
Fast subgroup membership testings
and hashing to 𝔾2 on pairing-friendly
curves

Yu Dai

Sun Yat-Sen university

July 12, 2023

Outline

Pairings on elliptic curves

Hashing to 𝔾2 on curves with the lack of twists

Fast Subgroup Membership Testings on Pairing-friendly
Curves

Pairings on elliptic curves

Pairings on elliptic curves

A cryptographic pairing is a map

𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 .

Pairing subgroups:

• 𝔾1 = 𝐸(𝔽𝑝)[𝑟];

• 𝔾2 = 𝐸(𝔽𝑝𝑘)[𝑟] ∩ Ker(𝜋 − [𝑝]);

• 𝔾𝑇 = {𝛼 ∈ 𝔽𝑝𝑘 |𝛼𝑟 = 1}.

The embedding degree 𝑘 is the smallest integer such
that 𝑟|𝑝𝑘 − 1.

Pairings on elliptic curves

Two types of pairing-friendly curves:

• curves admitting a twist：the subgroup 𝔾2 can be
represented as 𝐸′(𝔽𝑝𝑒)[𝑟], where 𝐸′is a twist of 𝐸:

𝜙 ∶ 𝐸′ → 𝐸 ∶ (𝑥, 𝑦) → (𝑢2𝑥, 𝑢3𝑦), 𝑢 ∈ 𝔽𝑝𝑘 .

• curves with the lack of twists：the subgroup 𝔾2
can be only represented as 𝐸[𝑟] ∩ Ker(𝜋 − [𝑝]).

If 𝑝 ≥ 5, 𝐸 is a curve with the lack of twists⇔ gcd(𝑘, 6) = 1.

Hashing to 𝔾2 on curves with
the lack of twists

Hashing to 𝔾2 on curves with the lack of twists

{0, 1}𝑚 𝔽𝑝 𝐸(𝔽𝑝𝑘) 𝔾2

standard hashing function hashing to curves ?

hashing to 𝔾2

Question: How to efficienly map a point of 𝐸(𝔽𝑝𝑘) into
𝔾2?

Hashing to 𝔾2 on curves with the lack of twists

Cyclotomic zero subgroup of elliptic curves：

𝐺0 = {𝑄 ∈ 𝐸(𝔽𝑝𝑘) ∣ Φ𝑘(𝜋)(𝑄) = 𝒪𝐸}.

Some important properties of 𝐺0:

• 𝐺0 ⊆ 𝐸(𝔽𝑝𝑘);
• #𝐺0 = #Ker(Φ𝑘(𝜋)) = ∏

𝑑∣𝑘
#Ker(𝜋𝑑 − 1)𝜇(𝑘/𝑑)

= ∏
𝑑∣𝑘

#𝐸(𝔽𝑝𝑑)𝜇(𝑘/𝑑),

where 𝜇(⋅) is the Moebius function.
• if 𝑟 ∤ Φ𝑘(1), then 𝐸[𝑟] ∩ 𝐺0 = 𝔾2.

Hashing to 𝔾2 on curves with the lack of twists

Define

• 𝐺0 ≅ ℤ𝑚 ⊕ ℤ𝑚𝑛𝑟 for some integers𝑚 and 𝑛.
• 𝐻 = 𝑚𝐺0. Then the subgroup 𝐻 is cyclic as 𝐻 ≅ ℤ𝑛𝑟.

The sequence of mapping a random point of 𝐸(𝔽𝑝𝑘) to
𝔾2:

𝐸(𝔽𝑝𝑘)
𝜌

⟶ 𝐺0
𝑚⟶ 𝐻 𝑛⟶ 𝔾2,

where 𝜌 = (𝜋𝑘 − 1)/Φ𝑘(𝜋)).

Hashing to 𝔾2 on curves with the lack of twists

The characteristic polynomial of 𝜋 is

𝜋2 − 𝑡𝜋 + 𝑝,

where 𝑡 is the tace of 𝐸 over 𝔽𝑝.
The action of 𝜋 on 𝐻:

• For any point 𝑃 ∈ 𝐻, 𝜋(𝑃) = [𝑎]𝑃 for some 𝑎 ∈ ℤ.
• Computing the scalar 𝑎:

1.

Φ𝑘(𝜋)(𝑃) = 𝒪𝐸 ⇒ Φ𝑘(𝑎) = 0 mod 𝑛𝑟.
𝜋2(𝑃) − [𝑡]𝜋(𝑃) + [𝑝]𝑃 = 𝒪𝐸 ⇒ 𝑎2 − 𝑡 ⋅ 𝑎 + 𝑝 = 0 mod 𝑛𝑟.

2. Let 𝑎0, 𝑎1 ∈ ℤ such that

𝑎0 + 𝑎1 ⋅ 𝑥 = Φ𝑘(𝑥) mod (𝑥2 − 𝑡𝑥 + 𝑝).

Putting 1. and 2. together, 𝑎0 + 𝑎1 ⋅ 𝑎 ≡ 0 mod 𝑛𝑟.

Hashing to 𝔾2 on curves with the lack of twists

GLV endomorphism 𝜏 on ordinary curves：

• if 𝑗(𝐸) = 0, 𝜏 ∶ (𝑥, 𝑦) → (𝜔 ⋅ 𝑥, 𝑦), where 𝜔 is a primitive
cube root of unity in 𝔽∗

𝑝. The characteristic equation
of 𝜏 is 𝜏2 + 𝜏 + 1 = 0;

• if 𝑗(𝐸) = 1728, 𝜏 ∶ (𝑥, 𝑦) → (−𝑥, 𝑖⋅𝑦), where 𝑖 is a primitive
fourth root of unity in 𝔽∗

𝑝. The characteristic equation
of 𝜏2 + 1 = 0.

Hashing to 𝔾2 on curves with the lack of twists

The action of 𝜏 on 𝐻:

• For any point 𝑃 ∈ 𝐻 , 𝜏(𝑃) = [𝑏]𝑃 for some 𝑏 ∈ ℤ.

• Computing the scalar 𝑏(in the case of 𝑗(𝐸) = 0)：
1. Computing

√
−3 in ℤ𝑛𝑟.

𝑎2 − 𝑎 ⋅ 𝑡 + 𝑝 ≡ 0 mod 𝑛𝑟.

⇒𝑎 ≡ 1
2(𝑡 ±√𝑡2 − 4𝑝) ≡ 1

2(𝑡 ± 𝑓
√
−3) mod 𝑛𝑟,

⇒
√
−3 ≡ ±(2𝑎 − 𝑡)/𝑓 mod 𝑛𝑟.

2. Computing 𝑏 using the characteristic equation of 𝜏

𝑏2 + 𝑏 + 1 ≡ 0 mod 𝑛𝑟

⇒𝑏 = −1 ±
√
−3

2 = −𝑓 ± (2𝑎 − 𝑡)
2𝑓 mod 𝑛𝑟.

Hashing to 𝔾2 on curves with the lack of twists

The action of Ψ = 𝜋 ∘ 𝜏 on 𝐻:
Let Ψ = 𝜋 ∘ 𝜏 and 𝜆 = 𝑎 ⋅ 𝑏. Then Ψ(𝑃) = [𝜆]𝑃 . On curves
with the lack of twists,

• if 𝑗(𝐸) = 0, we have gcd(𝑘, 3) = 1 and thus
Φ3𝑘(𝜆) ≡ 0 mod 𝑛𝑟, where deg(Φ3𝑘) = 2𝜑(𝑘);

• if 𝑗(𝐸) = 1728, we have gcd(𝑘, 4) = 1 and thus
Φ4𝑘(𝜆) ≡ 0 mod 𝑛𝑟, where deg(Φ4𝑘) = 2𝜑(𝑘);

Hashing to 𝔾2 on curves with the lack of twists

How to efficiently map a random point 𝑃 ∈ 𝐻 to 𝔾2?

• Applying the LLL algorithm in the following 2𝜑(𝑘)-dimensional
lattice, we obtain a short coefficient vector ℎ = (ℎ0,⋯ ,ℎ2𝜑(𝑘)−1)
such that

𝑛 ∣ (ℎ0 + ℎ1 ⋅ 𝜆 + ⋯+ ℎ2𝜑(𝑘)−1 ⋅ 𝜆2𝜑(𝑘)−1),

where ‖ℎ‖ ≈ log𝑛/(2𝜑(𝑘)).

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑛 0 0 ⋯ 0
−𝜆 1 0 ⋯ 0
−𝜆2 0 1 ⋯ 0
⋮ ⋮ ⋱

−𝜆2𝜑(𝑘)−1 0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

• [ℎ0]𝑃 + [ℎ1]Ψ(𝑃) + ⋯+ [ℎ2𝜑(𝑘)−1]Ψ2𝜑(𝑘)−1(𝑃) ∈ 𝔾2.

Hashing to 𝔾2 on curves with the lack of twists

Conclusion:

• We propose a fast method for mapping a random
point of 𝐸(𝔽𝑝𝑘) to 𝔾2 on curves with the lack of twists.

• In the case of 𝑗(𝐸) ∈ {0, 1728}, Frobenius endompor-
shim and GLV endomporshim can be combined to
build a 2𝜑(𝑘)dimensional decomposition.

• The method is suitable for some interesting curves,
such as BW13-P310 and BW19-P286.

Fast Subgroup Membership
Testings on Pairing-friendly
Curves

𝔾2 membership testing on curves admitting a twist

Notations:

• 𝜓 = 𝜙−1 ∘ 𝜋 ∘ 𝜙.

• ℒ𝜓={(𝛼0,𝛼1, ⋯, 𝛼𝜑(𝑘)−1)∈ℤ𝜑(𝑘) ∣
𝜑(𝑘)−1
∑
𝑖=0

𝛼𝑖 ⋅ 𝑝𝑖 ≡ 0 mod 𝑟}.

Question:
Given a point 𝑄 ∈ 𝐸′(𝔽𝑝𝑒), how to efficiently check

𝑄 ?∈ 𝔾2 = 𝐸′(𝔽𝑝𝑒)[𝑟]?

𝔾2 membership testing on curves admitting a twist

Basic idea:

Let (𝑐0, 𝑐1, ⋯ , 𝑐𝜑(𝑘)−1) ∈ ℒ𝜓.

𝑄 ∈ 𝔾2 ⇒
𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖]𝜓𝑖(𝑄) =
𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖 ⋅ 𝑝𝑖]𝑅 = 𝒪𝐸′ .

𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖]𝜓𝑖(𝑄) = 𝒪𝐸′ ⇒ 𝑄 ?∈ 𝔾2.

Or can we obtain some information about the order of
𝑄?

𝔾2 membership testing on curves admitting a twist

The characteristic polynomial of 𝜓 is

𝜓2 − 𝑡𝜓 + 𝑝,

where 𝑡 is the trace of 𝐸 over 𝔽𝑝.

Let 𝑏0 and 𝑏1 given as follows:

𝑏0 + 𝑏1𝜓 = ∑𝜑(𝑘)−1
𝑖=0

𝑐𝑖𝜓𝑖 mod (𝜓2 − 𝑡𝜓 + 𝑝).

𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖]𝜓𝑖(𝑄) = 𝒪𝐸′ ⇒ (𝑏0 + 𝑏1𝜓)(𝑄) = 𝒪𝐸′

⇒ (𝑏0 + 𝑏1 ̂𝜓)(𝑏0 + 𝑏1𝜓)(𝑄) = 𝒪𝐸′

⇒ [𝑏20 + 𝑏0 ⋅ 𝑏1 ⋅ 𝑡 + 𝑏21 ⋅ 𝑝]𝑄 = 𝒪𝐸′ .

𝔾2 membership testing on curves admitting a twist

What’s the meaning of the value 𝑏20 + 𝑏0 ⋅ 𝑏1 ⋅ 𝑡 + 𝑏21 ⋅ 𝑝？

𝑏20 + 𝑏0 ⋅ 𝑏1 ⋅ 𝑡 + 𝑏21 ⋅ 𝑝
=𝑏21((−𝑏0/𝑏1)2 − 𝑡(−𝑏0/𝑏1) + 𝑝)
=Res(𝑏0 + 𝑏1𝜓,𝜓2 − 𝑡𝜓 + 𝑝)

=Res(∑𝜑(𝑘)−1
𝑖=0

𝑐𝑖𝜓𝑖, 𝜓2 − 𝑡𝜓 + 𝑝),

where Res(𝑓, 𝑔) represents the resultant of two
polynomials 𝑓 and 𝑔.

𝔾2 membership testing on curves admitting a twist

Notations:

• 𝑔(𝜓): the characteristic polynomial of 𝜓.

• 𝑓(𝜓) =
𝜑(𝑘)−1
∑
𝑖=0

𝑐𝑖𝜓𝑖, (𝑐0,𝑐1,⋯, 𝑐𝜑(𝑘)−1)∈ℒ𝜓.

• ℎ2 = #𝐸′(𝔽𝑝𝑒)/𝑟, ℎ′
2 = 𝑅𝑒𝑠(𝑓(𝜓), 𝑔(𝜓))/𝑟.

Putting it all together:

• 𝑄 ∈ 𝐸′(𝔽𝑝𝑒) ⇒ [ℎ2 ⋅ 𝑟]𝑄 = 𝒪𝐸′ .

•
𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖]𝜓𝑖(𝑄) = 𝒪𝐸′ ⇒ [ℎ′
2 ⋅ 𝑟]𝑄 = 𝒪𝐸′ .

Conclusion:

Restrict the selected short vector satisfy gcd(ℎ2, ℎ′
2) = 1. Then,

𝑄 ∈ 𝔾2 ⇔
𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖]𝜓𝑖(𝑄) = 𝒪𝐸′ .

𝔾2 membership testing on curves admitting a twist

How to find a valid vector (𝑐0, 𝑐1, ⋯ , 𝑐𝜑(𝑘)−1)?

• We can enumerate vectors in ℒ𝜓 until the condition
gcd(ℎ2, ℎ′

2) = 1 holds. There always exists one vector
meeting the conditionaswecan select it as (𝑟, 0,⋯ , 0),
which corresponds to the naive method.

• For efficiency, we expect the target vector is as short
as possible.

Magma code for finding valid short vectors on different
pairing-friendly curves:
https://github.com/eccdaiy39/smt-magma/tree/main/vector

https://github.com/eccdaiy39/smt-magma/tree/main/vector

𝔾2 membership testing on curves with the lack of twists

On curves with the lack of twists,

𝔾2 = 𝐸(𝔽𝑝𝑘)[𝑟] ∩ Ker(𝜋 − [𝑝]) = 𝐸[𝑟] ∩ 𝐺0.

The group 𝔾2 is the unique subgroup of 𝐺0 with order 𝑟.

𝔾2 membership testing on curves with the lack of
twists

Notations:

• 𝑔(𝜋): the characteristic polynomial of 𝜋.

• 𝑓(𝜋) =
𝜑(𝑘)−1
∑
𝑖=0

𝑐𝑖𝜋𝑖, (𝑐0,𝑐1,⋯, 𝑐𝜑(𝑘)−1)∈ℒ𝜓.

• ℎ2 = #𝐺0/𝑟, ℎ′
2 = 𝑅𝑒𝑠(𝑔(𝜋), 𝑓(𝜋))/𝑟,

Conclusion:

Restrict the selected short vector satisfies gcd(ℎ2, ℎ′
2) = 1. Then,

𝑄 ∈ 𝔾2 ⇔ 𝑄 ∈ 𝐺0 and
𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖]𝜋𝑖(𝑄) = 𝒪𝐸.

𝔾2 membership testing on curves with the lack of
twists

An optimized method on curves with 𝑗(𝐸) ∈ {0, 1728}:
The characteristic equation of Ψ = 𝜋 ∘ 𝜏 is

(1) 𝑗(𝐸) = 0 ∶ Ψ2 + 𝑡±3𝑓
2 Ψ+ 𝑝 = 0with 𝑡2 − 4𝑝 = −3𝑓2;

(2) 𝑗(𝐸) = 1728 ∶ Ψ2 ± 𝑓Ψ+ 𝑝 = 0with 𝑡2 − 4𝑝 = −𝑓2.

𝔾2 membership testing on curves with the lack of
twists

Notations:

• ℓ: Ψ(𝑄) = [ℓ]𝑄 for𝑄 ∈ 𝔾2.

• ℒΨ={(𝛼0,𝛼1,⋯,𝛼2𝜑(𝑘)−1)∈ℤ2𝜑(𝑘) ∣
2𝜑(𝑘)−1

∑
𝑖=0

𝛼𝑖 ⋅ ℓ𝑖 ≡ 0 mod 𝑟}.

• 𝑔(Ψ): the characteristic polynomial ofΨ.

• 𝑓(Ψ) =
2𝜑(𝑘)−1

∑
𝑖=0

𝑐𝑖Ψ𝑖, (𝑐0,𝑐1,⋯, 𝑐2𝜑(𝑘)−1)∈ℒΨ.

• ℎ′
2 = 𝑅𝑒𝑠(𝑓(Ψ), 𝑔(Ψ))/𝑟.

Conclusion:

Restrict the selected short vector satisfies gcd(ℎ2, ℎ′
2) = 1. Then,

𝑄 ∈ 𝔾2 ⇔ 𝑄 ∈ 𝐺0 and
2𝜑(𝑘)−1
∑
𝑖=0

[𝑐𝑖]Ψ𝑖(𝑄) = 𝒪𝐸.

𝔾2 membership testing

Table 1: The short vectors of 𝔾2 membership testing on a list
of pairing-friendly curves at the 128-bit security level. On
KSS16-P330, 𝑢 = (−𝑧 − 25)/70.

Curve Short vector

BW6-P761 (𝑧−1
3 (𝑧2−2)+𝑧, 𝑧−1

3 (𝑧2−2)−1)

CP6-P782 (2𝑧−2
3 (𝑧2−2)+𝑧−1, 1−𝑧

3 (𝑧2−2)+1)

BN-P446 (𝑧 + 1, 𝑧, 𝑧,−2𝑧)

BLS12-P461 (𝑧,−1, 0, 0)

KSS16-P330
(11𝑢+4,−9𝑢−3, 3𝑢+1, 3𝑢+1,
−13𝑢 − 5, 7𝑢 + 3,𝑢, 11𝑢 + 4)

KSS18-P348 (2𝑧
7 , 1, 0, 𝑧

7 , 0, 0)

BW13-P310 (− 𝑧, 1, 0,⋯ , 0)

BW19-P286 (− 𝑧, 1, 0,⋯ , 0)

𝔾1 membership testing

Onordinary curveswith 𝑗-invariant 0 or 1728, the GLV endomorphism
𝜏 can be used be seep up 𝔾1 membership testing.

Notations:

• 𝜆 ∶ 𝜏(𝑃) = [𝜆]𝑃 for 𝑃 ∈ 𝔾1.
• ℒ𝜏={(𝛼0, 𝛼1 ∈ ℤ2 ∣ 𝑎0 + 𝑎1 ⋅ 𝜆 ≡ 0 mod 𝑟}.
• 𝑔(𝜏): the characteristic polynomial of 𝜏 .
• 𝑓(𝜏) = 𝑎0 + 𝑎1𝜏 , (𝑎0, 𝑎1) ∈ ℒ.
• ℎ1 = #𝐸(𝔽𝑝)/𝑟.
• ℎ′

1 = 𝑅𝑒𝑠(𝑔(𝜏), 𝑓(𝜏))/𝑟.

Conclusion:

Restrict the selected short vector (𝑎0, 𝑎1)satisfies gcd(ℎ1, ℎ′
1) = 1. Then,

𝑃 ∈ 𝔾1 ⇔ [𝑎0]𝑃 + [𝑎1]𝜏(𝑃) = 𝒪𝐸.

𝔾1 membership testing

Table 2: The short vectors for 𝔾1 membership testing on a list
of pairing-friendly curves with j-invariant 0 or 1728.

Curve (𝑎0, 𝑎1)

BW6-P761 (𝑧−1
3 (𝑧2 − 2) − 1, 1−𝑧

3 (𝑧2 − 2) − 𝑧)

BLS12-P461 (𝑧2, 1)

KSS16-P330 (31𝑧4+625
8750 , −17𝑧4−625

8750)

KSS18-P348 ((𝑧7)3, −18𝑎0 − 1)

BW13-P310 (−(𝑧7+𝑧)(𝑧4+𝑧3−𝑧−1), 𝑎0 ⋅ 𝑧−1)

BW19-P286 ((𝑧−𝑧10)(𝑧6−𝑧3+1)(𝑧+1), 𝑎0 ⋅𝑧−1)

𝔾𝑇 membership testing

Let (𝑐0, 𝑐1, ⋯ , 𝑐𝜑(𝑘)−1) ∈ ℒ𝜓 and 𝜂 = ∑𝜑(𝑘)−1
𝑖=0 𝑐𝑖 ⋅ 𝑝𝑖 such that

gcd(Φ𝑘(𝑝), 𝜂) = 𝑟. Then,

𝛼 ∈ 𝔾𝑇 ⇔ 𝛼Φ𝑘(𝑝) = 1 and
𝜑(𝑘)−1
∏
𝑖=0

𝛼𝑐𝑖⋅𝑝𝑖 = 1.

𝔾𝑇 membership testing

Table 3: The short vectors of 𝔾𝑇 membership testing for a
list of pairing-friendly curves at the 128-bit security level. On
KSS16-P330, the value 𝑢 is equal to (−𝑧 − 25)/70.

Curve Short vector

BW6-P761 (𝑧−1
3 (𝑧2−2)+𝑧, 𝑧−1

3 (𝑧2−2)−1)

CP6-P782 (𝑧−1
3 (𝑧2−2)−1, 𝑧−1

3 (𝑧2−2) +𝑧)

BN-P446 (𝑧 + 1, 𝑧, 𝑧,−2𝑧)

BLS12-P461 (𝑧,−1, 0, 0)

KSS16-P330
(11𝑢+4,−9𝑢−3, 3𝑢+1, 3𝑢+1,
−13𝑢 − 5, 7𝑢 + 3,𝑢, 11𝑢 + 4)

KSS18-P348 (2𝑧
7 , 1, 0, 𝑧

7 , 0, 0)

BW13-P310 (𝑧2,−𝑧, 1, 0,… , 0)

BW19-P286 (𝑧2,−𝑧, 1, 0,⋯ , 0)

subgroup membership testing

Conclusion:

• The new method for 𝔾2 and 𝔾𝑇 membership testing
requires approximately log 𝑟/𝜑(𝑘) iterations on many
popular pairing-friendly curve. The number of itera-
tions for 𝔾2 membership testing can be reduced to
approximately log 𝑟/(2𝜑(𝑘)) on some special curves.

• The new method for 𝔾1 membership testing is only
suitable for ordinary curveswith 𝑗(𝐸) ∈ {0, 1728}, which
requires approximately log 𝑟/2 iterationsonmanypop-
ular pairing-friendly curves.

Thank you!

eccdaiy39@gmail.com

	Pairings on elliptic curves
	Hashing to G2 on curves with the lack of twists
	Fast Subgroup Membership Testings on Pairing-friendly Curves

