Revisiting cycles of pairing-friendly elliptic curves

Marta Bellés
marta@dusk.network

Joint work with Jorge Jimenez-Urroz and Javier Silva

1. THE PROBLEM

THE 2-CYCLE PROBLEM

Find two (ordinary) elliptic curves E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{p}$ such that

THE 2-CYCLE PROBLEM

Find two elliptic curves E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{p}$ such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$ and $\left|E^{\prime}\left(\mathbb{F}_{p}\right)\right|=q$.

EASY

THE PAIRING-FRIENDLY 2-CYCLE PROBLEM

Find two elliptic curves E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{p}$ such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$ and $\left|E^{\prime}\left(\mathbb{F}_{p}\right)\right|=q$,
with low embedding degree (pairing-friendly).

THE PAIRING-FRIENDLY 2-CYCLE PROBLEM

Find two elliptic curves E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{p}$ such that

$$
\left|E\left(\mathbb{F}_{q}\right)\right|=p \text { and }\left|E^{\prime}\left(\mathbb{F}_{p}\right)\right|=q \text {, }
$$

with low embedding degree (pairing-friendly).

Embedding degree

- E: smallest k such that $p \mid q k-1$.
- E^{\prime} : smallest l such that $\mathrm{q} \mid \mathrm{p} l$ - .

Pairing

- Small embedding degree: DL attacks
- Large embedding degree: inefficiency

THE PAIRING-FRIENDLY 2-CYCLE PROBLEM

Find two elliptic curves E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{p}$ such that

$$
\left|E\left(\mathbb{F}_{q}\right)\right|=p \text { and }\left|E^{\prime}\left(\mathbb{E}_{p}\right)\right|=q,
$$

with low embedding degree (pairing-friendly).

DIFFICULT

2. MOTIVATION

VERIFIABLE COMPUTATION

VERIFIABLE COMPUTATION

powerful computer
data \mathbf{x}, operation \mathbf{F}

$F(x)=?$
small computer

VERIFIABLE COMPUTATION

powerful computer
data \mathbf{x}, operation \mathbf{F}

$$
y=F(x)
$$

how do we know
y is really the result??

small computer

VERIFIABLE COMPUTATION

powerful computer
data \mathbf{x}, operation \mathbf{F}

how do we know
y is really the result??

small computer

VERIFIABLE COMPUTATION

powerful computer
data \mathbf{x}, operation \mathbf{F}

small computer

PAIRING-BASED SNARKS PROOF SYSTEMS

Prover

- proof is small
- fast verification

Verifier

\mathbb{F}_{p}-ARITHMETIC CIRCUIT SATISFIABILITY

A proof asserts that a set of inputs and outputs satisfy the relations defined in the circuit.

PAIRING-BASED SNARKS PROOF SYSTEMS

\mathbb{F}_{p}-arithmetic circuit

RECURSIVE PROOF COMPOSITION

By verifying one single proof, we can verify that all computations (and proofs) are correct.

PAIRING-BASED SNARKS PROOF SYSTEMS

Prover
Elliptic curve E / \mathbb{F}_{q} such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$.

Pairs (x, y) in \mathbb{E}_{q}^{2}.

Verifier

It needs to be Pairing operation on points of E
efficient! (arithmetic over \mathbb{F}_{q}).
(1)A SNARK instantiated with E / \mathbb{F}_{q} such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$.

(1)A SNARK instantiated with E / \mathbb{F}_{q} such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$.

(1) A SNARK instantiated with E / \mathbb{F}_{q} such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$.

A SNARK instantiated with E^{\prime} / \mathbb{E} such that $\left|E^{\prime}\left(\mathbb{F}_{\mathrm{r}}\right)\right|=\mathrm{q}$.

(1) A SNARK instantiated with E / \mathbb{F}_{q} such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$.

A SNARK instantiated with E^{\prime} / \mathbb{E} such that $\left|E^{\prime}\left(\mathbb{F}_{\mathrm{p}}\right)\right|=q$.

(1)A SNARK instantiated with E / \mathbb{F}_{q} such that $\left|E\left(\mathbb{F}_{q}\right)\right|=p$.

THE PAIRING-FRIENDLY 2-CYCLE PROBLEM

Find two elliptic curves E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{p}$ such that

$$
\left|E\left(\mathbb{F}_{q}\right)\right|=p \text { and }\left|E^{\prime}\left(\mathbb{F}_{p}\right)\right|=q \text {, }
$$

with low embedding degree (pairing-friendly).

3. WHAT WAS KNOWN

CONDITIONS

- Curves involved in a cycle must be of prime order.
- The only known method to produce prime-order curves is via families of curves parameterized by polynomials $q(X), p(X)$, and $t(X)$ with embedding degree k and discriminant d. This means:

1. $p(X)=q(X)+1-t(X)$.
2. $p(X)$ is integer-valued.
3. $p(X)$ and $q(X)$ represent primes.
4. $p(X) \mid \Phi_{k}(t(X)-1)$.
5. The equation $4 q(X)=t(X)^{2}+|d| Y^{2}$ has infinitely many integer solutions (x, y).
$\xrightarrow{(1-3)}$ infinitely many parameters compatible with elliptic curves
$\xrightarrow{(4)}$ the embedding degree is at most k
$\xrightarrow{(5)}$ infinitely many curves in the family with same discriminant

FAMILIES OF PAIRING-FRIENDLY CURVES OF PRIME ORDER

- There are no elliptic curves with prime order and embedding degree $\mathbf{k}<3$.
- For $\mathbf{k}=3,4,6$ we have the families of curves Miyaji-Nakabayashi-Takano (MNT).
(exhaustive)
- For $\mathbf{k}=10$ we have the Freeman family of curves.
- For $\mathbf{k}=\mathbf{1 2}$ we have the Barreto-Naehrig (BN) family of curves.

DO THEY FORM CYCLES?

- MNT4 and MNT6 curves do form cycles.

But: Low embedding degree -> large parameters. Unbalanced embedding degrees.

- Freeman and BN curves do not form cycles with curves from their own family.

- Can they form cycles with other curves?

4. MAIN CONTRIBUTION

THEOREM

Consider a family of elliptic curves with embedding degree k parameterized by polynomials $p(X), q(X)$. Let l be a natural number. Then either:

- $q(X) \mid p(X)^{l}-1$, or
- there are at most finitely many 2-cycles formed by a curve form the family and a curve with embedding degree l.

In particular, we did an exhaustive search for the known families of curves.

COROLLARY

Except for the few cases described in the table below, we have that:

- An MNT3 curve cannot form 2-cycles with a curve of embedding degree $l<23$.
- A Freeman curve cannot form 2-cycles with a curve of embedding degree $l<26$.
- A BN curve cannot form 2-cycles with a curve of embedding degree $l<33$.

Exceptions

	k	l	q	p
MNT3	3	10	11	19
MNT3	3	10	11	7
BN	12	18	19	13

5. FUTURE WORK

FUTURE WORK

- Improve our bounds (code) to all $k<56$.
- Generalize our result to s-cycles with $s>2$.
- Do there exist cycles consisting of elliptic curves with the same embedding degree? It is already known that this is not the case for $k=4,6,8,12$.

You can find more open problems in:
A. Chiesa, L. Chua, M. Weidner, On cycles of pairing-friendly elliptic curves, arXiv: 1803.02067.

Revisiting cycles of pairing-friendly elliptic curves

Marta Bellés, Jorge Urroz, Javier Silva

Revisiting cycles of pairing-friendly elliptic curves

Marta Bellés
marta@dusk.network

Joint work with Jorge Jimenez-Urroz and Javier Silva

