
Efficiently computing a pairing: Tricks old and
new.

Michael Scott

tii.ae
July 2023

Implementing Pairing-Based Cryptography

▶ We denote a pairing as g = e(P,Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

▶ All these groups are of the same order r . The field extension
is denoted k , a.k.a. the embedding degree.

▶ There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

▶ The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

▶ For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

▶ In this talk we will focus attention on the Miller loop, and
assume either the Tate or Ate pairing.

Implementing Pairing-Based Cryptography

▶ We denote a pairing as g = e(P,Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

▶ All these groups are of the same order r . The field extension
is denoted k , a.k.a. the embedding degree.

▶ There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

▶ The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

▶ For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

▶ In this talk we will focus attention on the Miller loop, and
assume either the Tate or Ate pairing.

Implementing Pairing-Based Cryptography

▶ We denote a pairing as g = e(P,Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

▶ All these groups are of the same order r . The field extension
is denoted k , a.k.a. the embedding degree.

▶ There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

▶ The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

▶ For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

▶ In this talk we will focus attention on the Miller loop, and
assume either the Tate or Ate pairing.

Implementing Pairing-Based Cryptography

▶ We denote a pairing as g = e(P,Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

▶ All these groups are of the same order r . The field extension
is denoted k , a.k.a. the embedding degree.

▶ There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

▶ The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

▶ For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

▶ In this talk we will focus attention on the Miller loop, and
assume either the Tate or Ate pairing.

Implementing Pairing-Based Cryptography

▶ We denote a pairing as g = e(P,Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

▶ All these groups are of the same order r . The field extension
is denoted k , a.k.a. the embedding degree.

▶ There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

▶ The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

▶ For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

▶ In this talk we will focus attention on the Miller loop, and
assume either the Tate or Ate pairing.

Implementing Pairing-Based Cryptography

▶ We denote a pairing as g = e(P,Q), where P is in one elliptic
curve group, Q is in another elliptic curve group, and g is a
group over a finite extension field.

▶ All these groups are of the same order r . The field extension
is denoted k , a.k.a. the embedding degree.

▶ There are different types of pairing (Tate, Ate, Weil...).
Useful pairings are based on either supersingular curves (type
1, limited choice of k), or special pairing-friendly curves (type
3, unlimited k).

▶ The typical structure of a pairing implementation is a Miller
loop, followed by a final exponentiation. These can each in
turn be subdivided into smaller steps.

▶ For example the final exponentiation can be divided into an
“easy” part and a “hard” part.

▶ In this talk we will focus attention on the Miller loop, and
assume either the Tate or Ate pairing.

The Miller Loop

Algorithm 1: Miller loop

Input: Q ∈ G2, P ∈ G1, curve parameter u
Output: f ∈ Fpk

1 f ← 1
2 T ← Q
3 for i ← ⌊log2(u)⌋ − 1 to 0 do
4 f ← f 2.lT ,T (P), T ← 2T
5 if ui = 1 then
6 f ← f .lT ,Q(P), T ← T + Q

7 return f

What is going on?

▶ The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

▶ The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

▶ Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

▶ The line functions are often sparse elements ∈ Fpk

▶ Important to observe that u is a fixed system parameter, and
not a variable.

▶ As described we are assuming denominator elimination (DE)
applies, Barreto et al. [2002],

What is going on?

▶ The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

▶ The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

▶ Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

▶ The line functions are often sparse elements ∈ Fpk

▶ Important to observe that u is a fixed system parameter, and
not a variable.

▶ As described we are assuming denominator elimination (DE)
applies, Barreto et al. [2002],

What is going on?

▶ The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

▶ The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

▶ Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

▶ The line functions are often sparse elements ∈ Fpk

▶ Important to observe that u is a fixed system parameter, and
not a variable.

▶ As described we are assuming denominator elimination (DE)
applies, Barreto et al. [2002],

What is going on?

▶ The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

▶ The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

▶ Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

▶ The line functions are often sparse elements ∈ Fpk

▶ Important to observe that u is a fixed system parameter, and
not a variable.

▶ As described we are assuming denominator elimination (DE)
applies, Barreto et al. [2002],

What is going on?

▶ The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

▶ The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

▶ Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

▶ The line functions are often sparse elements ∈ Fpk

▶ Important to observe that u is a fixed system parameter, and
not a variable.

▶ As described we are assuming denominator elimination (DE)
applies, Barreto et al. [2002],

What is going on?

▶ The point Q is undergoing a classic left-to-right
double-and-add point multiplication by u. The point P is
fixed.

▶ The line function is undergoing something rather like a
left-to-right square-and-multiply algorithm. But not quite!

▶ Every time around the loop f is being squared and multiplied
by a line function, once, maybe twice.

▶ The line functions are often sparse elements ∈ Fpk

▶ Important to observe that u is a fixed system parameter, and
not a variable.

▶ As described we are assuming denominator elimination (DE)
applies, Barreto et al. [2002],

How many bits in u?

▶ If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

▶ Clearly this gets bigger as the security level of the pairing
increases

▶ However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

▶ For example for the BLS12-381 u = d201000000010000, for
the BLS48-581 curve u = 140000381.

▶ So the Miller loop gets shorter, and in most cases of interest
loops less than about 64 times.

How many bits in u?

▶ If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

▶ Clearly this gets bigger as the security level of the pairing
increases

▶ However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

▶ For example for the BLS12-381 u = d201000000010000, for
the BLS48-581 curve u = 140000381.

▶ So the Miller loop gets shorter, and in most cases of interest
loops less than about 64 times.

How many bits in u?

▶ If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

▶ Clearly this gets bigger as the security level of the pairing
increases

▶ However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

▶ For example for the BLS12-381 u = d201000000010000, for
the BLS48-581 curve u = 140000381.

▶ So the Miller loop gets shorter, and in most cases of interest
loops less than about 64 times.

How many bits in u?

▶ If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

▶ Clearly this gets bigger as the security level of the pairing
increases

▶ However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

▶ For example for the BLS12-381 u = d201000000010000, for
the BLS48-581 curve u = 140000381.

▶ So the Miller loop gets shorter, and in most cases of interest
loops less than about 64 times.

How many bits in u?

▶ If the pairing in question is the Tate pairing, then the curve
parameter u is simply the group order.

▶ Clearly this gets bigger as the security level of the pairing
increases

▶ However for the Ate pairing, rather counter-intuitively, the
parameter u actually decreases with increased security.

▶ For example for the BLS12-381 u = d201000000010000, for
the BLS48-581 curve u = 140000381.

▶ So the Miller loop gets shorter, and in most cases of interest
loops less than about 64 times.

What does u look like?

▶ It turns out that since u is a system parameter it can often be
chosen to be extremely sparse.

▶ Which brings obvious advantages, as the “if” clause in the
Miller algorithm will then rarely be executed.

▶ But this is not always the case. For example so-called MNT
curves arise from rare solutions to a Pell equation, in which
case we have little control over u.

▶ It also arises when the group order for the Tate pairing is
required to be a composite.

▶ (I had rather hoped that David Freeman had saved us from
that. Then along came the isogenists...)

What does u look like?

▶ It turns out that since u is a system parameter it can often be
chosen to be extremely sparse.

▶ Which brings obvious advantages, as the “if” clause in the
Miller algorithm will then rarely be executed.

▶ But this is not always the case. For example so-called MNT
curves arise from rare solutions to a Pell equation, in which
case we have little control over u.

▶ It also arises when the group order for the Tate pairing is
required to be a composite.

▶ (I had rather hoped that David Freeman had saved us from
that. Then along came the isogenists...)

What does u look like?

▶ It turns out that since u is a system parameter it can often be
chosen to be extremely sparse.

▶ Which brings obvious advantages, as the “if” clause in the
Miller algorithm will then rarely be executed.

▶ But this is not always the case. For example so-called MNT
curves arise from rare solutions to a Pell equation, in which
case we have little control over u.

▶ It also arises when the group order for the Tate pairing is
required to be a composite.

▶ (I had rather hoped that David Freeman had saved us from
that. Then along came the isogenists...)

What does u look like?

▶ It turns out that since u is a system parameter it can often be
chosen to be extremely sparse.

▶ Which brings obvious advantages, as the “if” clause in the
Miller algorithm will then rarely be executed.

▶ But this is not always the case. For example so-called MNT
curves arise from rare solutions to a Pell equation, in which
case we have little control over u.

▶ It also arises when the group order for the Tate pairing is
required to be a composite.

▶ (I had rather hoped that David Freeman had saved us from
that. Then along came the isogenists...)

What does u look like?

▶ It turns out that since u is a system parameter it can often be
chosen to be extremely sparse.

▶ Which brings obvious advantages, as the “if” clause in the
Miller algorithm will then rarely be executed.

▶ But this is not always the case. For example so-called MNT
curves arise from rare solutions to a Pell equation, in which
case we have little control over u.

▶ It also arises when the group order for the Tate pairing is
required to be a composite.

▶ (I had rather hoped that David Freeman had saved us from
that. Then along came the isogenists...)

What happens to Q?

▶ The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

▶ In the case of the Tate pairing, u is the group order, so the
final value of T will be the point at infinity.

▶ So we get a “free” check that Q is of the correct order!

▶ Less obviously the free group order check on Q also applies to
the Ate pairing. See S. “A note on group membership tests
for G1, G2 and GT on BLS pairing-friendly curves”.

What happens to Q?

▶ The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

▶ In the case of the Tate pairing, u is the group order, so the
final value of T will be the point at infinity.

▶ So we get a “free” check that Q is of the correct order!

▶ Less obviously the free group order check on Q also applies to
the Ate pairing. See S. “A note on group membership tests
for G1, G2 and GT on BLS pairing-friendly curves”.

What happens to Q?

▶ The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

▶ In the case of the Tate pairing, u is the group order, so the
final value of T will be the point at infinity.

▶ So we get a “free” check that Q is of the correct order!

▶ Less obviously the free group order check on Q also applies to
the Ate pairing. See S. “A note on group membership tests
for G1, G2 and GT on BLS pairing-friendly curves”.

What happens to Q?

▶ The point Q is in effect multiplied by u, at the end of the
loop T = uQ.

▶ In the case of the Tate pairing, u is the group order, so the
final value of T will be the point at infinity.

▶ So we get a “free” check that Q is of the correct order!

▶ Less obviously the free group order check on Q also applies to
the Ate pairing. See S. “A note on group membership tests
for G1, G2 and GT on BLS pairing-friendly curves”.

Let’s split the Miller loop in two

Algorithm 2: Calculate and store line functions

Input: Q ∈ G2, P ∈ G1, curve parameter u
Output: An array g of ⌊log2(u)⌋ line functions ∈ Fpk

1 T ← Q
2 for i ← ⌊log2(u)⌋ − 1 to 0 do
3 g [i]← lT ,T (P), T ← 2T
4 if ui = 1 then
5 g [i]← g [i].lT ,Q(P), T ← T + Q

6 return g

Algorithm 3: Intrinsic Miller loop

Input: An array g of ⌊log2(u)⌋ line functions ∈ Fpk

Output: f ∈ Fpk

1 f ← 1
2 for i ← ⌊log2(u)⌋ − 1 to 0 do
3 f ← f 2.g [i]
4 return f

What’s new?

▶ In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

▶ Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

▶ In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

▶ So algorithm 2 will be executed for each of the pairings in a
multi-pairing. Since they all share the same u these
executions all take place in “lock-step”.

▶ Algorithm 3 is only run once, independent of the number of
pairings. Which also applies to the final exponentiation.

What’s new?

▶ In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

▶ Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

▶ In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

▶ So algorithm 2 will be executed for each of the pairings in a
multi-pairing. Since they all share the same u these
executions all take place in “lock-step”.

▶ Algorithm 3 is only run once, independent of the number of
pairings. Which also applies to the final exponentiation.

What’s new?

▶ In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

▶ Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

▶ In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

▶ So algorithm 2 will be executed for each of the pairings in a
multi-pairing. Since they all share the same u these
executions all take place in “lock-step”.

▶ Algorithm 3 is only run once, independent of the number of
pairings. Which also applies to the final exponentiation.

What’s new?

▶ In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

▶ Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

▶ In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

▶ So algorithm 2 will be executed for each of the pairings in a
multi-pairing. Since they all share the same u these
executions all take place in “lock-step”.

▶ Algorithm 3 is only run once, independent of the number of
pairings. Which also applies to the final exponentiation.

What’s new?

▶ In algorithm 2 the line functions are precalculated and stored.
The amount of storage required is modest.

▶ Note that for a single pairing the computation required is
identical to that required by the original Miller loop.

▶ In a multi-pairing context all of the line functions for each of
the pairings can be accumulated into a single g array.

▶ So algorithm 2 will be executed for each of the pairings in a
multi-pairing. Since they all share the same u these
executions all take place in “lock-step”.

▶ Algorithm 3 is only run once, independent of the number of
pairings. Which also applies to the final exponentiation.

Optimizations?

▶ Clearly not much can be done for algorithm 3.

▶ For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

▶ However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated
in g .

▶ Looked at in this way, it can be seen that the cost of the Miller
loop cannot be reduced below the requirement of algorithm 3.

▶ Algorithm 2 on the other hand is rich in optimization
possibilities....

Optimizations?

▶ Clearly not much can be done for algorithm 3.

▶ For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

▶ However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated
in g .

▶ Looked at in this way, it can be seen that the cost of the Miller
loop cannot be reduced below the requirement of algorithm 3.

▶ Algorithm 2 on the other hand is rich in optimization
possibilities....

Optimizations?

▶ Clearly not much can be done for algorithm 3.

▶ For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

▶ However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated
in g .

▶ Looked at in this way, it can be seen that the cost of the Miller
loop cannot be reduced below the requirement of algorithm 3.

▶ Algorithm 2 on the other hand is rich in optimization
possibilities....

Optimizations?

▶ Clearly not much can be done for algorithm 3.

▶ For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

▶ However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated
in g .

▶ Looked at in this way, it can be seen that the cost of the Miller
loop cannot be reduced below the requirement of algorithm 3.

▶ Algorithm 2 on the other hand is rich in optimization
possibilities....

Optimizations?

▶ Clearly not much can be done for algorithm 3.

▶ For a single pairing, the sparsity of g elements can be
exploited in algorithm 2.

▶ However in a multi-pairing context such sparsity is quickly
wiped out as contributions from algorithm 2 are accumulated
in g .

▶ Looked at in this way, it can be seen that the cost of the Miller
loop cannot be reduced below the requirement of algorithm 3.

▶ Algorithm 2 on the other hand is rich in optimization
possibilities....

Optimizing Algorithm 2

▶ In a multi-pairing much depends on the provenance of Q.

▶ For example if it were a constant, its multiples can be
precomputed and stored in affine coordinates

▶ And using affine coordinates results in increased sparsity of
the line functions.

▶ So algorithm 2 can be carefully tuned to the particular context
of each individual pairing in a multi-pairing.

Optimizing Algorithm 2

▶ In a multi-pairing much depends on the provenance of Q.

▶ For example if it were a constant, its multiples can be
precomputed and stored in affine coordinates

▶ And using affine coordinates results in increased sparsity of
the line functions.

▶ So algorithm 2 can be carefully tuned to the particular context
of each individual pairing in a multi-pairing.

Optimizing Algorithm 2

▶ In a multi-pairing much depends on the provenance of Q.

▶ For example if it were a constant, its multiples can be
precomputed and stored in affine coordinates

▶ And using affine coordinates results in increased sparsity of
the line functions.

▶ So algorithm 2 can be carefully tuned to the particular context
of each individual pairing in a multi-pairing.

Optimizing Algorithm 2

▶ In a multi-pairing much depends on the provenance of Q.

▶ For example if it were a constant, its multiples can be
precomputed and stored in affine coordinates

▶ And using affine coordinates results in increased sparsity of
the line functions.

▶ So algorithm 2 can be carefully tuned to the particular context
of each individual pairing in a multi-pairing.

What about windowing...

▶ In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

▶ So why not apply windowing to algorithm 1? This has an
interesting history...

▶ In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller’s algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

▶ But whereas the application to the multiplication of Q by u is
standard, the impact on the line functions is not entirely
obvious.

▶ The first implementation was I believe by myself, as
mentioned in the pre-print S. [2005] “Scaling security in
pairing-based protocols”

What about windowing...

▶ In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

▶ So why not apply windowing to algorithm 1? This has an
interesting history...

▶ In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller’s algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

▶ But whereas the application to the multiplication of Q by u is
standard, the impact on the line functions is not entirely
obvious.

▶ The first implementation was I believe by myself, as
mentioned in the pre-print S. [2005] “Scaling security in
pairing-based protocols”

What about windowing...

▶ In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

▶ So why not apply windowing to algorithm 1? This has an
interesting history...

▶ In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller’s algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

▶ But whereas the application to the multiplication of Q by u is
standard, the impact on the line functions is not entirely
obvious.

▶ The first implementation was I believe by myself, as
mentioned in the pre-print S. [2005] “Scaling security in
pairing-based protocols”

What about windowing...

▶ In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

▶ So why not apply windowing to algorithm 1? This has an
interesting history...

▶ In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller’s algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

▶ But whereas the application to the multiplication of Q by u is
standard, the impact on the line functions is not entirely
obvious.

▶ The first implementation was I believe by myself, as
mentioned in the pre-print S. [2005] “Scaling security in
pairing-based protocols”

What about windowing...

▶ In the context where u is not sparse, it would seem obvious to
deploy a windowing algorithm, as commonly used in a
double-and-add context.

▶ So why not apply windowing to algorithm 1? This has an
interesting history...

▶ In a very early paper on pairings by Galbraith et al [2002] it
was stated in the context of windowing Miller’s algorithm that
“The methods are completely standard... and it is not
neessary to repeat them here”.

▶ But whereas the application to the multiplication of Q by u is
standard, the impact on the line functions is not entirely
obvious.

▶ The first implementation was I believe by myself, as
mentioned in the pre-print S. [2005] “Scaling security in
pairing-based protocols”

Let’s window
▶ The details were soon after worked out and published by

Kobayishi et al. [2006] ”Efficient Algorithms for Tate pairing”.

▶ The performance benefits were researched in greater detail in
the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted 0 citations, so I think its fair to say
that these results are not widely known)

▶ Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

▶ We can exploit the fact that negation of elliptic curve points
cost nothing. Similarly inversion of line functions cost little, as
inversion can be replaced by conjugation (DE).

▶ Hence a windowing strategy based on a NAF (Non-Adjacent
Form) is appropriate. Since u is a public parameter
constant-time considerations are not an issue, hence a
sliding-windows algorithm can be used.

Let’s window
▶ The details were soon after worked out and published by

Kobayishi et al. [2006] ”Efficient Algorithms for Tate pairing”.
▶ The performance benefits were researched in greater detail in

the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted 0 citations, so I think its fair to say
that these results are not widely known)

▶ Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

▶ We can exploit the fact that negation of elliptic curve points
cost nothing. Similarly inversion of line functions cost little, as
inversion can be replaced by conjugation (DE).

▶ Hence a windowing strategy based on a NAF (Non-Adjacent
Form) is appropriate. Since u is a public parameter
constant-time considerations are not an issue, hence a
sliding-windows algorithm can be used.

Let’s window
▶ The details were soon after worked out and published by

Kobayishi et al. [2006] ”Efficient Algorithms for Tate pairing”.
▶ The performance benefits were researched in greater detail in

the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted 0 citations, so I think its fair to say
that these results are not widely known)

▶ Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

▶ We can exploit the fact that negation of elliptic curve points
cost nothing. Similarly inversion of line functions cost little, as
inversion can be replaced by conjugation (DE).

▶ Hence a windowing strategy based on a NAF (Non-Adjacent
Form) is appropriate. Since u is a public parameter
constant-time considerations are not an issue, hence a
sliding-windows algorithm can be used.

Let’s window
▶ The details were soon after worked out and published by

Kobayishi et al. [2006] ”Efficient Algorithms for Tate pairing”.
▶ The performance benefits were researched in greater detail in

the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted 0 citations, so I think its fair to say
that these results are not widely known)

▶ Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

▶ We can exploit the fact that negation of elliptic curve points
cost nothing. Similarly inversion of line functions cost little, as
inversion can be replaced by conjugation (DE).

▶ Hence a windowing strategy based on a NAF (Non-Adjacent
Form) is appropriate. Since u is a public parameter
constant-time considerations are not an issue, hence a
sliding-windows algorithm can be used.

Let’s window
▶ The details were soon after worked out and published by

Kobayishi et al. [2006] ”Efficient Algorithms for Tate pairing”.
▶ The performance benefits were researched in greater detail in

the paper by Kiyomura and Takagi [2012] “Efficient Algorithm
for Tate Pairing of Composite Order” (which is behind a
pay-wall, has attracted 0 citations, so I think its fair to say
that these results are not widely known)

▶ Indeed an early paper appeared to overlook the possible
benefits of windowing when applied to composite order
pairings (Guillevic [2013] “Comparing the pairing efficiency
over composite order and prime order elliptic curves”)

▶ We can exploit the fact that negation of elliptic curve points
cost nothing. Similarly inversion of line functions cost little, as
inversion can be replaced by conjugation (DE).

▶ Hence a windowing strategy based on a NAF (Non-Adjacent
Form) is appropriate. Since u is a public parameter
constant-time considerations are not an issue, hence a
sliding-windows algorithm can be used.

Line functions

▶ The key identity that arises from divisor theory is
fi+j = fi fj liQ,jQ(P), with f1 = 1.

▶ To minimize algorithmic clutter, we will drop the fixed
parameter (P)

▶ For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fm
2.lmQ,mQ

fm+1 = fm.lmQ,Q

▶ Observe that the “squaring” step is more expensive than the
“multiply” step.

▶ Which is bad news, as windowing (which reduces the number
of multiplies) works best when squaring is cheaper.

Line functions

▶ The key identity that arises from divisor theory is
fi+j = fi fj liQ,jQ(P), with f1 = 1.

▶ To minimize algorithmic clutter, we will drop the fixed
parameter (P)

▶ For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fm
2.lmQ,mQ

fm+1 = fm.lmQ,Q

▶ Observe that the “squaring” step is more expensive than the
“multiply” step.

▶ Which is bad news, as windowing (which reduces the number
of multiplies) works best when squaring is cheaper.

Line functions

▶ The key identity that arises from divisor theory is
fi+j = fi fj liQ,jQ(P), with f1 = 1.

▶ To minimize algorithmic clutter, we will drop the fixed
parameter (P)

▶ For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fm
2.lmQ,mQ

fm+1 = fm.lmQ,Q

▶ Observe that the “squaring” step is more expensive than the
“multiply” step.

▶ Which is bad news, as windowing (which reduces the number
of multiplies) works best when squaring is cheaper.

Line functions

▶ The key identity that arises from divisor theory is
fi+j = fi fj liQ,jQ(P), with f1 = 1.

▶ To minimize algorithmic clutter, we will drop the fixed
parameter (P)

▶ For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fm
2.lmQ,mQ

fm+1 = fm.lmQ,Q

▶ Observe that the “squaring” step is more expensive than the
“multiply” step.

▶ Which is bad news, as windowing (which reduces the number
of multiplies) works best when squaring is cheaper.

Line functions

▶ The key identity that arises from divisor theory is
fi+j = fi fj liQ,jQ(P), with f1 = 1.

▶ To minimize algorithmic clutter, we will drop the fixed
parameter (P)

▶ For use in a double-and-add left-to-right context we will
consider this identity in two particular cases

fm+m = fm
2.lmQ,mQ

fm+1 = fm.lmQ,Q

▶ Observe that the “squaring” step is more expensive than the
“multiply” step.

▶ Which is bad news, as windowing (which reduces the number
of multiplies) works best when squaring is cheaper.

Working out the details

▶ Consider the case where two set bits of u are being
processed... Instead of calculating

f2m = fm
2.lmQ,mQ

f2m+1 = f2m.l2mQ,Q

f4m+2 = f2m+1
2.l2mQ+Q,2mQ+Q

f4m+3 = f4m+2.l4mQ+2Q,Q

(1)

▶ We will calculate

f2m = fm
2.lmQ,mQ

f4m = f2m
2.l2mQ,2mQ

f4m+3 = f4m.l4mQ,3Q .f3

(2)

▶ which will require the precomputation of 3Q and f3

Working out the details

▶ Consider the case where two set bits of u are being
processed... Instead of calculating

f2m = fm
2.lmQ,mQ

f2m+1 = f2m.l2mQ,Q

f4m+2 = f2m+1
2.l2mQ+Q,2mQ+Q

f4m+3 = f4m+2.l4mQ+2Q,Q

(1)

▶ We will calculate

f2m = fm
2.lmQ,mQ

f4m = f2m
2.l2mQ,2mQ

f4m+3 = f4m.l4mQ,3Q .f3

(2)

▶ which will require the precomputation of 3Q and f3

Working out the details

▶ Consider the case where two set bits of u are being
processed... Instead of calculating

f2m = fm
2.lmQ,mQ

f2m+1 = f2m.l2mQ,Q

f4m+2 = f2m+1
2.l2mQ+Q,2mQ+Q

f4m+3 = f4m+2.l4mQ+2Q,Q

(1)

▶ We will calculate

f2m = fm
2.lmQ,mQ

f4m = f2m
2.l2mQ,2mQ

f4m+3 = f4m.l4mQ,3Q .f3

(2)

▶ which will require the precomputation of 3Q and f3

Getting ready for a NAF

▶ It is also easy to show that

f8m−3 = f8m.l8mQ,−3Q/f3

▶ which due to DE can be replaced by

f8m−3 = f8m.l8mQ,−3Q .f̄3

▶ Extending the idea, a sliding window of size w bits will require
the precomputation of a table E of size M, containing the
precomputed points Q, 3Q, ..(2M − 1)Q and a table F
containing f1, f3, ..f2M−1, where F0 = f1 = 1.

Getting ready for a NAF

▶ It is also easy to show that

f8m−3 = f8m.l8mQ,−3Q/f3

▶ which due to DE can be replaced by

f8m−3 = f8m.l8mQ,−3Q .f̄3

▶ Extending the idea, a sliding window of size w bits will require
the precomputation of a table E of size M, containing the
precomputed points Q, 3Q, ..(2M − 1)Q and a table F
containing f1, f3, ..f2M−1, where F0 = f1 = 1.

Getting ready for a NAF

▶ It is also easy to show that

f8m−3 = f8m.l8mQ,−3Q/f3

▶ which due to DE can be replaced by

f8m−3 = f8m.l8mQ,−3Q .f̄3

▶ Extending the idea, a sliding window of size w bits will require
the precomputation of a table E of size M, containing the
precomputed points Q, 3Q, ..(2M − 1)Q and a table F
containing f1, f3, ..f2M−1, where F0 = f1 = 1.

Precomputation

▶ The line function table is precomputed as

Fi = Fi−1.lQ,Q .lEi ,2Q

▶ and the table size M is

M = 1 + Σ
(w−1)/2
i=1 22i−(w mod 2)

▶ To facilitate the sliding window, assume a function
naf window, which given s = 3u ⊕ u (the bit-by-bit exclusive
or) and a pointer i to the current bit position scans bits from
left-to-right returning the tuple {n, b, z} where n is the odd
signed window value, b is the number of bits processed and z
is the number of subsequent zero bits.

Precomputation

▶ The line function table is precomputed as

Fi = Fi−1.lQ,Q .lEi ,2Q

▶ and the table size M is

M = 1 + Σ
(w−1)/2
i=1 22i−(w mod 2)

▶ To facilitate the sliding window, assume a function
naf window, which given s = 3u ⊕ u (the bit-by-bit exclusive
or) and a pointer i to the current bit position scans bits from
left-to-right returning the tuple {n, b, z} where n is the odd
signed window value, b is the number of bits processed and z
is the number of subsequent zero bits.

Precomputation

▶ The line function table is precomputed as

Fi = Fi−1.lQ,Q .lEi ,2Q

▶ and the table size M is

M = 1 + Σ
(w−1)/2
i=1 22i−(w mod 2)

▶ To facilitate the sliding window, assume a function
naf window, which given s = 3u ⊕ u (the bit-by-bit exclusive
or) and a pointer i to the current bit position scans bits from
left-to-right returning the tuple {n, b, z} where n is the odd
signed window value, b is the number of bits processed and z
is the number of subsequent zero bits.

Windowed Miller Loop

Algorithm 4: Windowed Miller Loop for Tate pairing
Input: P ∈ G1, Q ∈ G2, curve parameter u
Output: f ∈ F

pk

1 f ← 1
2 T ← P
3 s ← 3u ⊕ u
4 i ← ⌊log2(u)⌋
5 while i > 0 do
6 n, b, z ← naf window(s, i)
7 for j ← 0 to b do

8 f ← f 2.lT,T , T ← 2T

9 if n > 0 then
10 f ← f .lT,E [n/2].F [n/2], T ← T + E [n/2]

11 if n < 0 then

12 f ← f .lT,−E [−n/2].F [−n/2], T ← T − E [−n/2]

13 for j ← 0 to z do

14 f ← f 2.lT,T , T ← 2T

15 i ← i − b − z

16 return f

Thoughts

▶ Again the loop can be “split”, and the contribution of the line
functions accumulated and stored, one for each window.

▶ The accumulated outputs from a multi-pairing could finally be
fed into something like our algorithm 3, where the loop length
would be shortened to the number of windows required for a
particular u.

▶ We omit the details

Thoughts

▶ Again the loop can be “split”, and the contribution of the line
functions accumulated and stored, one for each window.

▶ The accumulated outputs from a multi-pairing could finally be
fed into something like our algorithm 3, where the loop length
would be shortened to the number of windows required for a
particular u.

▶ We omit the details

Thoughts

▶ Again the loop can be “split”, and the contribution of the line
functions accumulated and stored, one for each window.

▶ The accumulated outputs from a multi-pairing could finally be
fed into something like our algorithm 3, where the loop length
would be shortened to the number of windows required for a
particular u.

▶ We omit the details

Bottom line

▶ For a Tate pairing over a 1024-bit supersingular curve with
embedding degree k = 2, where the group order is a 1022-bit
RSA public key, we find that the optimal window size is
between 5 and 6. The performance improvement from using a
window of size 5 is approximately 8%.

▶ For the Tate pairing on a 160-bit MNT k = 6 curve we find
that the the optimal window size is 3. The performance
improvement to be expected is about 3%. For the Ate pairing
over the same curve again the optimal window size is 3, but
improvement is a nearly negligible 1%. Clearly the larger the
exponent, the greater the gains to be expected from
windowing.

Bottom line

▶ For a Tate pairing over a 1024-bit supersingular curve with
embedding degree k = 2, where the group order is a 1022-bit
RSA public key, we find that the optimal window size is
between 5 and 6. The performance improvement from using a
window of size 5 is approximately 8%.

▶ For the Tate pairing on a 160-bit MNT k = 6 curve we find
that the the optimal window size is 3. The performance
improvement to be expected is about 3%. For the Ate pairing
over the same curve again the optimal window size is 3, but
improvement is a nearly negligible 1%. Clearly the larger the
exponent, the greater the gains to be expected from
windowing.

Any Questions?

▶ Any questions?

▶ Thank you for your attention.

Any Questions?

▶ Any questions?

▶ Thank you for your attention.

