Fast subgroup membership testings and hashing to \mathbb{G}_{2} on pairing-friendly curves

Yu Dai

Sun Yat-Sen university

July 12, 2023

Outline

Pairings on elliptic curves

Hashing to \mathbb{G}_{2} on curves with the lack of twists

Fast Subgroup Membership Testings on Pairing-friendly
Curves

Pairings on elliptic curves

Pairings on elliptic curves

A cryptographic pairing is a map

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

Pairing subgroups:

- $\mathbb{G}_{1}=E\left(\mathbb{F}_{p}\right)[r] ;$
- $\mathbb{G}_{2}=E\left(\mathbb{F}_{p^{k}}\right)[r] \cap \operatorname{Ker}(\pi-[p])$;
- $\mathbb{G}_{T}=\left\{\alpha \in \mathbb{F}_{p^{k}} \mid \alpha^{r}=1\right\}$.

The embedding degree k is the smallest integer such that $r \mid p^{k}-1$.

Pairings on elliptic curves

Two types of pairing-friendly curves:

- curves admitting a twist: the subgroup \mathbb{G}_{2} can be represented as $E^{\prime}\left(\mathbb{F}_{p^{e}}\right)[r]$, where E^{\prime} is a twist of E :

$$
\phi: E^{\prime} \rightarrow E:(x, y) \rightarrow\left(u^{2} x, u^{3} y\right), u \in \mathbb{F}_{p^{k}}
$$

- curves with the lack of twists: the subgroup \mathbb{G}_{2} can be only represented as $E[r] \cap \operatorname{Ker}(\pi-[p])$.

If $p \geq 5, E$ is a curve with the lack of twists $\Leftrightarrow \operatorname{gcd}(k, 6)=1$.

Hashing to \mathbb{G}_{2} on curves with the lack of twists

Hashing to \mathbb{G}_{2} on curves with the lack of twists

Question: How to efficienly map a point of $E\left(\mathbb{F}_{p^{k}}\right)$ into \mathbb{G}_{2} ?

Hashing to \mathbb{G}_{2} on curves with the lack of twists

Cyclotomic zero subgroup of elliptic curves:

$$
G_{0}=\left\{Q \in E\left(\mathbb{F}_{p^{k}}\right) \mid \Phi_{k}(\pi)(Q)=\mathcal{O}_{E}\right\} .
$$

Some important properties of G_{0} :

- $G_{0} \subseteq E\left(\mathbb{F}_{p^{k}}\right)$;
- $\# G_{0}=\# \operatorname{Ker}\left(\Phi_{k}(\pi)\right)=\prod_{d \mid k} \# \operatorname{Ker}\left(\pi^{d}-1\right)^{\mu(k / d)}$

$$
=\prod_{d \mid k} \# E\left(\mathbb{F}_{p^{d}}\right)^{\mu(k / d)},
$$

where $\mu(\cdot)$ is the Moebius function.

- if $r \nmid \Phi_{k}(1)$, then $E[r] \cap G_{0}=\mathbb{G}_{2}$.

Hashing to \mathbb{G}_{2} on curves with the lack of twists

Define

- $G_{0} \cong \mathbb{Z}_{m} \oplus \mathbb{Z}_{m n r}$ for some integers m and n.
- $H=m G_{0}$. Then the subgroup H is cyclic as $H \cong \mathbb{Z}_{n r}$.

The sequence of mapping a random point of $E\left(\mathbb{F}_{p^{k}}\right)$ to \mathbb{G}_{2} :

$$
E\left(\mathbb{F}_{p^{k}}\right) \xrightarrow{\rho} G_{0} \xrightarrow{m} H \xrightarrow{n} \mathbb{G}_{2},
$$

where $\left.\rho=\left(\pi^{k}-1\right) / \Phi_{k}(\pi)\right)$.

Hashing to \mathbb{G}_{2} on curves with the lack of twists

The characteristic polynomial of π is

$$
\pi^{2}-t \pi+p
$$

where t is the tace of E over \mathbb{F}_{p}.

The action of π on H :

- For any point $P \in H, \pi(P)=[a] P$ for some $a \in \mathbb{Z}$.
- Computing the scalar a :

1.

$$
\begin{aligned}
& \Phi_{k}(\pi)(P)=\mathcal{O}_{E} \Rightarrow \Phi_{k}(a)=0 \bmod n r . \\
& \pi^{2}(P)-[t] \pi(P)+[p] P=\mathcal{O}_{E} \Rightarrow a^{2}-t \cdot a+p=0 \bmod n r .
\end{aligned}
$$

2. Let $a_{0}, a_{1} \in \mathbb{Z}$ such that

$$
a_{0}+a_{1} \cdot x=\Phi_{k}(x) \bmod \left(x^{2}-t x+p\right)
$$

Putting 1. and 2. together, $a_{0}+a_{1} \cdot a \equiv 0 \bmod n r$.

Hashing to \mathbb{G}_{2} on curves with the lack of twists

GLV endomorphism τ on ordinary curves:

- if $j(E)=0, \tau:(x, y) \rightarrow(\omega \cdot x, y)$, where ω is a primitive cube root of unity in \mathbb{F}_{p}^{*}. The characteristic equation of τ is $\tau^{2}+\tau+1=0$;
- if $j(E)=1728, \tau:(x, y) \rightarrow(-x, i \cdot y)$, where i is a primitive fourth root of unity in \mathbb{F}_{p}^{*}. The characteristic equation of $\tau^{2}+1=0$.

Hashing to \mathbb{G}_{2} on curves with the lack of twists

The action of τ on H :

- For any point $P \in H, \tau(P)=[b] P$ for some $b \in \mathbb{Z}$.
- Computing the scalar b (in the case of $j(E)=0)$:

1. Computing $\sqrt{-3}$ in $\mathbb{Z}_{n r}$.

$$
\begin{aligned}
& a^{2}-a \cdot t+p \equiv 0 \bmod n r . \\
\Rightarrow & a \equiv \frac{1}{2}\left(t \pm \sqrt{t^{2}-4 p}\right) \equiv \frac{1}{2}(t \pm f \sqrt{-3}) \bmod n r \\
\Rightarrow & \sqrt{-3} \equiv \pm(2 a-t) / f \bmod n r .
\end{aligned}
$$

2. Computing b using the characteristic equation of τ

$$
\begin{aligned}
& b^{2}+b+1 \equiv 0 \bmod n r \\
\Rightarrow & b=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-f \pm(2 a-t)}{2 f} \bmod n r
\end{aligned}
$$

Hashing to \mathbb{G}_{2} on curves with the lack of twists

The action of $\Psi=\pi \circ \tau$ on H :
Let $\Psi=\pi \circ \tau$ and $\lambda=a \cdot b$. Then $\Psi(P)=[\lambda] P$. On curves with the lack of twists,

- if $j(E)=0$, we have $\operatorname{gcd}(k, 3)=1$ and thus
$\Phi_{3 k}(\lambda) \equiv 0 \bmod n r$, where $\operatorname{deg}\left(\Phi_{3 k}\right)=2 \varphi(k) ;$
- if $j(E)=1728$, we have $\operatorname{gcd}(k, 4)=1$ and thus $\Phi_{4 k}(\lambda) \equiv 0 \bmod n r$, where $\operatorname{deg}\left(\Phi_{4 k}\right)=2 \varphi(k) ;$

Hashing to \mathbb{G}_{2} on curves with the lack of twists

How to efficiently map a random point $P \in H$ to \mathbb{G}_{2} ?

- Applying the LLL algorithm in the following $2 \varphi(k)$-dimensional lattice, we obtain a short coefficient vector $h=\left(h_{0}, \cdots, h_{2 \varphi(k)-1}\right)$ such that

$$
n \mid\left(h_{0}+h_{1} \cdot \lambda+\cdots+h_{2 \varphi(k)-1} \cdot \lambda^{2 \varphi(k)-1}\right),
$$

where $\|h\| \approx \log n /(2 \varphi(k))$.

$$
\left(\begin{array}{ccccc}
n & 0 & 0 & \cdots & 0 \\
-\lambda & 1 & 0 & \cdots & 0 \\
-\lambda^{2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \ddots & \\
-\lambda^{2 \varphi(k)-1} & 0 & \cdots & 0 & 1
\end{array}\right)
$$

- $\left[h_{0}\right] P+\left[h_{1}\right] \Psi(P)+\cdots+\left[h_{2 \varphi(k)-1}\right] \Psi^{2 \varphi(k)-1}(P) \in \mathbb{G}_{2}$.

Hashing to \mathbb{G}_{2} on curves with the lack of twists

Conclusion:

- We propose a fast method for mapping a random point of $E\left(\mathbb{F}_{p^{k}}\right)$ to \mathbb{G}_{2} on curves with the lack of twists.
- In the case of $j(E) \in\{0,1728\}$, Frobenius endomporshim and GLV endomporshim can be combined to build a 2φ (k) dimensional decomposition.
- The method is suitable for some interesting curves, such as BW13-P310 and BW19-P286.

Fast Subgroup Membership Testings on Pairing-friendly Curves

\mathbb{G}_{2} membership testing on curves admitting a twist

Notations:

$$
\psi=\phi^{-1} \circ \pi \circ \phi
$$

$$
\text { - } \mathcal{L}_{\psi}=\left\{\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{\varphi(k)-1}\right) \in \mathbb{Z}^{\varphi(k)} \mid \sum_{i=0}^{\varphi(k)-1} \alpha_{i} \cdot p^{i} \equiv 0 \bmod r\right\}
$$

Question:

Given a point $Q \in E^{\prime}\left(\mathbb{F}_{p^{e}}\right)$, how to efficiently check $Q \stackrel{?}{\in} \mathbb{G}_{2}=E^{\prime}\left(\mathbb{F}_{p^{e}}\right)[r] ?$

\mathbb{G}_{2} membership testing on curves admitting a twist

Basic idea:

Let $\left(c_{0}, c_{1}, \cdots, c_{\varphi(k)-1}\right) \in \mathcal{L}_{\psi}$.

$$
\begin{aligned}
& Q \in \mathbb{O}_{2} \Rightarrow \sum_{i=0}^{\varphi(k)-1}\left[c_{i}\right] \psi^{i}(Q)=\sum_{i=0}^{\varphi(k)-1}\left[c_{i} \cdot p^{i}\right] R=\mathcal{O}_{E^{\prime}} . \\
& \sum_{i=0}^{\varphi(k)-1}\left[c_{i}\right] \psi^{i}(Q)=\mathcal{O}_{E^{\prime}} \Rightarrow Q \stackrel{?}{\in} \mathbb{G}_{2} .
\end{aligned}
$$

Or can we obtain some information about the order of Q ?

\mathbb{G}_{2} membership testing on curves admitting a twist

The characteristic polynomial of ψ is

$$
\psi^{2}-t \psi+p
$$

where t is the trace of E over \mathbb{F}_{p}.
Let b_{0} and b_{1} given as follows:

$$
\begin{aligned}
& b_{0}+b_{1} \psi=\sum_{i=0}^{\varphi(k)-1} c_{i} \psi^{i} \bmod \left(\psi^{2}-t \psi+p\right) \\
& \sum_{i=0}^{\varphi(k)-1}\left[c_{i}\right] \psi^{i}(Q)=\mathcal{O}_{E^{\prime}} \Rightarrow\left(b_{0}+b_{1} \psi\right)(Q)=\mathcal{O}_{E^{\prime}} \\
& \Rightarrow\left(b_{0}+b_{1} \hat{\psi}\right)\left(b_{0}+b_{1} \psi\right)(Q)=\mathcal{O}_{E^{\prime}} \\
& \Rightarrow\left[b_{0}^{2}+b_{0} \cdot b_{1} \cdot t+b_{1}^{2} \cdot p\right] Q=\mathcal{O}_{E^{\prime}}
\end{aligned}
$$

\mathbb{G}_{2} membership testing on curves admitting a twist

What's the meaning of the value $b_{0}^{2}+b_{0} \cdot b_{1} \cdot t+b_{1}^{2} \cdot p$?

$$
\begin{aligned}
& b_{0}^{2}+b_{0} \cdot b_{1} \cdot t+b_{1}^{2} \cdot p \\
= & b_{1}^{2}\left(\left(-b_{0} / b_{1}\right)^{2}-t\left(-b_{0} / b_{1}\right)+p\right) \\
= & \operatorname{Res}\left(b_{0}+b_{1} \psi, \psi^{2}-t \psi+p\right) \\
= & \operatorname{Res}\left(\sum_{i=0}^{\varphi(k)-1} c_{i} \psi^{i}, \psi^{2}-t \psi+p\right),
\end{aligned}
$$

where $\operatorname{Res}(f, g)$ represents the resultant of two polynomials f and g.

\mathbb{G}_{2} membership testing on curves admitting a twist

Notations:

- $g(\psi)$: the characteristic polynomial of ψ.
- $f(\psi)=\sum_{i=0}^{\varphi(k)-1} c_{i} \psi^{i},\left(c_{0}, c_{1}, \cdots, c_{\varphi(k)-1}\right) \in \mathcal{L}_{\psi}$.
- $h_{2}=\# E^{\prime}\left(\mathbb{F}_{p^{e}}\right) / r, h_{2}^{\prime}=\operatorname{Res}(f(\psi), g(\psi)) / r$.

Putting it all together:

- $Q \in E^{\prime}\left(\mathbb{F}_{p^{e}}\right) \Rightarrow\left[h_{2} \cdot r\right] Q=\mathcal{O}_{E^{\prime}}$.
- $\sum_{i=0}^{\varphi(k)-1}\left[c_{i}\right] \psi^{i}(Q)=\mathcal{O}_{E^{\prime}} \Rightarrow\left[h_{2}^{\prime} \cdot r\right] Q=\mathcal{O}_{E^{\prime}}$.

Conclusion:

Restrict the selected short vector satisfy $\operatorname{gcd}\left(h_{2}, h_{2}^{\prime}\right)=1$. Then,

$$
Q \in \mathbb{G}_{2} \Leftrightarrow \sum_{i=0}^{\varphi(k)-1}\left[c_{i}\right] \psi^{i}(Q)=\mathcal{O}_{E^{\prime}}
$$

\mathbb{G}_{2} membership testing on curves admitting a twist

How to find a valid vector $\left(c_{0}, c_{1}, \cdots, c_{\varphi(k)-1}\right)$?

- We can enumerate vectors in \mathcal{L}_{ψ} until the condition $\operatorname{gcd}\left(h_{2}, h_{2}^{\prime}\right)=1$ holds. There always exists one vector meeting the condition as we can select it as $(r, 0, \cdots, 0)$, which corresponds to the naive method.
- For efficiency, we expect the target vector is as short as possible.

Magma code for finding valid short vectors on different pairing-friendly curves:
https://github.com/eccdaiy39/smt-magma/tree/main/vector

\mathbb{G}_{2} membership testing on curves with the lack of twists

On curves with the lack of twists,

$$
\mathbb{G}_{2}=E\left(\mathbb{F}_{p^{k}}\right)[r] \cap \operatorname{Ker}(\pi-[p])=E[r] \cap G_{0} .
$$

The group \mathbb{G}_{2} is the unique subgroup of G_{0} with order r.

\mathbb{G}_{2} membership testing on curves with the lack of twists

Notations:

- $g(\pi)$: the characteristic polynomial of π.
- $f(\pi)=\sum_{i=0}^{\varphi(k)-1} c_{i} \pi^{i},\left(c_{0}, c_{1}, \cdots, c_{\varphi(k)-1}\right) \in \mathcal{L}_{\psi}$.
- $h_{2}=\# G_{0} / r, h_{2}^{\prime}=\operatorname{Res}(g(\pi), f(\pi)) / r$,

Conclusion:

Restrict the selected short vector satisfies $\operatorname{gcd}\left(h_{2}, h_{2}^{\prime}\right)=1$. Then,

$$
Q \in \mathbb{G}_{2} \Leftrightarrow Q \in G_{0} \text { and } \sum_{i=0}^{\varphi(k)-1}\left[c_{i}\right] \pi^{i}(Q)=\mathcal{O}_{E}
$$

\mathbb{G}_{2} membership testing on curves with the lack of twists

An optimized method on curves with $j(E) \in\{0,1728\}$: The characteristic equation of $\Psi=\pi \circ \tau$ is
(7) $j(E)=0: \quad \Psi^{2}+\frac{t \pm 3 f}{2} \Psi+p=0$ with $t^{2}-4 p=-3 f^{2}$;
(2) $j(E)=1728: \Psi^{2} \pm f \Psi+p=0$ with $t^{2}-4 p=-f^{2}$.

\mathbb{G}_{2} membership testing on curves with the lack of twists

Notations:

- $\ell: \Psi(Q)=[\ell] Q$ for $Q \in \mathbb{G}_{2}$.
- $\mathcal{L}_{\Psi}=\left\{\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{2 \varphi(k)-1}\right) \in \mathbb{Z}^{2 \varphi(k)} \mid \sum_{i=0}^{2 \varphi(k)-1} \alpha_{i} \cdot \ell^{i} \equiv 0 \bmod r\right\}$.
- $g(\Psi)$: the characteristic polynomial of Ψ.
- $f(\Psi)=\sum_{i=0}^{2 \varphi(k)-1} c_{i} \Psi^{i},\left(c_{0}, c_{1}, \cdots, c_{2 \varphi(k)-1}\right) \in \mathcal{L}_{\Psi}$.
- $h_{2}^{\prime}=\operatorname{Res}(f(\Psi), g(\Psi)) / r$.

Conclusion:

Restrict the selected short vector satisfies $\operatorname{gcd}\left(h_{2}, h_{2}^{\prime}\right)=1$. Then,

$$
Q \in \mathbb{G}_{2} \Leftrightarrow Q \in G_{0} \text { and } \sum_{i=0}^{2 \varphi(k)-1}\left[c_{i}\right] \Psi^{i}(Q)=\mathcal{O}_{E}
$$

\mathbb{G}_{2} membership testing

Table 1: The short vectors of \mathbb{G}_{2} membership testing on a list of pairing-friendly curves at the 128-bit security level. On KSS16-P330, $u=(-z-25) / 70$.

Curve
Short vector
BW6-P761

$$
\left(\frac{z-1}{3}\left(z^{2}-2\right)+z, \frac{z-1}{3}\left(z^{2}-2\right)-1\right)
$$

CP6-P782
$\left(\frac{2 z-2}{3}\left(z^{2}-2\right)+z-1, \frac{1-z}{3}\left(z^{2}-2\right)+1\right)$
BN-P446
$(z+1, z, z,-2 z)$
BLS12-P461
($z,-1,0,0$)
$(11 u+4,-9 u-3,3 u+1,3 u+1$,
$-13 u-5,7 u+3, u, 11 u+4)$ $\left(\frac{2 z}{7}, 1,0, \frac{z}{7}, 0,0\right)$

BW13-P310
$(-z, 1,0, \cdots, 0)$
BW19-P286

$$
(-z, 1,0, \cdots, 0)
$$

\mathbb{G}_{1} membership testing

On ordinary curves with j-invariant 0 or 1728 , the GLV endomorphism τ can be used be seep up \mathbb{G}_{1} membership testing.

Notations:

- $\lambda: \tau(P)=[\lambda] P$ for $P \in \mathbb{G}_{1}$.
- $\mathcal{L}_{\tau}=\left\{\left(\alpha_{0}, \alpha_{1} \in \mathbb{Z}^{2} \mid a_{0}+a_{1} \cdot \lambda \equiv 0 \bmod r\right\}\right.$.
- $g(\tau)$: the characteristic polynomial of τ.
- $f(\tau)=a_{0}+a_{1} \tau,\left(a_{0}, a_{1}\right) \in \mathcal{L}$.
- $h_{1}=\# E\left(\mathbb{F}_{p}\right) / r$.
- $h_{1}^{\prime}=\operatorname{Res}(g(\tau), f(\tau)) / r$.

Conclusion:

Restrict the selected short vector $\left(a_{0}, a_{1}\right)$ satisfies $\operatorname{gcd}\left(h_{1}, h_{1}^{\prime}\right)=1$. Then,

$$
P \in \mathbb{G}_{1} \Leftrightarrow\left[a_{0}\right] P+\left[a_{1}\right] \tau(P)=\mathcal{O}_{E} .
$$

\mathbb{G}_{1} membership testing

Table 2: The short vectors for \mathbb{G}_{1} membership testing on a list of pairing-friendly curves with j-invariant 0 or 1728.
Curve $\left(a_{0}, a_{1}\right)$
BW6-P761

$$
\left(\frac{z-1}{3}\left(z^{2}-2\right)-1, \frac{1-z}{3}\left(z^{2}-2\right)-z\right)
$$

BLS12-P461 $\left(z^{2}, 1\right)$
KSS16-P330
$\left(\frac{31 z^{4}+625}{8750}, \frac{-17 z^{4}-625}{8750}\right)$
KSS18-P348

$$
\left(\left(\frac{z}{7}\right)^{3},-18 a_{0}-1\right)
$$

BW13-P310

$$
\left(-\left(z^{7}+z\right)\left(z^{4}+z^{3}-z-1\right), a_{0} \cdot z-1\right)
$$

BW19-P286
$\left(\left(z-z^{10}\right)\left(z^{6}-z^{3}+1\right)(z+1), a_{0} \cdot z-1\right)$

\mathbb{G}_{T} membership testing

Let $\left(c_{0}, c_{1}, \cdots, c_{\varphi(k)-1}\right) \in \mathcal{L}_{\psi}$ and $\eta=\sum_{i=0}^{\varphi(k)-1} c_{i} \cdot p^{i}$ such that $\operatorname{gcd}\left(\Phi_{k}(p), \eta\right)=r$. Then,

$$
\alpha \in \mathbb{G}_{T} \Leftrightarrow \alpha^{\Phi_{k}(p)}=1 \text { and } \prod_{i=0}^{\varphi(k)-1} \alpha^{c_{i} \cdot p^{i}}=1 .
$$

\mathfrak{G}_{T} membership testing

Table 3: The short vectors of \mathbb{G}_{T} membership testing for a list of pairing-friendly curves at the 128 -bit security level. On KSS16-P330, the value u is equal to $(-z-25) / 70$.

Curve	Short vector
BW6-P761	$\left(\frac{z-1}{3}\left(z^{2}-2\right)+z, \frac{z-1}{3}\left(z^{2}-2\right)-1\right)$
CP6-P782	$\left(\frac{z-1}{3}\left(z^{2}-2\right)-1, \frac{z-1}{3}\left(z^{2}-2\right)+z\right)$
BN-P446	$(z+1, z, z,-2 z)$
BLS12-P461	$(z,-1,0,0)$
KSS16-P330	$(11 u+4,-9 u-3,3 u+1,3 u+1$,
KSS18-P348	$-13 u-5,7 u+3, u, 11 u+4)$
BW13-P310	$\left(\frac{2 z}{7}, 1,0, \frac{z}{7}, 0,0\right)$
BW19-P286	$\left(z^{2},-z, 1,0, \ldots, 0\right)$

subgroup membership testing

Conclusion:

- The new method for \mathbb{G}_{2} and \mathbb{G}_{T} membership testing requires approximately $\log r / \varphi(k)$ iterations on many popular pairing-friendly curve. The number of iterations for \mathbb{G}_{2} membership testing can be reduced to approximately $\log r /(2 \varphi(k))$ on some special curves.
- The new method for \mathbb{G}_{1} membership testing is only suitable for ordinary curves with $j(E) \in\{0,1728\}$, which requires approximately $\log r / 2$ iterations on many popular pairing-friendly curves.

Thank you!

eccdaiy39@gmail.com

