form and 2-torsion

Curve25519: $y^{2}=x^{3}+\underbrace{486662}_{A} x^{2}+x$ over GF $(p), p=2^{255}-19$
order $\# E\left(\mathbb{F}_{p}\right)=8 r, 253$-bit prime r
2-torsion points $=\left\{P \in E, 2 P=\mathcal{O} \Longleftrightarrow y_{P}=0\right\}$

- 2-torsion over $\mathbb{F}_{p}:\{\mathcal{O},(0,0)\}$
- full 2-torsion over $\mathbb{F}_{p^{2}}:\{\mathcal{O},(0,0),(\lambda, 0),(\mu, 0)\}, x^{2}+A x+1=(x-\lambda)(x-\mu)$

Elliptic curve in Montgomery form and 2-torsion

Curve25519: $y^{2}=x^{3}+\underbrace{486662}_{A} x^{2}+x$ over GF $(p), p=2^{255}-19$
order $\# E\left(\mathbb{F}_{p}\right)=8 r, 253$-bit prime r
2-torsion points $=\left\{P \in E, 2 P=\mathcal{O} \Longleftrightarrow y_{P}=0\right\}$

- 2-torsion over $\mathbb{F}_{p}:\{\mathcal{O},(0,0)\}$
- full 2-torsion over $\mathbb{F}_{p^{2}}:\{\mathcal{O},(0,0),(\lambda, 0),(\mu, 0)\}, x^{2}+A x+1=(x-\lambda)(x-\mu)$

For an integer ℓ, the ℓ-torsion $E[\ell]$ has order ℓ^{2}

- $\# E[2]=4 \subset E\left(\mathbb{F}_{p^{2}}\right)$
- $\# E[4]=16 \subset E\left(\mathbb{F}_{p^{2}}\right)$
- $\# E[8]=64 \subset E\left(\mathbb{F}_{p^{2}}\right)$
- $\# E[r]=r^{2} \subset E\left(\mathbb{F}_{p^{k}}\right), k=(r-1) / 6$ of 250 bits for Curve25519

Group operations on curves for crypto

Subgoup membership testing
For curves E over \mathbb{F}_{p} with a cofactor $\# E\left(\mathbb{F}_{p}\right)=h \cdot r$

- Pairings as a new tool by Dimitri Koshelev next talk
- Large cofactors for pairings, Dai Yu's talk Session 2

Hashing to a point on the curve

Elligator for curves with $h=2,4$,
Wahby-Boneh on the BLS-381 curve and all j-invariant 0 and $p=1 \bmod 3$ with a \mathbb{F}_{p}-rational small-degree isogeny

- new results by Jorge Chavez-Saab just after
- new results by Dimitri Koshelev (not in this MS)

Bilinear pairing in cryptography

As a black-box:
$\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right),\left(\mathbb{G}_{T}, \cdot\right)$ three cyclic groups of large prime order r
Bilinear pairing: map $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$

1. bilinear: $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) \cdot e\left(P_{2}, Q\right), e\left(P, Q_{1}+Q_{2}\right)=e\left(P, Q_{1}\right) \cdot e\left(P, Q_{2}\right)$
2. non-degenerate: $e\left(G_{1}, G_{2}\right) \neq 1$ for $\left\langle G_{1}\right\rangle=\mathbb{G}_{1},\left\langle G_{2}\right\rangle=\mathbb{G}_{2}$
3. efficiently computable

Mostly used in practice:

$$
e([a] P,[b] Q)=e([b] P,[a] Q)=e(P, Q)^{a b}
$$

Examples of applications

- 1984: idea of identity-based encryption (IBE) by Shamir
- 1999: first practical identity-based cryptosystem of Sakai-Ohgishi-Kasahara
- 2000: constructive pairings, Joux's tri-partite key-exchange
- 2001: IBE of Boneh-Franklin, short signatures Boneh-Lynn-Shacham
- broadcast encryption, re-keying
- aggregate signatures
- attribute-based encryption

This afternoon, M. Venema, pairing-based ABE

- zero-knowledge (ZK) proofs, non-interactive ZK proofs (NIZK) this afternoon, Y. El Housni, pairings in the context of zk-SNARKs tomorrow, M. Bellés Muñoz, the quest to finding curves for zk-SNARKs
- tool in isogeny-based post-quantum cryptography, different setting (in the other minisymposia, e.g. Giulio's talks MS14)

Bilinear pairings

Security relies on

- Discrete Log Problem (DLP):
given $g, h \in \mathbb{G}$, compute x s.t. $g^{x}=h$
- Diffie-Hellman Problem (DHP):
given $g, g^{a}, g^{b} \in \mathbb{G}$, compute $g^{a b}$
- bilinear DLP and DHP
- pairing inversion problem

Pairing-friendly curves should be designed on purpose

In cryptographic setting: $E[r]$ has structure $\mathbb{Z}_{r} \times \mathbb{Z}_{r}$ denoted $\mathbb{G}_{1} \times \mathbb{G}_{2}$ (remember the 2-torsion points on Curve25519)

128-, resp. 192-bit security level:

- r large prime ~ 256, resp. 384 bits
- $\# E\left(\mathbb{F}_{p}\right)=h \cdot r, h$ small cofactor, $\mathbb{G}_{1}=E\left(\mathbb{F}_{p}\right)[r]$
- $E[r] \subset E\left(\mathbb{F}_{p^{k}}\right)$ and $1 \leq k \leq 54, \mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)[r]$ k embedding degree
- $\mathbb{G}_{T} \subset \mathbb{F}_{p^{k}}^{*}$ multiplicative subgroup of order r

Usually $\log k \sim \log r$ (Balasubramanian Koblitz [BK98]).
Plain curves (25519, NIST curves) are never pairing-friendly

Finding pairing-friendly curves

Cocks-Pinch method:

Repeat

1. Start from the subgroup prime order r
2. Choose an embedding degree k and check $r \equiv 1 \bmod k$
3. Set $z \equiv \zeta_{k} \bmod r$
(take z at random, repeat $z \mapsto z^{(r-1) / k}$ until $\Phi_{k}(z)=1 \bmod r, z \neq 1$)
4. Set $t=z+1$ and lift in \mathbb{Z}
5. Set $y=(t-2) / \sqrt{-D} \bmod r$ and lift in \mathbb{Z}
6. Set $p=\left(t^{2}+D y^{2}\right) / 4$
until $p \in \mathbb{Z}$ and p is prime
Variant: lift $t+h_{t} \cdot r, y+h_{y} \cdot r$ with small h_{t}, h_{y}
Drawback: large cofactor $h \approx r$

Pairing-friendly curves are special

1st ones were supersingular, again used in post-quantum crypto.

Ordinary curves:

- 2001: Miyaji-Nakabayashi-Takano curves, $k \in\{3,4,6\}$, prime order [MNT01]
- Cocks-Pinch technique
- Barreto-Lynn-Scott curves, $3 \mid k, 18 \nmid k[B L S 03]$
- Brezing-Weng construction [BW05]
- Freeman $k=10$ [Fre06], Barreto-Naehrig curves $k=12$, prime order [BN06]
- Kachisa-Schaefer-Scott curves, $k \in\{8,16,18,32,36,40\}$ [KSS08]
- Freeman-Scott-Teske Taxonomy [FST10]
- Scott-Guillevic, $k=54$ [SG18]
- Gasnier-Guillevic, $k=20,22$ (J. Gasnier, tomorrow)

Why Barreto-Naehrig'2005 curves were so popular?

$$
k=12, j=0, D=-3,
$$

$$
E: y^{2}=x^{3}+b
$$

$$
\begin{aligned}
& p(x)=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1 \\
& r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1
\end{aligned}
$$

Why Barreto-Naehrig'2005 curves were so popular?

$$
\begin{aligned}
& k=12, j=0, D=-3 \text {, } \\
& E: y^{2}=x^{3}+b \\
& p(x)=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1 \\
& r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1 \\
& \left.x_{0}=2^{62}-2^{54}+2^{44} \text { [NAS }{ }^{+} 08\right] \text { (Nogami et al.) } \\
& x_{0}=-\left(2^{62}+2^{55}+1\right) \text { [PSNB11] (Pereira et al.) } \\
& x_{0}=0 \times 44 \mathrm{e} 992 \mathrm{~b} 44 \mathrm{a} 6909 \mathrm{f} 1 \text { in Ethereum, s.t. } 2^{28} \mid r-1 \int r \text { of } 254 \text { bits }
\end{aligned}
$$

Why Barreto-Naehrig'2005 curves were so popular?

$$
k=12, j=0, D=-3,
$$

$$
E: y^{2}=x^{3}+b
$$

$$
p(x)=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1
$$

$$
r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1
$$

$$
x_{0}=2^{62}-2^{54}+2^{44}\left[\text { NAS }^{+} 08\right] \text { (Nogami et al.) }
$$

$$
x_{0}=-\left(2^{62}+2^{55}+1\right) \text { [PSNB11] (Pereira et al.) }
$$

$$
\left.x_{0}=0 \mathrm{x} 44 \mathrm{e} 992 \mathrm{~b} 44 \mathrm{a} 6909 \mathrm{f} 1 \text { in Ethereum, s.t. } 2^{28} \mid r-1\right\}
$$

$\# E\left(\mathbb{F}_{p}\right)=r$ prime order r of 254 bits
$\mathbb{G}_{T} \subset \mathbb{F}_{p^{12}}$ of $12 \log p \approx 3048$ bits
≈ 3072 bits expected to offer 128 bits of security for RSA and D-Log in the 2000's

- optimal parameter size, optimal $k=12$
- prime order: no cofactor clearing, no subgroup membership testing
- $\mathbb{F}_{p^{12}}$ towering easier to implement with Karatsuba
$\Longrightarrow B N$ curves were the perfect match

Choosing pairing-friendly curves

Pairing-based cryptography needs secure, efficient, compact pairing-friendly curves

- secure against discrete \log in $E\left(\mathbb{F}_{p}\right), E\left(\mathbb{F}_{p^{k}}\right), \mathbb{F}_{p^{k}}$
- efficient for scalar multiplication in E, exponentiation in $\mathbb{F}_{p^{k}}$, pairing
- compact: key sizes as small as possible

Which curves are the best options?

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension

$$
e: E\left(\mathbb{F}_{p}\right)[r] \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T} \subset \mathbb{F}_{p^{k}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension

$$
e: E\left(\mathbb{F}_{p}\right)[r] \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T} \subset \mathbb{F}_{p^{k}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Attacks

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension

$$
e: E\left(\mathbb{F}_{p}\right)[r] \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T} \subset \mathbb{F}_{p^{k}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Attacks

- inversion of e : hard problem (exponential)

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension

Attacks

$$
e: E\left(\mathbb{F}_{p}\right)[r] \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T} \subset \mathbb{F}_{p^{k}}^{*} \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{r})$)

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension

Attacks

$$
e: E\left(\mathbb{F}_{p}\right)[r] \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T} \subset \mathbb{F}_{p^{k}}^{*} \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{r})$)
- discrete logarithm computation in $\mathbb{F}_{p^{k}}^{*}$: easier, subexponential \rightarrow take a large enough field

Discrete Log in $\mathbb{F}_{p^{k}}$

$\mathbb{F}_{p^{k}}$ much less investigated than \mathbb{F}_{p} or integer factorization
Much better results in pairing-related fields

- Special NFS in $\mathbb{F}_{p^{k}}$: Joux-Pierrot 2013 [JP14]
- Tower NFS (TNFS): Barbulescu-Gaudry-Kleinjung 2015 [BGK15]
- Extended Tower NFS: Kim-Barbulescu [KB16], Kim-Jeong [KJ17], Sarkar-Singh 2016 [SS16]

Use more structure: subfields

Choosing key sizes: Lenstra-Verheul [LV01] extrapolation

Initially for RSA modulus size
For DL in \mathbb{F}_{Q} of length (Q) bits
n bits of security \leftrightarrow the best (mathematical) attack should take at least 2^{n} steps

Choosing key sizes: Lenstra-Verheul [LV01] extrapolation

Initially for RSA modulus size
For DL in \mathbb{F}_{Q} of length (Q) bits
n bits of security \leftrightarrow the best (mathematical) attack should take at least 2^{n} steps

- fastest Discrete Log computation: with the Number Field Sieve algorithm
- Complexity: $e \sqrt[3]{(64 / 9+o(1))(\ln Q)(\ln \ln Q)^{2}}$
- $+o(1)$ not known

Choosing key sizes: Lenstra-Verheul [LV01] extrapolation

Initially for RSA modulus size
For DL in \mathbb{F}_{Q} of length (Q) bits
n bits of security \leftrightarrow the best (mathematical) attack should take at least 2^{n} steps

- fastest Discrete Log computation: with the Number Field Sieve algorithm
- Complexity: $e \sqrt[3]{(64 / 9+o(1))(\ln Q)(\ln \ln Q)^{2}}$
- $+o(1)$ not known
- $Q_{\text {DL-240 }}=\operatorname{NextSafePrime~}\left(N_{240}\right)=N_{240}+49204$

Choosing key sizes: Lenstra-Verheul [LV01] extrapolation

Initially for RSA modulus size
For DL in \mathbb{F}_{Q} of length (Q) bits
n bits of security \leftrightarrow the best (mathematical) attack should take at least 2^{n} steps

- fastest Discrete Log computation: with the Number Field Sieve algorithm
- Complexity: $e \sqrt[3]{(64 / 9+o(1))(\ln Q)(\ln \ln Q)^{2}}$
- $+o(1)$ not known
- $Q_{\text {DL-240 }}=$ NextSafePrime $\left(N_{240}\right)=N_{240}+49204$
- DL-240 in $2^{67.51}$ operations $\left[\mathrm{BGG}^{+} 20\right] \rightarrow 2^{67.51} / 2^{77.68}=2^{-10.17}$

Choosing key sizes: Lenstra-Verheul [LV01] extrapolation

Initially for RSA modulus size
For $D L$ in \mathbb{F}_{Q} of length (Q) bits
n bits of security \leftrightarrow the best (mathematical) attack should take at least 2^{n} steps

- fastest Discrete Log computation: with the Number Field Sieve algorithm
- Complexity: $e \sqrt[3]{(64 / 9+o(1))(\ln Q)(\ln \ln Q)^{2}}$
- $+o(1)$ not known
- $Q_{\text {DL-240 }}=$ NextSafePrime $\left(N_{240}\right)=N_{240}+49204$
- DL-240 in $2^{67.51}$ operations $\left[\mathrm{BGG}^{+} 20\right] \rightarrow 2^{67.51} / 2^{77.68}=2^{-10.17}$

DL in prime field: Replace unknown $+o(1)$ by scaling factor $2^{-10.17}$
$\log _{2} \cos t$

RSA-240: 953 core-years, Intel Xeon Gold 6130 CPUs as a reference $(2.1 \mathrm{GHz}) \approx 953 \cdot 365.25 \cdot 24 \cdot 60 \cdot 60 \cdot 2.1 \cdot 10^{9} \approx 2^{65.77}$

Estimating key sizes for DL in $\mathbb{F}_{p^{k}}$

- Latest variants of TNFS (Kim-Barbulescu, Kim-Jeong) seem most promising for $\mathbb{F}_{p^{k}}$ where k is composite
- The asymptotic complexities do not correspond to a fixed k, but to a ratio between k and p
- We need record computations if we want to extrapolate from asymptotic complexities

Estimating key sizes for DL in $\mathbb{F}_{p^{k}}$

- Latest variants of TNFS (Kim-Barbulescu, Kim-Jeong) seem most promising for $\mathbb{F}_{p^{k}}$ where k is composite
- The asymptotic complexities do not correspond to a fixed k, but to a ratio between k and p
- We need record computations if we want to extrapolate from asymptotic complexities
Discrete logarithm in GF $\left(p^{6}\right)$ with Tower-NFS [DGP21]
- $Q=p^{6}$ of 521 bits, total time 24798 core-hours (2.83 core-years) $\leftrightarrow 2^{57.37}$
- Tower-NFS-Conjugation $e \sqrt[3]{(48 / 9+o(1))(\ln Q)(\ln \ln Q)^{2}}$
- $e^{\sqrt[3]{(48 / 9+0)\left(\ln Q_{\mathrm{DL}-521)}\right)\left(\ln \ln Q_{\mathrm{DL}}-521\right)^{2}}}=2^{58.52}$

DL in non-special $\mathbb{F}_{p^{6}}$ field: too early to apply Lenstra-Verheul extrapolation

Largest record computations in $\mathbb{F}_{p^{k}}$ with NFS and its variants ${ }^{1}$

Finite field	Size of p^{k}	Cost: CPU days	Authors	sieving dim
Tower-NFS				
$\mathbb{F}_{p^{6}}$	521	1,033	[DGP21] De Micheli et al.'21	6, Tower
$\mathbb{F}_{p^{4}}$	512	2244	[Rob22] Robinson'22	4, Tower
NFS and NFS-HD				
$\mathbb{F}_{p^{12}}$	203	11	[HAKT13, HAKT15]	7
$\mathbb{F}_{p^{6}}$	423	3,400	[MR20]	3
$\mathbb{F}_{p^{5}}$	324	386	[GGM17]	3
$\mathbb{F}_{p^{4}}$	392	510	[BGGM15a]	2
$\mathbb{F}_{p^{3}}$	593	8,400	[GGM16, GMT16]	2
$\mathbb{F}_{p^{2}}$	595	175	[BGGM15b]	2
\mathbb{F}_{p}	768	1,935,825	[KDLPS17]	2
\mathbb{F}_{p}	795	1,132,275	[BGGHTZ19]	2

[^0]Complexities $L_{p^{k}}(\alpha, c)=\exp \left((c+o(1))\left(\ln p^{k}\right)^{\alpha}\left(\ln \ln p^{k}\right)^{1-\alpha}\right)$

```
large characteristic \(p=L_{p^{k}}\left(\alpha_{p}\right), \alpha_{p}>2 / 3: L_{p^{k}}(1 / 3, c)\)
\(c=(64 / 9)^{1 / 3} \simeq 1.923 \quad\) NFS
    special \(p\) :
    \(c=(32 / 9)^{1 / 3} \simeq 1.526 \quad\) SNFS
medium characteristic \(p=L_{p^{k}}\left(\alpha_{p}\right), 1 / 3<\alpha_{p}<2 / 3: L_{p^{k}}(1 / 3, c)\)
    \(c=(96 / 9)^{1 / 3} \simeq 2.201 \quad\) prime \(n\) NFS-HD (Conjugation)
    \(c=(48 / 9)^{1 / 3} \simeq 1.747\) composite \(n\),
                                    best case of TNFS: when parameters fit perfectly
    special \(p\) :
    \(c=(64 / 9)^{1 / 3} \simeq 1.923 \quad\) NFS-HD+Joux-Pierrot'13
    \(c=(32 / 9)^{1 / 3} \simeq 1.526\) composite \(n\), best case of STNFS
```


A short-list of pairing-friendly curves at the 128-bit sec level

Webpage at
https://members.loria.fr/AGuillevic/pairing-friendly-curves/

k	curve	seed	$\log _{2} Q$	$\log _{2} r$	ρ	bit sec. GF $\left(p^{k}\right)$
Curves with fast pairing						
12	BN-382	$-\left(2^{94}+2^{78}+2^{67}+2^{64}+2^{48}+1\right)$	382	382	1.0	123
12	BN-446	$2^{110}+2^{36}+1$	446	446	1.0	132
12	BLS12-381	$-\left(2^{63}+2^{62}+2^{60}+2^{57}+2^{48}+2^{16}\right)$	381	254	1.5	126
12	BLS12	see gitlab	$440-448$	$295-300$	1.5	132
Curves with smallest possible $\mathbb{G}_{1}[$ CDS20]						
13	BW13-P310	-0x8b0 $=-2224$	310	267	1.167	140
19	BW19-P286	$-0 \times 91=-145$	286	259	1.111	160
	Curves for SNARK $2^{L} \mid p-1, r-1$					
12	BLS12-377	$2^{63}+2^{58}+2^{56}+2^{51}+2^{47}+2^{46}+1$	377	252	1.5	126
24	BLS24-315	$-2^{32}+2^{30}+2^{22}-2^{20}+1$	315	253	1.25	160

Generating new families, choosing curves

- Cycles of curves for SNARKs, Marta Bellés Muñoz tomorrow
- New families of paring-friendly curves Jean Gasnier tomorrow
- Fastest pairing-friendly curves at the 192-bit security level Georgios Fotiadis tomorrow

Pairing computation

$e(P, Q)$: Miller loop + final exponentiation to $\left(p^{k}-1\right) / r$
Miller loop: evaluate a function $f_{m, P}$ at point Q [Jou04, Ver10]
Contains a scalar multiplication

$$
[m] P \text { where } \log _{2} m \approx \frac{\log _{2} r}{\varphi(k)}=\frac{\log _{2} r}{\operatorname{deg} \Phi_{k}}
$$

Φ_{k} the k-th cyclotomic polynomial
SageMath: euler_phi (k)
$\varphi(12)=4, \varphi(16)=8, \varphi(18)=6, \varphi(20)=8, \varphi(24)=8$
At fixed k, reducing r gives a faster Miller loop

Pairing: Miller loop and final exponentiation

Algorithm 1.1: MillerFunction (u, P, Q)
Input: $E, \mathbb{F}_{p}, \mathbb{F}_{p^{k}}, k$ even, $P \in E\left(\mathbb{F}_{p}\right)[r], Q \in E\left(\mathbb{F}_{p^{k}}\right)[r]$ in affine coord.,
$\pi_{p}(Q)=[p] Q, c \in \mathbb{N}$.
Result: $f=f_{c, Q}(P)$
$1 f \leftarrow 1 ; R \leftarrow Q$;
2 for b from the second most significant bit of c to the least do
$3 \quad \ell_{0} \leftarrow \ell_{R, R}(P) ; R \leftarrow[2] R$;
$4 \quad f \leftarrow f^{2}$;
5 if $b=1$ then
6
7
8
9

$$
\begin{aligned}
& \ell_{1} \leftarrow \ell_{R, Q}(P) ; R \leftarrow R+Q ; \\
& f \leftarrow f \cdot\left(\ell_{0} \cdot \ell_{1}\right) ;
\end{aligned}
$$

else

$$
f \leftarrow f \cdot \ell_{0}
$$

// Dbl step, tangent line

$$
/ / \mathbf{s}_{k}
$$

// Add step, chord line

$$
\text { // full-sparse-m} k
$$

10 return f;

Pairing: Miller loop and final exponentiation

Raise to

$$
\frac{p^{k}-1}{r}=\underbrace{\frac{p^{k}-1}{\Phi_{k}(p)}}_{\text {easy }} \underbrace{\frac{\phi_{k}(p)}{r}}_{\text {hard }}
$$

- More on pairing computation by Mike Scott this afternoon
- Pairing computation on BLS curves of odd k by Laurian Azebaze Guimagang this session
- Even shorter Miller loop by Emmanuel Fouotsa tomorrow
- Pairings inside circuits by Youssef El Housni this afternoon

Bibliography I

國 Fabrice Boudot，Pierrick Gaudry，Aurore Guillevic，Nadia Heninger，Emmanuel Thomé，and Paul Zimmermann．
Comparing the difficulty of factorization and discrete logarithm：A 240－digit experiment．
In Daniele Micciancio and Thomas Ristenpart，editors，CRYPTO 2020，Part II，volume 12171 of LNCS， pages 62－91．Springer，Heidelberg，August 2020.
國
Razvan Barbulescu，Pierrick Gaudry，Aurore Guillevic，and François Morain．
DL record computation in GF（ p^{4} ）of 392 bits（ 120 dd ）．
Announcement at the CATREL workshop，October 2nd 2015.
http：／／www．lix．polytechnique．fr／guillevic／docs／guillevic－catrel15－talk．pdf．Razvan Barbulescu，Pierrick Gaudry，Aurore Guillevic，and François Morain．
Improving NFS for the discrete logarithm problem in non－prime finite fields．
In Elisabeth Oswald and Marc Fischlin，editors，EUROCRYPT 2015，Part I，volume 9056 of LNCS，pages 129－155．Springer，Heidelberg，April 2015.
國
Razvan Barbulescu，Pierrick Gaudry，and Thorsten Kleinjung．
The tower number field sieve．
In Tetsu Iwata and Jung Hee Cheon，editors，ASIACRYPT 2015，Part II，volume 9453 of LNCS，pages 31－55．Springer，Heidelberg，November／December 2015.

Bibliography II

國
R. Balasubramanian and Neal Koblitz.

The improbability that an elliptic curve has subexponential discrete log problem under the Menezes -
Okamoto - Vanstone algorithm.
Journal of Cryptology, 11(2):141-145, March 1998.
囯
Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott.
Constructing elliptic curves with prescribed embedding degrees.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages 257-267. Springer, Heidelberg, September 2003.
Paulo S. L. M. Barreto and Michael Naehrig.
Pairing-friendly elliptic curves of prime order.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319-331. Springer, Heidelberg, August 2006.
Friederike Brezing and Annegret Weng.
Elliptic curves suitable for pairing based cryptography.
Des. Codes Cryptography, 37(1):133-141, 2005.
Rémi Clarisse, Sylvain Duquesne, and Olivier Sanders.
Curves with fast computations in the first pairing group.
In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS, pages 280-298. Springer, Heidelberg, December 2020.

Bibliography III

國 Gabrielle De Micheli, Pierrick Gaudry, and Cécile Pierrot.
Lattice enumeration for tower NFS: A 521-bit discrete logarithm computation.
In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages
67-96. Springer, Heidelberg, December 2021.David Freeman.
Constructing pairing-friendly elliptic curves with embedding degree 10.
In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, Algorithmic Number Theory, 7th
International Symposium, ANTS-VII, volume 4076 of LNCS, pages 452-465, Berlin, Germany, July 23-28
2006. Springer.
https://eprint.iacr.org/2006/026.
囯 David Freeman, Michael Scott, and Edlyn Teske.
A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224-280, April 2010.
R Pierrick Gaudry, Aurore Guillevic, and François Morain.
Discrete logarithm record in $\operatorname{GF}\left(p^{3}\right)$ of 592 bits (180 decimal digits).
Number Theory list, item 004930, August 152016.
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;ae418648.1608.

Bibliography IV

國 Laurent Grémy, Aurore Guillevic, and François Morain.
Discrete logarithm record computation in $\operatorname{GF}\left(p^{5}\right)$ of 100 decimal digits using NFS with 3-dimensional sieving.
Number Theory list, item 004981, August 1st 2017.
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;68019370.1708.
周
Aurore Guillevic, François Morain, and Emmanuel Thomé.
Solving discrete logarithms on a 170-bit MNT curve by pairing reduction.
In Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages 559-578. Springer, Heidelberg, August 2016.

Kenichiro Hayasaka, Kazumaro Aoki, Tetsutaro Kobayashi, and Tsuyoshi Takagi.
An experiment of number field sieve for discrete logarithm problem over $\operatorname{GF}\left(p^{12}\right)$.
In Marc Fischlin and Stefan Katzenbeisser, editors, Number Theory and Cryptography, Papers in Honor of Johannes Buchmann on the Occasion of His 60th Birthdayx, volume 8260 of LNCS, pages 108-120. Springer, 2013.
E Kenichiro Hayasaka, Kazumaro Aoki, Tetsutaro Kobayashi, and Tsuyoshi Takagi.
A construction of 3-dimensional lattice sieve for number field sieve over $\mathbb{F}_{p^{n}}$.
Cryptology ePrint Archive, Report 2015/1179, 2015.
https://eprint.iacr.org/2015/1179.

Bibliography V

Antoine Joux．
A one round protocol for tripartite Diffie－Hellman．
Journal of Cryptology，17（4）：263－276，September 2004.
國 Antoine Joux and Cécile Pierrot．
The special number field sieve in $\mathbb{F}_{p^{n}}$－application to pairing－friendly constructions．
In Zhenfu Cao and Fangguo Zhang，editors，PAIRING 2013，volume 8365 of LNCS，pages 45－61．Springer， Heidelberg，November 2014.
國 Taechan Kim and Razvan Barbulescu．
Extended tower number field sieve：A new complexity for the medium prime case．
In Matthew Robshaw and Jonathan Katz，editors，CRYPTO 2016，Part I，volume 9814 of LNCS，pages 543－571．Springer，Heidelberg，August 2016.
國
Taechan Kim and Jinhyuck Jeong．
Extended tower number field sieve with application to finite fields of arbitrary composite extension degree． In Serge Fehr，editor，PKC 2017，Part I，volume 10174 of LNCS，pages 388－408．Springer，Heidelberg， March 2017.
國
Ezekiel J．Kachisa，Edward F．Schaefer，and Michael Scott．
Constructing Brezing－Weng pairing－friendly elliptic curves using elements in the cyclotomic field．
In Steven D．Galbraith and Kenneth G．Paterson，editors，PAIRING 2008，volume 5209 of LNCS，pages 126－135．Springer，Heidelberg，September 2008.

Bibliography VI

Arjen K. Lenstra and Eric R. Verheul.
Selecting cryptographic key sizes.
Journal of Cryptology, 14(4):255-293, September 2001.
A. Miyaji, M. Nakabayashi, and S. Takano.

New explicit conditions of elliptic curve traces for FR-reduction.
IEICE Transactions on Fundamentals, E84-A(5):1234-1243, 2001.
https://dspace.jaist.ac.jp/dspace/bitstream/10119/4432/1/73-48.pdf.
國
Gary McGuire and Oisin Robinson.
A new angle on lattice sieving for the number field sieve, 2020.
https://arxiv.org/abs/2001.10860.
Yasuyuki Nogami, Masataka Akane, Yumi Sakemi, Hidehiro Katou, and Yoshitaka Morikawa. Integer variable chi-based Ate pairing.
In Steven D. Galbraith and Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 178-191. Springer, Heidelberg, September 2008.Geovandro C.C.F. Pereira, Marcos A. Simplício, Michael Naehrig, and Paulo S.L.M. Barreto. A family of implementation-friendly BN elliptic curves.
Journal of Systems and Software, 84(8):1319-1326, 2011.

Bibliography VII

Oisin Robinson.
An implementation of the extended tower number field sieve using 4d sieving in a box and a record computation in fp4, 2022.
arXiv:2212.04999 https://arxiv.org/abs/2212.04999.

Michael Scott and Aurore Guillevic.
A new family of pairing-friendly elliptic curves.
In Lilya Budaghyan and Francisco Rodríguez-Henríquez, editors, Arithmetic of Finite Fields, pages 43-57, Cham, 2018. Springer.
Palash Sarkar and Shashank Singh.
A general polynomial selection method and new asymptotic complexities for the tower number field sieve algorithm.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 37-62. Springer, Heidelberg, December 2016.
F. Vercauteren.

Optimal pairings.
IEEE Transactions on Information Theory, 56(1):455-461, Jan 2010.

[^0]: ${ }^{1}$ Data extracted from DiscreteLogDB by L.Grémy

