Efficiently computing a pairing: Tricks old and
new.

Michael Scott

tii.ae
July 2023

Implementing Pairing-Based Cryptography

» We denote a pairing as g = e(P, Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

Implementing Pairing-Based Cryptography

» We denote a pairing as g = e(P, Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

» All these groups are of the same order r. The field extension
is denoted k, a.k.a. the embedding degree.

Implementing Pairing-Based Cryptography

» We denote a pairing as g = e(P, Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

» All these groups are of the same order r. The field extension
is denoted k, a.k.a. the embedding degree.

» There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

Implementing Pairing-Based Cryptography

» We denote a pairing as g = e(P, Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

» All these groups are of the same order r. The field extension
is denoted k, a.k.a. the embedding degree.

» There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

» The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

Implementing Pairing-Based Cryptography

» We denote a pairing as g = e(P, Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

» All these groups are of the same order r. The field extension
is denoted k, a.k.a. the embedding degree.

» There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

» The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

» For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

Implementing Pairing-Based Cryptography

» We denote a pairing as g = e(P, Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

» All these groups are of the same order r. The field extension
is denoted k, a.k.a. the embedding degree.

» There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

» The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

» For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

» In this talk we will focus attention on the Miller loop, and
assume either the Tate or Ate pairing.

The Miller Loop

Algorithm 1: Miller loop

Input: Q € G;, P € Gy, curve parameter u
Output: f €

1«1

2 T+ Q

3 for i + |log,(u)] —1to 0 do

4 f<—f2./T7T(P), T+ 2T

5 if u; =1 then

6 fflroP), T+ T+Q

7 return f

What is going on?

» The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

What is going on?

» The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

» The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

What is going on?

» The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

» The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

» Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

What is going on?

» The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

» The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

» Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

> The line functions are often sparse elements € F

What is going on?

» The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

» The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

» Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

> The line functions are often sparse elements € F

» Important to observe that u is a fixed system parameter, and
not a variable.

What is going on?

» The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

» The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

» Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

> The line functions are often sparse elements € F

» Important to observe that u is a fixed system parameter, and
not a variable.

» As described we are assuming denominator elimination (DE)
applies, Barreto et al. [2002],

How many bits in u?

» If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

How many bits in u?

» If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

» Clearly this gets bigger as the security level of the pairing
increases

How many bits in u?

» If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

» Clearly this gets bigger as the security level of the pairing
increases

» However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

How many bits in u?

» If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

» Clearly this gets bigger as the security level of the pairing
increases

» However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

» For example for the BLS12-381 u = d201000000010000, for
the BLS48-581 curve u = 140000381.

How many bits in u?

» If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

» Clearly this gets bigger as the security level of the pairing
increases

» However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

» For example for the BLS12-381 u = d201000000010000, for
the BLS48-581 curve u = 140000381.

» So the Miller loop gets shorter, and in most cases of interest
loops less than about 64 times.

What does u look like?

> It turns out that since u is a system parameter it can often be
chosen to be extremely sparse.

What does u look like?

> It turns out that since u is a system parameter it can often be
chosen to be extremely sparse.

» Which brings obvious advantages, as the “if" clause in the
Miller algorithm will then rarely be executed.

What does u look like?

» It turns out that since v is a system parameter it can often be
chosen to be extremely sparse.

» Which brings obvious advantages, as the “if" clause in the
Miller algorithm will then rarely be executed.

» But this is not always the case. For example so-called MNT
curves arise from rare solutions to a Pell equation, in which
case we have little control over w.

What does u look like?

» It turns out that since v is a system parameter it can often be
chosen to be extremely sparse.

» Which brings obvious advantages, as the “if" clause in the
Miller algorithm will then rarely be executed.
» But this is not always the case. For example so-called MNT

curves arise from rare solutions to a Pell equation, in which
case we have little control over u.

» It also arises when the group order for the Tate pairing is
required to be a composite.

What does u look like?

» It turns out that since v is a system parameter it can often be
chosen to be extremely sparse.

» Which brings obvious advantages, as the “if" clause in the
Miller algorithm will then rarely be executed.
» But this is not always the case. For example so-called MNT

curves arise from rare solutions to a Pell equation, in which
case we have little control over u.

» It also arises when the group order for the Tate pairing is
required to be a composite.

» (I had rather hoped that David Freeman had saved us from
that. Then along came the isogenists...)

What happens to Q7

» The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

What happens to Q7

» The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

» In the case of the Tate pairing, u is the group order, so the
final value of T will be the point at infinity.

What happens to Q7

» The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

» In the case of the Tate pairing, u is the group order, so the
final value of T will be the point at infinity.

> So we get a “free” check that Q is of the correct order!

What happens to Q7

» The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

» In the case of the Tate pairing, u is the group order, so the
final value of T will be the point at infinity.

> So we get a “free” check that Q is of the correct order!

» Less obviously the free group order check on @ also applies to
the Ate pairing. See S. “A note on group membership tests
for G1, G2 and Gt on BLS pairing-friendly curves”.

Let's split the Miller loop in two

o G A W N =

AW N =

Algorithm 2: Calculate and store line functions

Input: Q € G,, P € Gy, curve parameter u
Output: An array g of |log,(u)] line functions € F
T+ Q
for i < |logy(u)] — 1 to 0 do

g[l] «— IT,T(P)y T« 2T

if u; =1 then

glil < glil-lto(P), T+ T+Q

return g

Algorithm 3: Intrinsic Miller loop

Input: An array g of [log,(u)] line functions € IF
Output: f € F«
f+1
for i + |log,(u)] — 1 to 0 do
f <+ f2.g[i]
return f

What's new?

» In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

What's new?

» In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

» Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

What's new?

» In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

» Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

» In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

What's new?

» In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

» Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

» In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

» So algorithm 2 will be executed for each of the pairings in a
multi-pairing. Since they all share the same u these
executions all take place in “lock-step”.

What's new?

» In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

» Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

» In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

» So algorithm 2 will be executed for each of the pairings in a

multi-pairing. Since they all share the same u these
executions all take place in “lock-step”.

» Algorithm 3 is only run once, independent of the number of
pairings. Which also applies to the final exponentiation.

Optimizations?

» Clearly not much can be done for algorithm 3.

Optimizations?

» Clearly not much can be done for algorithm 3.

» For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

Optimizations?

» Clearly not much can be done for algorithm 3.

» For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

» However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated

ing.

Optimizations?

» Clearly not much can be done for algorithm 3.

» For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

» However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated
ing.

P> Looked at in this way, it can be seen that the cost of the Miller
loop cannot be reduced below the requirement of algorithm 3.

Optimizations?

» Clearly not much can be done for algorithm 3.

» For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

» However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated
ing.

P> Looked at in this way, it can be seen that the cost of the Miller
loop cannot be reduced below the requirement of algorithm 3.

» Algorithm 2 on the other hand is rich in optimization
possibilities....

Optimizing Algorithm 2

» In a multi-pairing much depends on the provenance of Q.

Optimizing Algorithm 2

» In a multi-pairing much depends on the provenance of Q.

» For example if it were a constant, its multiples can be
precomputed and stored in affine coordinates

Optimizing Algorithm 2

» In a multi-pairing much depends on the provenance of Q.

» For example if it were a constant, its multiples can be
precomputed and stored in affine coordinates

» And using affine coordinates results in increased sparsity of
the line functions.

Optimizing Algorithm 2

» In a multi-pairing much depends on the provenance of Q.

» For example if it were a constant, its multiples can be
precomputed and stored in affine coordinates

» And using affine coordinates results in increased sparsity of
the line functions.

» So algorithm 2 can be carefully tuned to the particular context
of each individual pairing in a multi-pairing.

What about windowing...

P In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

What about windowing...

P In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

» So why not apply windowing to algorithm 17 This has an
interesting history...

What about windowing...

P In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

» So why not apply windowing to algorithm 17 This has an
interesting history...

» In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller's algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

What about windowing...

P In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

» So why not apply windowing to algorithm 17 This has an
interesting history...

» In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller's algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

» But whereas the application to the multiplication of Q by u is
standard, the impact on the line functions is not entirely
obvious.

What about windowing...

P In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

» So why not apply windowing to algorithm 17 This has an
interesting history...

» In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller's algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

» But whereas the application to the multiplication of Q by u is
standard, the impact on the line functions is not entirely
obvious.

» The first implementation was | believe by myself, as
mentioned in the pre-print S. [2005] “Scaling security in
pairing-based protocols”

Let's window

» The details were soon after worked out and published by
Kobayishi et al. [2006] " Efficient Algorithms for Tate pairing”.

Let's window

» The details were soon after worked out and published by
Kobayishi et al. [2006] " Efficient Algorithms for Tate pairing”.

» The performance benefits were researched in greater detail in
the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted O citations, so | think its fair to say
that these results are not widely known)

Let's window

| 2

>

The details were soon after worked out and published by
Kobayishi et al. [2006] " Efficient Algorithms for Tate pairing”.
The performance benefits were researched in greater detail in
the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted O citations, so | think its fair to say
that these results are not widely known)

Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

Let's window

| 2

>

The details were soon after worked out and published by
Kobayishi et al. [2006] " Efficient Algorithms for Tate pairing”.
The performance benefits were researched in greater detail in
the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted O citations, so | think its fair to say
that these results are not widely known)

Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

We can exploit the fact that negation of elliptic curve points
cost nothing. Similarly inversion of line functions cost little, as
inversion can be replaced by conjugation (DE).

Let's window

| 2

>

The details were soon after worked out and published by
Kobayishi et al. [2006] " Efficient Algorithms for Tate pairing”.
The performance benefits were researched in greater detail in
the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted O citations, so | think its fair to say
that these results are not widely known)

Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

We can exploit the fact that negation of elliptic curve points
cost nothing. Similarly inversion of line functions cost little, as
inversion can be replaced by conjugation (DE).

Hence a windowing strategy based on a NAF (Non-Adjacent
Form) is appropriate. Since u is a public parameter
constant-time considerations are not an issue, hence a
sliding-windows algorithm can be used.

Line functions

» The key identity that arises from divisor theory is
firj = fifiliQ jo(P), with fi = 1.

Line functions

» The key identity that arises from divisor theory is
f,'+j = f,'fJ'/,'QJQ(P), with f; = 1.

» To minimize algorithmic clutter, we will drop the fixed
parameter (P)

Line functions

» The key identity that arises from divisor theory is
fiyj= f,'fj/,'QJQ(P), with f; = 1.

» To minimize algorithmic clutter, we will drop the fixed
parameter (P)

» For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fmz-lmQ,mQ

fmr1 = fm-ImQ,Q

Line functions

» The key identity that arises from divisor theory is
fiyj= f,'fj/,'QJQ(P), with f; = 1.

» To minimize algorithmic clutter, we will drop the fixed
parameter (P)

» For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fmz-lmQ,mQ
fmr1 = fm-ImQ,Q

» Observe that the “squaring” step is more expensive than the
“multiply” step.

Line functions

| 4

>

>

The key identity that arises from divisor theory is
fiyj= f,'fj/,'QJQ(P), with f; = 1.

To minimize algorithmic clutter, we will drop the fixed
parameter (P)

For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fmz-lmQ,mQ
fmr1 = fm-ImQ,Q

Observe that the “squaring” step is more expensive than the
“multiply” step.

Which is bad news, as windowing (which reduces the number
of multiplies) works best when squaring is cheaper.

Working out the details

» Consider the case where two set bits of u are being
processed... Instead of calculating

f2m = fm2-/mQ,mQ
f2m+1 = f2m'/2mQ,Q
famio = foms12./

m+2 2m+1 -2mQ+Q,2mQ+Q
fam+3 = fam12-lamQ+2Q,Q

Working out the details

» Consider the case where two set bits of u are being
processed... Instead of calculating

f2m = fm2-/mQ,mQ
f2m+1 = F2m'/2mQ,Q

1
famso = Fomy12.} S
m+2 2m+1 -2mQ+Q,2mQ+Q
fam+3 = fam12-lamQ+2Q,Q
» We will calculate
f2m - fmz-lmQ,mQ
f4m - f2m2-l2mQ,2mQ (2)

f;1m+3 = f4m-l4mQ,3Q- f3

Working out the details

» Consider the case where two set bits of u are being
processed... Instead of calculating

f2m = fm2-/mQ,mQ
f2m+1 = F2m'/2mQ,Q
fami2 = fomy12.}

m-+42 2m+1 -2mQ+Q.2mQ+Q
fam+3 = fam12-lamQ+2Q,Q

» We will calculate

f2m = fmz-lmQ,mQ
f4m - f2m2-l2mQ,2mQ

f;1m+3 = f4m-l4mQ,3Q- f3

» which will require the precomputation of 3Q and f3

Getting ready for a NAF

> It is also easy to show that

f8mf3 = f8m~l8mQ,—3Q/f3

Getting ready for a NAF

> It is also easy to show that

fémf3 = fém~l8mQ,—3Q/f3
» which due to DE can be replaced by

fam—3 = fom-lem@.—30-K

Getting ready for a NAF

> It is also easy to show that

fémf3 = fém~l8mQ,—3Q/f3
» which due to DE can be replaced by

fam—3 = fom-lem@.—30-K

P> Extending the idea, a sliding window of size w bits will require
the precomputation of a table E of size M, containing the
precomputed points Q,3Q,..(2M — 1)Q and a table F
containing fi, f3,..fops—1, where Fp = 1 = 1.

Precomputation

» The line function table is precomputed as

F = Fifl'/Q,Q./E,-,2Q

Precomputation

» The line function table is precomputed as

Fi=Fi—1.19,0., 20
» and the table size M is

M=1+ z(Wl—l)/2 22i—(w mod 2)

=

Precomputation

» The line function table is precomputed as

» and the table size M is

M=1+ 252/1_1)/2 22i—(w mod 2)
» To facilitate the sliding window, assume a function
naf _window, which given s = 3u @ u (the bit-by-bit exclusive
or) and a pointer /i to the current bit position scans bits from
left-to-right returning the tuple {n, b, z} where n is the odd
signed window value, b is the number of bits processed and z
is the number of subsequent zero bits.

Windowed Miller Loop

Algorithm 4: Windowed Miller Loop for Tate pairing

Input: P € G1, Q € Gy, curve parameter u
Output: f €]Fpk

1 f+1

2 T+ P

3 s+ 3udu

4 i< [logy(u)]

5 while i > 0 do

6 n, b, z +— naf_windou(s, i)

7 forj < Otobdo

8 f fPUr g, T+ 2T
9

if n > 0 then
10 f < fr Elny2)-FIn/2l, T <= T + E[n/2]
1 if n < 0 then
12 f fir _pn/y-Fl=n/2], T < T — E[-n/2]
13 forj < Otozdo
1 f f2Ur g, T+ 2T
15 i—i—b—z

16 return f

Thoughts

P> Again the loop can be “split”, and the contribution of the line
functions accumulated and stored, one for each window.

Thoughts

P> Again the loop can be “split”, and the contribution of the line
functions accumulated and stored, one for each window.

» The accumulated outputs from a multi-pairing could finally be
fed into something like our algorithm 3, where the loop length
would be shortened to the number of windows required for a
particular w.

Thoughts

P> Again the loop can be “split”, and the contribution of the line
functions accumulated and stored, one for each window.

» The accumulated outputs from a multi-pairing could finally be
fed into something like our algorithm 3, where the loop length
would be shortened to the number of windows required for a
particular w.

» We omit the details

Bottom line

P> For a Tate pairing over a 1024-bit supersingular curve with
embedding degree k = 2, where the group order is a 1022-bit
RSA public key, we find that the optimal window size is
between 5 and 6. The performance improvement from using a
window of size 5 is approximately 8%.

Bottom line

P> For a Tate pairing over a 1024-bit supersingular curve with
embedding degree k = 2, where the group order is a 1022-bit
RSA public key, we find that the optimal window size is
between 5 and 6. The performance improvement from using a
window of size 5 is approximately 8%.

» For the Tate pairing on a 160-bit MNT k = 6 curve we find
that the the optimal window size is 3. The performance
improvement to be expected is about 3%. For the Ate pairing
over the same curve again the optimal window size is 3, but
improvement is a nearly negligible 1%. Clearly the larger the
exponent, the greater the gains to be expected from
windowing.

Any Questions?

> Any questions?

Any Questions?

» Any questions?
» Thank you for your attention.

