
Subgroup membership testing on elliptic curves

via the Tate pairing

Dimitri Koshelev

Parallel Computation Laboratory, École Normale Supérieure de Lyon

12/07/2023, SIAM AG23
TU/e, Eindhoven

1/15

Introduction

Cryptosystems on elliptic curves E over finite fields Fq are frequently
deployed not in the entire Fq-point group E (Fq), but in its subgroup
G of large prime order r and with cofactor c .

To be protected against the subgroup attack, when receiving a point
from a communication channel, it is necessary to make sure that it
belongs to G, not only to E (Fq).

In fact, to thwart the given attack it is often sufficient to just multiply
an obtained point by c if the latter is small (as in the current talk).

Nevertheless, this solution is not a panacea. For example, in the
signature scheme, used in CryptoNote cryptocurrencies, it could lead
to double-spending if any of the malicious users noticed this bug.

2/15

Introduction

Cryptosystems on elliptic curves E over finite fields Fq are frequently
deployed not in the entire Fq-point group E (Fq), but in its subgroup
G of large prime order r and with cofactor c .

To be protected against the subgroup attack, when receiving a point
from a communication channel, it is necessary to make sure that it
belongs to G, not only to E (Fq).

In fact, to thwart the given attack it is often sufficient to just multiply
an obtained point by c if the latter is small (as in the current talk).

Nevertheless, this solution is not a panacea. For example, in the
signature scheme, used in CryptoNote cryptocurrencies, it could lead
to double-spending if any of the malicious users noticed this bug.

2/15

Introduction

Cryptosystems on elliptic curves E over finite fields Fq are frequently
deployed not in the entire Fq-point group E (Fq), but in its subgroup
G of large prime order r and with cofactor c .

To be protected against the subgroup attack, when receiving a point
from a communication channel, it is necessary to make sure that it
belongs to G, not only to E (Fq).

In fact, to thwart the given attack it is often sufficient to just multiply
an obtained point by c if the latter is small (as in the current talk).

Nevertheless, this solution is not a panacea. For example, in the
signature scheme, used in CryptoNote cryptocurrencies, it could lead
to double-spending if any of the malicious users noticed this bug.

2/15

Introduction

Cryptosystems on elliptic curves E over finite fields Fq are frequently
deployed not in the entire Fq-point group E (Fq), but in its subgroup
G of large prime order r and with cofactor c .

To be protected against the subgroup attack, when receiving a point
from a communication channel, it is necessary to make sure that it
belongs to G, not only to E (Fq).

In fact, to thwart the given attack it is often sufficient to just multiply
an obtained point by c if the latter is small (as in the current talk).

Nevertheless, this solution is not a panacea. For example, in the
signature scheme, used in CryptoNote cryptocurrencies, it could lead
to double-spending if any of the malicious users noticed this bug.

2/15

Naive subgroup check

An obvious way to test membership in G is to multiply a point by r .

Even if the curve enjoys an effectively computable endomorphism,
which makes it possible to apply the GLV technique or its variations,
the mentioned test is still laborious.

More concretely, it performs Θ
(
log2(r)

)
additions in E (Fq). Hence,

its bit complexity equals Θ
(
log2(r)M

)
with a non-little constant

behind Θ, where M is the bit complexity of a multiplication in Fq.

We can suppose that M = Θ(ℓ2) at least for the popular choice
ℓ := log2(q) ≈ 256. Indeed, it is widely recognized that for such Fq
the “school” multiplication algorithm is more practical.

Since c ≈ 1 by our assumption, i.e., ℓ ≈ log2(r), we eventually get
the bit complexity Θ(ℓ3).

3/15

Naive subgroup check

An obvious way to test membership in G is to multiply a point by r .

Even if the curve enjoys an effectively computable endomorphism,
which makes it possible to apply the GLV technique or its variations,
the mentioned test is still laborious.

More concretely, it performs Θ
(
log2(r)

)
additions in E (Fq). Hence,

its bit complexity equals Θ
(
log2(r)M

)
with a non-little constant

behind Θ, where M is the bit complexity of a multiplication in Fq.

We can suppose that M = Θ(ℓ2) at least for the popular choice
ℓ := log2(q) ≈ 256. Indeed, it is widely recognized that for such Fq
the “school” multiplication algorithm is more practical.

Since c ≈ 1 by our assumption, i.e., ℓ ≈ log2(r), we eventually get
the bit complexity Θ(ℓ3).

3/15

Naive subgroup check

An obvious way to test membership in G is to multiply a point by r .

Even if the curve enjoys an effectively computable endomorphism,
which makes it possible to apply the GLV technique or its variations,
the mentioned test is still laborious.

More concretely, it performs Θ
(
log2(r)

)
additions in E (Fq). Hence,

its bit complexity equals Θ
(
log2(r)M

)
with a non-little constant

behind Θ, where M is the bit complexity of a multiplication in Fq.

We can suppose that M = Θ(ℓ2) at least for the popular choice
ℓ := log2(q) ≈ 256. Indeed, it is widely recognized that for such Fq
the “school” multiplication algorithm is more practical.

Since c ≈ 1 by our assumption, i.e., ℓ ≈ log2(r), we eventually get
the bit complexity Θ(ℓ3).

3/15

Naive subgroup check

An obvious way to test membership in G is to multiply a point by r .

Even if the curve enjoys an effectively computable endomorphism,
which makes it possible to apply the GLV technique or its variations,
the mentioned test is still laborious.

More concretely, it performs Θ
(
log2(r)

)
additions in E (Fq). Hence,

its bit complexity equals Θ
(
log2(r)M

)
with a non-little constant

behind Θ, where M is the bit complexity of a multiplication in Fq.

We can suppose that M = Θ(ℓ2) at least for the popular choice
ℓ := log2(q) ≈ 256. Indeed, it is widely recognized that for such Fq
the “school” multiplication algorithm is more practical.

Since c ≈ 1 by our assumption, i.e., ℓ ≈ log2(r), we eventually get
the bit complexity Θ(ℓ3).

3/15

Naive subgroup check

An obvious way to test membership in G is to multiply a point by r .

Even if the curve enjoys an effectively computable endomorphism,
which makes it possible to apply the GLV technique or its variations,
the mentioned test is still laborious.

More concretely, it performs Θ
(
log2(r)

)
additions in E (Fq). Hence,

its bit complexity equals Θ
(
log2(r)M

)
with a non-little constant

behind Θ, where M is the bit complexity of a multiplication in Fq.

We can suppose that M = Θ(ℓ2) at least for the popular choice
ℓ := log2(q) ≈ 256. Indeed, it is widely recognized that for such Fq
the “school” multiplication algorithm is more practical.

Since c ≈ 1 by our assumption, i.e., ℓ ≈ log2(r), we eventually get
the bit complexity Θ(ℓ3).

3/15

Notation

Consider an elliptic curve E : y 2 = x3 + a2x
2 + a4x + a6 (with the

point O := (0 : 1 : 0) at infinity) over a finite field Fq of char. > 2.

The rational point group E (Fq) ≃ Z/n0×Z/n1, where n1 | n0.

As always in discrete logarithm cryptography, there is a subgroup
G ⊂ E (Fq) of large prime order r such that r || n0, but r ∤ n1.

In other words, E (Fq) = G×E (Fq)[e], where e := n0/r . So, the
order N := #E (Fq) = n0n1 and the cofactor c := N/r = en1.

For the sake of uniformity, put e0 := e and e1 := n1. Besides, let
E (Fq)[e] = ⟨P0⟩×⟨P1⟩, where ord(Pi) = ei .

4/15

Notation

Consider an elliptic curve E : y 2 = x3 + a2x
2 + a4x + a6 (with the

point O := (0 : 1 : 0) at infinity) over a finite field Fq of char. > 2.

The rational point group E (Fq) ≃ Z/n0×Z/n1, where n1 | n0.

As always in discrete logarithm cryptography, there is a subgroup
G ⊂ E (Fq) of large prime order r such that r || n0, but r ∤ n1.

In other words, E (Fq) = G×E (Fq)[e], where e := n0/r . So, the
order N := #E (Fq) = n0n1 and the cofactor c := N/r = en1.

For the sake of uniformity, put e0 := e and e1 := n1. Besides, let
E (Fq)[e] = ⟨P0⟩×⟨P1⟩, where ord(Pi) = ei .

4/15

Notation

Consider an elliptic curve E : y 2 = x3 + a2x
2 + a4x + a6 (with the

point O := (0 : 1 : 0) at infinity) over a finite field Fq of char. > 2.

The rational point group E (Fq) ≃ Z/n0×Z/n1, where n1 | n0.

As always in discrete logarithm cryptography, there is a subgroup
G ⊂ E (Fq) of large prime order r such that r || n0, but r ∤ n1.

In other words, E (Fq) = G×E (Fq)[e], where e := n0/r . So, the
order N := #E (Fq) = n0n1 and the cofactor c := N/r = en1.

For the sake of uniformity, put e0 := e and e1 := n1. Besides, let
E (Fq)[e] = ⟨P0⟩×⟨P1⟩, where ord(Pi) = ei .

4/15

Notation

Consider an elliptic curve E : y 2 = x3 + a2x
2 + a4x + a6 (with the

point O := (0 : 1 : 0) at infinity) over a finite field Fq of char. > 2.

The rational point group E (Fq) ≃ Z/n0×Z/n1, where n1 | n0.

As always in discrete logarithm cryptography, there is a subgroup
G ⊂ E (Fq) of large prime order r such that r || n0, but r ∤ n1.

In other words, E (Fq) = G×E (Fq)[e], where e := n0/r . So, the
order N := #E (Fq) = n0n1 and the cofactor c := N/r = en1.

For the sake of uniformity, put e0 := e and e1 := n1. Besides, let
E (Fq)[e] = ⟨P0⟩×⟨P1⟩, where ord(Pi) = ei .

4/15

Notation

Consider an elliptic curve E : y 2 = x3 + a2x
2 + a4x + a6 (with the

point O := (0 : 1 : 0) at infinity) over a finite field Fq of char. > 2.

The rational point group E (Fq) ≃ Z/n0×Z/n1, where n1 | n0.

As always in discrete logarithm cryptography, there is a subgroup
G ⊂ E (Fq) of large prime order r such that r || n0, but r ∤ n1.

In other words, E (Fq) = G×E (Fq)[e], where e := n0/r . So, the
order N := #E (Fq) = n0n1 and the cofactor c := N/r = en1.

For the sake of uniformity, put e0 := e and e1 := n1. Besides, let
E (Fq)[e] = ⟨P0⟩×⟨P1⟩, where ord(Pi) = ei .

4/15

Reduced Tate pairing

For any k | q − 1, the reduced Tate pairing can be represented in the
form

tk : E (Fq)[k]×E (Fq)/kE (Fq) → µk tk(P ,Q) := fk,P(Q)(q−1)/k ,

where µk ⊂ F∗
q is the group of all k-th roots of unity, P ̸= Q ̸= O,

and fk,P ∈ Fq(E) is a Miller function satisfying the conditions

div(fk,P) = k(P)− k(O),
((x

y

)k
·fk,P

)
(O) = 1.

The values fk,P(Q) are recursively computed by means of Miller’s
algorithm with the cost of Θ(log2(k)) operations in Fq.

Throughout the rest of the talk, we will assume that e | q − 1.

5/15

Reduced Tate pairing

For any k | q − 1, the reduced Tate pairing can be represented in the
form

tk : E (Fq)[k]×E (Fq)/kE (Fq) → µk tk(P ,Q) := fk,P(Q)(q−1)/k ,

where µk ⊂ F∗
q is the group of all k-th roots of unity, P ̸= Q ̸= O,

and fk,P ∈ Fq(E) is a Miller function satisfying the conditions

div(fk,P) = k(P)− k(O),
((x

y

)k
·fk,P

)
(O) = 1.

The values fk,P(Q) are recursively computed by means of Miller’s
algorithm with the cost of Θ(log2(k)) operations in Fq.

Throughout the rest of the talk, we will assume that e | q − 1.

5/15

Reduced Tate pairing

For any k | q − 1, the reduced Tate pairing can be represented in the
form

tk : E (Fq)[k]×E (Fq)/kE (Fq) → µk tk(P ,Q) := fk,P(Q)(q−1)/k ,

where µk ⊂ F∗
q is the group of all k-th roots of unity, P ̸= Q ̸= O,

and fk,P ∈ Fq(E) is a Miller function satisfying the conditions

div(fk,P) = k(P)− k(O),
((x

y

)k
·fk,P

)
(O) = 1.

The values fk,P(Q) are recursively computed by means of Miller’s
algorithm with the cost of Θ(log2(k)) operations in Fq.

Throughout the rest of the talk, we will assume that e | q − 1.

5/15

The k-th power residue symbol

The final exponentiation of the pairing tk is nothing but the k-th
power residue symbol

(
α
q

)
k
:= α(q−1)/k with α := fk,P(Q).

In particular, for k = 2 we deal with the ordinary Legendre symbol.

It is worth saying that we always can batch the inversion and symbol
computation, since (α0/α1

q

)
k
=

(α0α
k−1
1

q

)
k

given αi ∈ F∗
q .

At least for k ⩽ 11, the symbol can be determined by Euclidean-type
algorithms whose bit complexity amounts to O(ℓ2).

Conversely, if k is not small, then the exponentiation is seemingly the
best way to compute

(
α
q

)
k
.

6/15

The k-th power residue symbol

The final exponentiation of the pairing tk is nothing but the k-th
power residue symbol

(
α
q

)
k
:= α(q−1)/k with α := fk,P(Q).

In particular, for k = 2 we deal with the ordinary Legendre symbol.

It is worth saying that we always can batch the inversion and symbol
computation, since (α0/α1

q

)
k
=

(α0α
k−1
1

q

)
k

given αi ∈ F∗
q .

At least for k ⩽ 11, the symbol can be determined by Euclidean-type
algorithms whose bit complexity amounts to O(ℓ2).

Conversely, if k is not small, then the exponentiation is seemingly the
best way to compute

(
α
q

)
k
.

6/15

The k-th power residue symbol

The final exponentiation of the pairing tk is nothing but the k-th
power residue symbol

(
α
q

)
k
:= α(q−1)/k with α := fk,P(Q).

In particular, for k = 2 we deal with the ordinary Legendre symbol.

It is worth saying that we always can batch the inversion and symbol
computation, since (α0/α1

q

)
k
=

(α0α
k−1
1

q

)
k

given αi ∈ F∗
q .

At least for k ⩽ 11, the symbol can be determined by Euclidean-type
algorithms whose bit complexity amounts to O(ℓ2).

Conversely, if k is not small, then the exponentiation is seemingly the
best way to compute

(
α
q

)
k
.

6/15

The k-th power residue symbol

The final exponentiation of the pairing tk is nothing but the k-th
power residue symbol

(
α
q

)
k
:= α(q−1)/k with α := fk,P(Q).

In particular, for k = 2 we deal with the ordinary Legendre symbol.

It is worth saying that we always can batch the inversion and symbol
computation, since (α0/α1

q

)
k
=

(α0α
k−1
1

q

)
k

given αi ∈ F∗
q .

At least for k ⩽ 11, the symbol can be determined by Euclidean-type
algorithms whose bit complexity amounts to O(ℓ2).

Conversely, if k is not small, then the exponentiation is seemingly the
best way to compute

(
α
q

)
k
.

6/15

The k-th power residue symbol

The final exponentiation of the pairing tk is nothing but the k-th
power residue symbol

(
α
q

)
k
:= α(q−1)/k with α := fk,P(Q).

In particular, for k = 2 we deal with the ordinary Legendre symbol.

It is worth saying that we always can batch the inversion and symbol
computation, since (α0/α1

q

)
k
=

(α0α
k−1
1

q

)
k

given αi ∈ F∗
q .

At least for k ⩽ 11, the symbol can be determined by Euclidean-type
algorithms whose bit complexity amounts to O(ℓ2).

Conversely, if k is not small, then the exponentiation is seemingly the
best way to compute

(
α
q

)
k
.

6/15

Lemma underlying the new subgroup test

For compactness of notation, let’s also define the homomorphisms

hi : E (Fq) → µei hi(Q) := te(Pi ,Q) = tei (Pi ,Q).

For our purpose, it is unnecessary to know the values hi(Pi), hence
we can benefit from the above pairing form.

Lemma
There are the equalities G = eE (Fq) = ker(h0) ∩ ker(h1).

Proof.
Given a point Q ∈ G, we see that Q = eR for R := (e−1 mod r)Q.
The opposite inclusion G ⊃ eE (Fq) is even more trivial.

Further, the Tate pairing is non-degenerate. Consequently, a point
Q ∈ E (Fq) in fact belongs to eE (Fq) if and only if te(P ,Q) = 1 for
all P ∈ E (Fq)[e] or, equivalently, h0(Q) = h1(Q) = 1.

7/15

Lemma underlying the new subgroup test

For compactness of notation, let’s also define the homomorphisms

hi : E (Fq) → µei hi(Q) := te(Pi ,Q) = tei (Pi ,Q).

For our purpose, it is unnecessary to know the values hi(Pi), hence
we can benefit from the above pairing form.

Lemma
There are the equalities G = eE (Fq) = ker(h0) ∩ ker(h1).

Proof.
Given a point Q ∈ G, we see that Q = eR for R := (e−1 mod r)Q.
The opposite inclusion G ⊃ eE (Fq) is even more trivial.

Further, the Tate pairing is non-degenerate. Consequently, a point
Q ∈ E (Fq) in fact belongs to eE (Fq) if and only if te(P ,Q) = 1 for
all P ∈ E (Fq)[e] or, equivalently, h0(Q) = h1(Q) = 1.

7/15

Lemma underlying the new subgroup test

For compactness of notation, let’s also define the homomorphisms

hi : E (Fq) → µei hi(Q) := te(Pi ,Q) = tei (Pi ,Q).

For our purpose, it is unnecessary to know the values hi(Pi), hence
we can benefit from the above pairing form.

Lemma
There are the equalities G = eE (Fq) = ker(h0) ∩ ker(h1).

Proof.
Given a point Q ∈ G, we see that Q = eR for R := (e−1 mod r)Q.
The opposite inclusion G ⊃ eE (Fq) is even more trivial.

Further, the Tate pairing is non-degenerate. Consequently, a point
Q ∈ E (Fq) in fact belongs to eE (Fq) if and only if te(P ,Q) = 1 for
all P ∈ E (Fq)[e] or, equivalently, h0(Q) = h1(Q) = 1.

7/15

Lemma underlying the new subgroup test

For compactness of notation, let’s also define the homomorphisms

hi : E (Fq) → µei hi(Q) := te(Pi ,Q) = tei (Pi ,Q).

For our purpose, it is unnecessary to know the values hi(Pi), hence
we can benefit from the above pairing form.

Lemma
There are the equalities G = eE (Fq) = ker(h0) ∩ ker(h1).

Proof.
Given a point Q ∈ G, we see that Q = eR for R := (e−1 mod r)Q.
The opposite inclusion G ⊃ eE (Fq) is even more trivial.

Further, the Tate pairing is non-degenerate. Consequently, a point
Q ∈ E (Fq) in fact belongs to eE (Fq) if and only if te(P ,Q) = 1 for
all P ∈ E (Fq)[e] or, equivalently, h0(Q) = h1(Q) = 1.

7/15

Lemma underlying the new subgroup test

For compactness of notation, let’s also define the homomorphisms

hi : E (Fq) → µei hi(Q) := te(Pi ,Q) = tei (Pi ,Q).

For our purpose, it is unnecessary to know the values hi(Pi), hence
we can benefit from the above pairing form.

Lemma
There are the equalities G = eE (Fq) = ker(h0) ∩ ker(h1).

Proof.
Given a point Q ∈ G, we see that Q = eR for R := (e−1 mod r)Q.
The opposite inclusion G ⊃ eE (Fq) is even more trivial.

Further, the Tate pairing is non-degenerate. Consequently, a point
Q ∈ E (Fq) in fact belongs to eE (Fq) if and only if te(P ,Q) = 1 for
all P ∈ E (Fq)[e] or, equivalently, h0(Q) = h1(Q) = 1. 7/15

Basic examples

The case e0 = 2, e1 = 1. Without loss of generality,
E : y 2 = x(x2 + a2x + a4), where a22 − 4a4, a4 ̸∈ (F∗

q)
2.

The curves E are so-called double-odd curves. Clearly,
P0 = (0, 0) and f2,P0 = x .

The previous lemma states that a point (x , y) ∈ E (Fq)
lies in G if and only if x ∈ (F∗

q)
2. We obtain a folklore

subgroup membership test.

The case e0 = e1 = 2. In this one, E : y 2 = x(x − α1)(x − α2),
where α1, α2 ∈ F∗

q , but α1α2 ̸∈ (F∗
q)

2. Putting α0 := 0
in addition, we get the points Pi = (αi , 0).

Consequently, f2,Pi
= x − αi . It is readily seen that

x − α2 ∈ (F∗
q)

2 automatically whenever x − αi ∈ (F∗
q)

2

for i ∈ {0, 1}.

8/15

Basic examples

The case e0 = 2, e1 = 1. Without loss of generality,
E : y 2 = x(x2 + a2x + a4), where a22 − 4a4, a4 ̸∈ (F∗

q)
2.

The curves E are so-called double-odd curves. Clearly,
P0 = (0, 0) and f2,P0 = x .

The previous lemma states that a point (x , y) ∈ E (Fq)
lies in G if and only if x ∈ (F∗

q)
2. We obtain a folklore

subgroup membership test.

The case e0 = e1 = 2. In this one, E : y 2 = x(x − α1)(x − α2),
where α1, α2 ∈ F∗

q , but α1α2 ̸∈ (F∗
q)

2. Putting α0 := 0
in addition, we get the points Pi = (αi , 0).

Consequently, f2,Pi
= x − αi . It is readily seen that

x − α2 ∈ (F∗
q)

2 automatically whenever x − αi ∈ (F∗
q)

2

for i ∈ {0, 1}.

8/15

Basic examples

The case e0 = 2, e1 = 1. Without loss of generality,
E : y 2 = x(x2 + a2x + a4), where a22 − 4a4, a4 ̸∈ (F∗

q)
2.

The curves E are so-called double-odd curves. Clearly,
P0 = (0, 0) and f2,P0 = x .

The previous lemma states that a point (x , y) ∈ E (Fq)
lies in G if and only if x ∈ (F∗

q)
2. We obtain a folklore

subgroup membership test.

The case e0 = e1 = 2. In this one, E : y 2 = x(x − α1)(x − α2),
where α1, α2 ∈ F∗

q , but α1α2 ̸∈ (F∗
q)

2. Putting α0 := 0
in addition, we get the points Pi = (αi , 0).

Consequently, f2,Pi
= x − αi . It is readily seen that

x − α2 ∈ (F∗
q)

2 automatically whenever x − αi ∈ (F∗
q)

2

for i ∈ {0, 1}.

8/15

Basic examples

The case e0 = 2, e1 = 1. Without loss of generality,
E : y 2 = x(x2 + a2x + a4), where a22 − 4a4, a4 ̸∈ (F∗

q)
2.

The curves E are so-called double-odd curves. Clearly,
P0 = (0, 0) and f2,P0 = x .

The previous lemma states that a point (x , y) ∈ E (Fq)
lies in G if and only if x ∈ (F∗

q)
2. We obtain a folklore

subgroup membership test.

The case e0 = e1 = 2. In this one, E : y 2 = x(x − α1)(x − α2),
where α1, α2 ∈ F∗

q , but α1α2 ̸∈ (F∗
q)

2. Putting α0 := 0
in addition, we get the points Pi = (αi , 0).

Consequently, f2,Pi
= x − αi . It is readily seen that

x − α2 ∈ (F∗
q)

2 automatically whenever x − αi ∈ (F∗
q)

2

for i ∈ {0, 1}.
8/15

Some popular elliptic curves of non-prime orders

Let ν be the 2-adicity of q − 1, that is, 2ν || q − 1.

Curve ⌈ℓ⌉ e0 e1 ν

Curve25519 255 8 2

Ed448-Goldilocks 448 4 1 1

Jubjub
255

8
32

Bandersnatch 2 2

The first two curves were included in the American standard NIST
SP 800-186 recently updated. We see that they are unfortunately not
appropriate for the new subgroup check.

The zk-SNARK-friendly curves Bandersnatch and Jubjub were
proposed by the Ethereum and Zcash research teams, respectively.
They are currently used in the given cryptocurrencies.

9/15

Some popular elliptic curves of non-prime orders

Let ν be the 2-adicity of q − 1, that is, 2ν || q − 1.

Curve ⌈ℓ⌉ e0 e1 ν

Curve25519 255 8 2

Ed448-Goldilocks 448 4 1 1

Jubjub
255

8
32

Bandersnatch 2 2

The first two curves were included in the American standard NIST
SP 800-186 recently updated. We see that they are unfortunately not
appropriate for the new subgroup check.

The zk-SNARK-friendly curves Bandersnatch and Jubjub were
proposed by the Ethereum and Zcash research teams, respectively.
They are currently used in the given cryptocurrencies.

9/15

Some popular elliptic curves of non-prime orders

Let ν be the 2-adicity of q − 1, that is, 2ν || q − 1.

Curve ⌈ℓ⌉ e0 e1 ν

Curve25519 255 8 2

Ed448-Goldilocks 448 4 1 1

Jubjub
255

8
32

Bandersnatch 2 2

The first two curves were included in the American standard NIST
SP 800-186 recently updated. We see that they are unfortunately not
appropriate for the new subgroup check.

The zk-SNARK-friendly curves Bandersnatch and Jubjub were
proposed by the Ethereum and Zcash research teams, respectively.
They are currently used in the given cryptocurrencies.

9/15

Moving to a finite field extension

Given i ∈ N, nothing prevents us from applying the base change
E/Fqi . Let’s introduce the torsion subgroup

T (i) := E (Fqi)[e∞] =
∞⋃
j=1

E (Fqi)[e j].

Whenever i is fixed, the chain E (Fqi)[e j] is evidently stabilized,
starting with a certain j ∈ N.

Note that T (i) = E (Fqi)[2∞] for e equal to a power of 2.

Like any finite group on an elliptic curve, T (i) ≃ Z/e0(i)×Z/e1(i)
for some e0(i), e1(i) ∈ N such that e1(i) | e0(i).

The number e(i) := e0(i) is nothing but the exponent of T (i).

10/15

Moving to a finite field extension

Given i ∈ N, nothing prevents us from applying the base change
E/Fqi . Let’s introduce the torsion subgroup

T (i) := E (Fqi)[e∞] =
∞⋃
j=1

E (Fqi)[e j].

Whenever i is fixed, the chain E (Fqi)[e j] is evidently stabilized,
starting with a certain j ∈ N.

Note that T (i) = E (Fqi)[2∞] for e equal to a power of 2.

Like any finite group on an elliptic curve, T (i) ≃ Z/e0(i)×Z/e1(i)
for some e0(i), e1(i) ∈ N such that e1(i) | e0(i).

The number e(i) := e0(i) is nothing but the exponent of T (i).

10/15

Moving to a finite field extension

Given i ∈ N, nothing prevents us from applying the base change
E/Fqi . Let’s introduce the torsion subgroup

T (i) := E (Fqi)[e∞] =
∞⋃
j=1

E (Fqi)[e j].

Whenever i is fixed, the chain E (Fqi)[e j] is evidently stabilized,
starting with a certain j ∈ N.

Note that T (i) = E (Fqi)[2∞] for e equal to a power of 2.

Like any finite group on an elliptic curve, T (i) ≃ Z/e0(i)×Z/e1(i)
for some e0(i), e1(i) ∈ N such that e1(i) | e0(i).

The number e(i) := e0(i) is nothing but the exponent of T (i).

10/15

Moving to a finite field extension

Given i ∈ N, nothing prevents us from applying the base change
E/Fqi . Let’s introduce the torsion subgroup

T (i) := E (Fqi)[e∞] =
∞⋃
j=1

E (Fqi)[e j].

Whenever i is fixed, the chain E (Fqi)[e j] is evidently stabilized,
starting with a certain j ∈ N.

Note that T (i) = E (Fqi)[2∞] for e equal to a power of 2.

Like any finite group on an elliptic curve, T (i) ≃ Z/e0(i)×Z/e1(i)
for some e0(i), e1(i) ∈ N such that e1(i) | e0(i).

The number e(i) := e0(i) is nothing but the exponent of T (i).

10/15

Moving to a finite field extension

Given i ∈ N, nothing prevents us from applying the base change
E/Fqi . Let’s introduce the torsion subgroup

T (i) := E (Fqi)[e∞] =
∞⋃
j=1

E (Fqi)[e j].

Whenever i is fixed, the chain E (Fqi)[e j] is evidently stabilized,
starting with a certain j ∈ N.

Note that T (i) = E (Fqi)[2∞] for e equal to a power of 2.

Like any finite group on an elliptic curve, T (i) ≃ Z/e0(i)×Z/e1(i)
for some e0(i), e1(i) ∈ N such that e1(i) | e0(i).

The number e(i) := e0(i) is nothing but the exponent of T (i).

10/15

Dual embedding degree

We need the additional number

d := min{i ∈ N such that e(i) | qi − 1}.

It is logical to call it dual embedding degree of the curve E/Fq (with
respect to the subgroup G). Earlier, we considered the case d = 1.

Moving to the field Fqd , we get into the previous context. All the
results hold true, despite the fact that G(d) := e(d)·E (Fqd) is not a
prime subgroup anymore.

A much more substantial property consists in relative primality of
#G(d) and e(d). In other words, E (Fqd) = G(d)×T (d).

Lemma
There is the simple equality G = E (Fq) ∩G(d).

11/15

Dual embedding degree

We need the additional number

d := min{i ∈ N such that e(i) | qi − 1}.

It is logical to call it dual embedding degree of the curve E/Fq (with
respect to the subgroup G). Earlier, we considered the case d = 1.

Moving to the field Fqd , we get into the previous context. All the
results hold true, despite the fact that G(d) := e(d)·E (Fqd) is not a
prime subgroup anymore.

A much more substantial property consists in relative primality of
#G(d) and e(d). In other words, E (Fqd) = G(d)×T (d).

Lemma
There is the simple equality G = E (Fq) ∩G(d).

11/15

Dual embedding degree

We need the additional number

d := min{i ∈ N such that e(i) | qi − 1}.

It is logical to call it dual embedding degree of the curve E/Fq (with
respect to the subgroup G). Earlier, we considered the case d = 1.

Moving to the field Fqd , we get into the previous context. All the
results hold true, despite the fact that G(d) := e(d)·E (Fqd) is not a
prime subgroup anymore.

A much more substantial property consists in relative primality of
#G(d) and e(d). In other words, E (Fqd) = G(d)×T (d).

Lemma
There is the simple equality G = E (Fq) ∩G(d).

11/15

Dual embedding degree

We need the additional number

d := min{i ∈ N such that e(i) | qi − 1}.

It is logical to call it dual embedding degree of the curve E/Fq (with
respect to the subgroup G). Earlier, we considered the case d = 1.

Moving to the field Fqd , we get into the previous context. All the
results hold true, despite the fact that G(d) := e(d)·E (Fqd) is not a
prime subgroup anymore.

A much more substantial property consists in relative primality of
#G(d) and e(d). In other words, E (Fqd) = G(d)×T (d).

Lemma
There is the simple equality G = E (Fq) ∩G(d).

11/15

Dual embedding degree

We need the additional number

d := min{i ∈ N such that e(i) | qi − 1}.

It is logical to call it dual embedding degree of the curve E/Fq (with
respect to the subgroup G). Earlier, we considered the case d = 1.

Moving to the field Fqd , we get into the previous context. All the
results hold true, despite the fact that G(d) := e(d)·E (Fqd) is not a
prime subgroup anymore.

A much more substantial property consists in relative primality of
#G(d) and e(d). In other words, E (Fqd) = G(d)×T (d).

Lemma
There is the simple equality G = E (Fq) ∩G(d).

11/15

Extending the new subgroup test

The subgroup G(d) is the kernel of the Tate pairing over Fqd . Hence,
we are able to check whether P ∈ G(d) (and so P ∈ G) or not, given
an arbitrary point P ∈ E (Fq).

The corresponding bit complexity amounts to O
(
log2(qd)

)
, that is,

to O(d2ℓ2). For small d (especially for d = 2), we can undoubtedly
write O(ℓ2).

Nonetheless, for pairing-friendly curves the present test does not
surpass the state-of-the-art tests in performance (even for d = 1).

The reason lies in large cofactors, which occur for today’s pairing
groups G1, G2.

Thus, despite the fact that the Tate pairing underlies the new
subgroup check, it is relevant only for non-pairing-friendly curves.

12/15

Extending the new subgroup test

The subgroup G(d) is the kernel of the Tate pairing over Fqd . Hence,
we are able to check whether P ∈ G(d) (and so P ∈ G) or not, given
an arbitrary point P ∈ E (Fq).

The corresponding bit complexity amounts to O
(
log2(qd)

)
, that is,

to O(d2ℓ2). For small d (especially for d = 2), we can undoubtedly
write O(ℓ2).

Nonetheless, for pairing-friendly curves the present test does not
surpass the state-of-the-art tests in performance (even for d = 1).

The reason lies in large cofactors, which occur for today’s pairing
groups G1, G2.

Thus, despite the fact that the Tate pairing underlies the new
subgroup check, it is relevant only for non-pairing-friendly curves.

12/15

Extending the new subgroup test

The subgroup G(d) is the kernel of the Tate pairing over Fqd . Hence,
we are able to check whether P ∈ G(d) (and so P ∈ G) or not, given
an arbitrary point P ∈ E (Fq).

The corresponding bit complexity amounts to O
(
log2(qd)

)
, that is,

to O(d2ℓ2). For small d (especially for d = 2), we can undoubtedly
write O(ℓ2).

Nonetheless, for pairing-friendly curves the present test does not
surpass the state-of-the-art tests in performance (even for d = 1).

The reason lies in large cofactors, which occur for today’s pairing
groups G1, G2.

Thus, despite the fact that the Tate pairing underlies the new
subgroup check, it is relevant only for non-pairing-friendly curves.

12/15

Extending the new subgroup test

The subgroup G(d) is the kernel of the Tate pairing over Fqd . Hence,
we are able to check whether P ∈ G(d) (and so P ∈ G) or not, given
an arbitrary point P ∈ E (Fq).

The corresponding bit complexity amounts to O
(
log2(qd)

)
, that is,

to O(d2ℓ2). For small d (especially for d = 2), we can undoubtedly
write O(ℓ2).

Nonetheless, for pairing-friendly curves the present test does not
surpass the state-of-the-art tests in performance (even for d = 1).

The reason lies in large cofactors, which occur for today’s pairing
groups G1, G2.

Thus, despite the fact that the Tate pairing underlies the new
subgroup check, it is relevant only for non-pairing-friendly curves.

12/15

Extending the new subgroup test

The subgroup G(d) is the kernel of the Tate pairing over Fqd . Hence,
we are able to check whether P ∈ G(d) (and so P ∈ G) or not, given
an arbitrary point P ∈ E (Fq).

The corresponding bit complexity amounts to O
(
log2(qd)

)
, that is,

to O(d2ℓ2). For small d (especially for d = 2), we can undoubtedly
write O(ℓ2).

Nonetheless, for pairing-friendly curves the present test does not
surpass the state-of-the-art tests in performance (even for d = 1).

The reason lies in large cofactors, which occur for today’s pairing
groups G1, G2.

Thus, despite the fact that the Tate pairing underlies the new
subgroup check, it is relevant only for non-pairing-friendly curves.

12/15

Some noteworthy Fq-curves for which d > 1

Let ν(i) stand for the 2-adicity of qi − 1.

Curve ⌈ℓ⌉ e0 e1 ν d e0(d) e1(d) ν(d)

Curve25519 255 8

1

2 ?

Ed448-Goldilocks 448

4 1 2 4 4

225

Million dollar curve
256

3

Russian curves 4
512

For Curve25519 the speaker does not know the quantity d and hence
its derivatives e0(d), e1(d), ν(d). It is not even clear whether d is
finite or not.

Experiments show that ν(i) grows very slowly with respect to e(i),
which does not allow the condition e(i) | qi − 1 to be fulfilled.

13/15

Some noteworthy Fq-curves for which d > 1

Let ν(i) stand for the 2-adicity of qi − 1.

Curve ⌈ℓ⌉ e0 e1 ν d e0(d) e1(d) ν(d)

Curve25519 255 8

1

2 ?

Ed448-Goldilocks 448

4 1 2 4 4

225

Million dollar curve
256

3

Russian curves 4
512

For Curve25519 the speaker does not know the quantity d and hence
its derivatives e0(d), e1(d), ν(d). It is not even clear whether d is
finite or not.

Experiments show that ν(i) grows very slowly with respect to e(i),
which does not allow the condition e(i) | qi − 1 to be fulfilled.

13/15

Some noteworthy Fq-curves for which d > 1

Let ν(i) stand for the 2-adicity of qi − 1.

Curve ⌈ℓ⌉ e0 e1 ν d e0(d) e1(d) ν(d)

Curve25519 255 8

1

2 ?

Ed448-Goldilocks 448

4 1 2 4 4

225

Million dollar curve
256

3

Russian curves 4
512

For Curve25519 the speaker does not know the quantity d and hence
its derivatives e0(d), e1(d), ν(d). It is not even clear whether d is
finite or not.

Experiments show that ν(i) grows very slowly with respect to e(i),
which does not allow the condition e(i) | qi − 1 to be fulfilled. 13/15

The case of Curve25519

Nevertheless, for our purpose, the exact value of d is unnecessary for
the following reason.

Recall that the k-th power residue symbol can be computed in a
(sub-)quadratic bit time only for k ⩽ 11.

At the same time, already for i = 2 (not to mention greater even i) it
turns out that e(2) = 16. In turn, for an odd value i we clearly get
ν(i) = ν = 2.

Thus, finite field extensions do not provide any advantage in the case
of Curve25519.

Problem
Is there a subgroup membership test for Curve25519 with bit
complexity O(ℓ2)?

14/15

The case of Curve25519

Nevertheless, for our purpose, the exact value of d is unnecessary for
the following reason.

Recall that the k-th power residue symbol can be computed in a
(sub-)quadratic bit time only for k ⩽ 11.

At the same time, already for i = 2 (not to mention greater even i) it
turns out that e(2) = 16. In turn, for an odd value i we clearly get
ν(i) = ν = 2.

Thus, finite field extensions do not provide any advantage in the case
of Curve25519.

Problem
Is there a subgroup membership test for Curve25519 with bit
complexity O(ℓ2)?

14/15

The case of Curve25519

Nevertheless, for our purpose, the exact value of d is unnecessary for
the following reason.

Recall that the k-th power residue symbol can be computed in a
(sub-)quadratic bit time only for k ⩽ 11.

At the same time, already for i = 2 (not to mention greater even i) it
turns out that e(2) = 16. In turn, for an odd value i we clearly get
ν(i) = ν = 2.

Thus, finite field extensions do not provide any advantage in the case
of Curve25519.

Problem
Is there a subgroup membership test for Curve25519 with bit
complexity O(ℓ2)?

14/15

The case of Curve25519

Nevertheless, for our purpose, the exact value of d is unnecessary for
the following reason.

Recall that the k-th power residue symbol can be computed in a
(sub-)quadratic bit time only for k ⩽ 11.

At the same time, already for i = 2 (not to mention greater even i) it
turns out that e(2) = 16. In turn, for an odd value i we clearly get
ν(i) = ν = 2.

Thus, finite field extensions do not provide any advantage in the case
of Curve25519.

Problem
Is there a subgroup membership test for Curve25519 with bit
complexity O(ℓ2)?

14/15

The case of Curve25519

Nevertheless, for our purpose, the exact value of d is unnecessary for
the following reason.

Recall that the k-th power residue symbol can be computed in a
(sub-)quadratic bit time only for k ⩽ 11.

At the same time, already for i = 2 (not to mention greater even i) it
turns out that e(2) = 16. In turn, for an odd value i we clearly get
ν(i) = ν = 2.

Thus, finite field extensions do not provide any advantage in the case
of Curve25519.

Problem
Is there a subgroup membership test for Curve25519 with bit
complexity O(ℓ2)?

14/15

Thank you for your attention!

15/15

