A Short-List of Pairing-Friendly Curves Resistant to the Special TNFS at 192-Bit Security Level

Diego F. Aranha ${ }^{1} \quad$ Georgios Fotiadis ${ }^{2} \quad$ Aurore Guillevic ${ }^{3}$

${ }^{1}$ Aarhus University, Denmark. Email: dfaranha@cs.au. dk
${ }^{2}$ Université du Luxembourg, Luxembourg. Email: georgios.fotiadis@uni.lu
${ }^{3}$ Université de Lorraine, CNRS, Inria, LORIA, Nancy, France. Email: aurore. guillevic@inria.fr
SIAM Conference on Applied Algebraic Geometry (AG23)
Elliptic Curves and Pairings in Cryptography
July 13, 2023

Loria
"100010in" Laboratoire lorrain de recherche

Motivation

Research on pairings vs future Quantum computers.

- Pairings are not Quantum Resistant.
- Quantum computers will become reality in 5 to 10 years (?)
- Research on PQC and Classical Crypto should continue in parallel.
- Transition to PQC will require PQC + Classical Crypto to coexist.
- Some crypto applications we cannot do, or cannot do well with PQC yet.
- Pairings are useful in PQC (isogeny-based crypto).

Why 192-bit security?

- For long-term security: offer the option for higher levels of security.
- Landscape for 128-bit security is clear \rightarrow BLS12 curves dominate.
- For 192-bit security it is not clear which curves are optimal.
- Some works for 192-bit security: [AFCK ${ }^{+}$13], [FK19], [BEMG19], [Gui20].

Pairings at 128-bit security

\mathbf{k}	curve	seed	$\log _{2} \mathbf{p}$	$\log _{2} \mathbf{r}$	ρ	sec. lev.
curves with efficient pairing computation						
12	BN-382	$-\left(2^{94}+2^{78}+2^{67}+2^{64}+2^{48}+1\right)$	382	382	1.000	123
12	BN-446	$2^{110}+2^{36}+1$	446	446	1.000	132
12	BLS12-381	$-\left(2^{63}+2^{62}+2^{60}+2^{57}+2^{48}+2^{16}\right)$	381	255	1.500	126
12	BLS12	Aurore's Gitlab	$440-448$	$295-300$	1.500	132
12	FK12-381	$-\left(2^{61}+2^{60}+2^{28}+1\right)$	381	252	1.500	126
12	FK12-446	$-\left(2^{72}+2^{71}+2^{36}\right)$	446	296	1.500	133
curves with small $\mathbb{G}_{1}[$ CDS20]						
13	BW13-P310	$-0 \times 8 \mathrm{bo}=-2224$	310	267	1.167	140
19	BW19-P286	$-0 \times 91=-145$	286	259	1.111	160
curves for SNARKs						
12	BLS12-377	$2^{63}+2^{58}+2^{56}+2^{51}+2^{47}+2^{46}+1$	377			
24	BLS24-315	$-2^{32}+2^{30}+2^{22}-2^{20}+1$	315	252		

Lessons learned from 128-bit pairings

- Many sources (different families/seeds) for pairing-friendly elliptic curves.
- Many papers before and after the improved TNFS attacks [KB16].
- High degree twists are important for fast pairing.
- Optimal curve selection depends on the protocol/use case requirements. Other things matter besides the pairing computation.
- Extending BN12 or BLS12 to 192-bit security is not optimal [GS19]. BLS12 needs to go to 1150-bit prime field for 193-bit security. BN12 needs to go to 1022-bit prime field for 191-bit security. Higher embedding degrees are needed!

Pairings at 192-bit security: selection criteria

- At least 192 -bit security in $\mathbb{G}_{1}, \mathbb{G}_{2} \Longrightarrow \log _{2} r \geq 384$-bits.
- Look at embedding degrees $k>12$.
- The size of $\mathbb{G}_{\mathrm{T}} \subset \mathbb{F}_{p^{k}}^{*}$ varies: depends on k and $\rho=\log _{2} p / \log _{2} r$.
- Take into account improved TNFS attacks [KB16] in $\mathbb{F}_{p^{k}}$ for composite k. Estimate key sizes with Aurore's simulator ${ }^{1}$.
- Use curves that admit high degree twists: $6,4,3 \Longrightarrow$ focus on composite k.
- Restrict to j-invariant $j=0$ and $3|k, 6| k$, or $j=1728$ and $4 \mid k$.
- The ρ should be close to 1 .

This is not always optimal \Rightarrow Look at ρ up to 2 .

[^0]
Why higher ρ can be helpful?

Miller-loop cost (Tate pairing):

$$
\mathbf{C}_{\text {MILLER }}=\left(\log _{2} r-1\right) \mathbf{C}_{\text {DBLSTEP }}+\left(h_{\mathrm{wt}}(r)-1\right) \mathbf{C}_{\mathrm{ADDSTEP}}
$$

- The ρ-value is: $\rho=\log _{2} p / \log _{2} r$.
- For some curves we need to increase p to resist TNFS attacks [KB16].
- Then r is increased as well (without really needing it) \Rightarrow increased $\mathrm{C}_{\text {Miller }}$.
- Solution: Increase $\rho \Rightarrow$ increase p without affecting r.
- Beneficial also for membership testing.

However... for pairing-friendly families $(p(x), t(x), r(x)): \rho=\operatorname{deg} p(x) / \operatorname{deg} r(x)$.

- Increasing ρ affects final \exp (more exponentiations by the seed u).
- Increasing ρ affects hashing to $\mathbb{G}_{1}, \mathbb{G}_{2}$.

Needs for pairing-based protocols

Efficient pairing computation.

- Short Miller loop + few addition steps + efficient final exp. formulas.

Efficient exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T}.

- Scalar multiplication in $E\left(\mathbb{F}_{p}\right), E^{\prime}\left(\mathbb{F}_{p^{k / d}}\right)$, where d is the degree of the twist.
- Exponentiation in $\mathbb{F}_{p^{k}}$.

Efficient hashing to $\mathbb{G}_{1}, \mathbb{G}_{2}$.

- See yesterday's talks by Jorge Chavez-Saab on Swiftec and Yu Dai.
- New results by Dimitri Koshelev [Kos22a, Kos22b].

Efficient membership testing in $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T}.

- See yesterday's talks by Dimitri Koshelev and Yu Dai.

Efficient cofactor clearing.

- Wahby-Boneh for perfect square cofactor [WB19].
- Gallant-Lambert-Vanstone (GLV) otherwise [GLV01].

Existing families for 192-bit security

Barreto-Lynn-Scott (BLS) curves [BLS03] \longrightarrow BLS21, BLS24 and BLS28.
Kachisa-Schaefer-Scott (KSS) curves [KSS08] \longrightarrow KSS16 and KSS18.
Freeman-Scott-Teske (FST) curves [FST10] \longrightarrow FST 6.4 for $k=28$.
Scott-Guillevic (SG) curves [SG18] \longrightarrow SG18 and SG20.
Fotiadis-Konstantinou (FK) curves [FK19]:

- Fotiadis-Martindale FM23 curve for $k=16$ [FM19]
- Fotiadis-Martindale FM25 curve for $k=18$ [FM19]

Gasnier-Guillevic (GG) curves \longrightarrow GG20b

- See last talk of the session by Jean Gasnier.

New family for $k=16$

Aranha-Fotiadis-Guillevic (AFG16)

$$
\begin{aligned}
p(x) & =\left(x^{16}+2 x^{13}+x^{10}+5 x^{8}+6 x^{5}+x^{2}+4\right) / 4 \\
r(x) & =\Phi_{16}(x)=x^{8}+1 \\
t(x) & =x^{8}+x^{5}+2
\end{aligned}
$$

with $\rho=2$ and $\# E\left(\mathbb{F}_{p}\right)=h(x) r(x)$ with $h(x)=\left(x^{4}+x\right)^{2} / 4$.

Interesting features:

- Cofactor is perfect square \Rightarrow fast cofactor clearing.
- $\sqrt{h(x)}$ divides $p(x)-1 \Rightarrow$ the trick of Wahby-Boneh applies [WB19].
- For $P \in E\left(\mathbb{F}_{p}\right)$, the point $Q=\left[\left(x^{4}+x\right) / 2\right] P$ has order r.

Instantiation of families for 192-bit security

k	curve	seed	$\log _{2} \mathbf{p}$	$\log _{2} \mathbf{r}$	k $\log _{2} \mathbf{p}$	ρ	sec. lev.
16	KSS16	$2^{78}-2^{76}-2^{28}+2^{14}+2^{7}+1$	766	605	12256	1.250	194
	FM23	$2^{48}-2^{44}-2^{38}+2^{31}$	765	384	12240	2.000	196
	AFG16	$-2^{48}+2^{44}-2^{37}$	765	384	12240	2.000	196
18	KSS18	$2^{80}+2^{77}+2^{76}-2^{61}-2^{53}-2^{14}$	638	474	11484	1.333	193
	SG18	$-\left(2^{63}+2^{54}+2^{16}\right)$	638	383	11484	1.666	187
	FM25	$-2^{64}+2^{33}+2^{30}+2^{20}+1$	768	384	13824	2.000	197
20	FST 6.4	$-2^{56}+2^{44}+1$	670	448	13400	1.500	193
	SG20	$-2^{47}-2^{45}+2^{15}+2^{13}$	670	383	13400	1.750	203
	GG20b	$2^{49}+2^{46}-2^{41}+2^{35}+2^{30}-1$	575	379	11500	1.520	196

curves with small \mathbb{G}_{1}

21	BLS21	$-2^{32}+2^{25}+2^{6}+2$	511	384	10731	1.333	199
24	BLS24	$-2^{51}-2^{28}+2^{11}-1$	509	409	12216	1.250	193
27	BLS27	$-2^{21}-2^{19}-2^{15}+2^{10}+2^{4}+2^{2}+1$	426	383	11529	1.111	218
28	FST 6.4	$2^{32}-2^{25}+2^{22}+2^{15}+1$	510	384	14280	1.333	209

Theoretical comparison

k	curve	$\begin{aligned} & \mathrm{p} \\ & \text { bits } \end{aligned}$	$\begin{aligned} & \mathbf{r} \\ & \text { bits } \end{aligned}$	Miller loop optimal ate	final exp			total pairing
					easy	hard	total	
16	KSS16	766	605	16784m	240m	32826m	33066m	49850m
	FM23	765	384	10020 m	255 m	30024 m	30279 m	40299 m
	AFG16	765	384	9838m	255m	29067 m	29322m	39160m
18	KSS18	638	474	17433m	480m	27008m	27488m	44921m
	SG18	638	383	13351m	480 m	24308 m	24308 m	38139m
	FM25	768	384	13410m	464 m	33256m	33720m	47130m
20	FST 6.4	670	448	18416 m	507 m	35276 m	35783m	54199m
	SG20	670	383	16427 m	507 m	39152 m	39659 m	56086m
	GG20b	575	379	17554m	507 m	$\approx 50000 \mathrm{~m}$	$\approx 50000 \mathrm{~m}$	$\approx 70000 \mathrm{~m}$
21	BLS21	511	384	19321m	717 m	62426 m	62426 m	82464 m
24	BLS24	509	409	15345 m	658 m	24310 m	24968 m	40313 m
27	BLS27	426	383	22212 m	1185 m	88438 m	89907 m	112119 m
28	FST 6.4	510	384	18940m	859m	52670m	53529m	72469 m

Selected curves for RELIC implementation: KSS16, AFG16, KSS18, SG18, BLS24.

Execution time - pairing computation

Conclusion.

- BLS24-509 has: faster Miller loop and faster final exponentiation.
- *BLS12-381 targets 128-bit security. It is only for reference comparison.

Execution time - exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{\mathrm{T}}$

Gallant-Lambert-Vanstone (GLV) for \mathbb{G}_{1} [GLV01]. Galbraith-Lin-Scott (GLS) for \mathbb{G}_{2} [GLS11]

Execution time - hashing to $\mathbb{G}_{1}, \mathbb{G}_{2}+$ cofactor clearing

When $p \equiv 1 \bmod 3, j=0$:

- SwiftEC for \mathbb{G}_{1}, \mathbb{G}_{2} [CSRHT22].
- BLS12, KSS18, SG18, BLS24.

When $j=1728$:

- KSS16, AFG16.
- Koshelev for \mathbb{G}_{2} [Kos22a].
- SwiftEC for \mathbb{G}_{1} [CSRHT22].

Execution time - subgroup membership testing ${ }^{2}$

$\mathbb{G}_{1}:$ BLS12/KSS18/SG18/BLS24 (GLV)-KSS16/AFG16 (Yu Dai et al. [DLZZ23]).
\mathbb{G}_{2} : BLS12/KSS18/SG18/BLS24 (GLS)-KSS16/AFG16 (Yu Dai et al. [DLZZ23]).

[^1]
Conclusions

- BLS12-381 is the best candidate at 128-bit security.
- BLS24-509 is the best candidate at 192-bit security. Additional seeds for SNARKS at 192-bit security:
https:/ / gitlab.inria.fr/tnfs-alpha/alpha/-/tree/master
- BLS48 is the best candidate at 256-bit security?
- Pre-print will be available soon.
- PoC implementation for all curves in SageMath.
- Optimized implementation using RELIC toolkit available at: https:/ / github.com/relic-toolkit
- See also Aurore's talk for more info:
https:/ /members.loria.fr/AGuillevic/files/talks/23_Roscoff.pdf

Thank you!

References I

Diego F Aranha, Laura Fuentes-Castaneda, Edward Knapp, Alfred Menezes, and Francisco Rodríguez-Henríquez.
Implementing pairings at the 192-bit security level.
In Pairing-Based Cryptography-Pairing 2012: 5th International Conference, Cologne, Germany, May 16-18, 2012, Revised Selected Papers 5, pages 177-195. Springer, 2013.

Razvan Barbulescu, Nadia El Mrabet, and Loubna Ghammam.
A Taxonomy of Pairings, their Security, their Complexity.
Cryptology ePrint Archive, Report 2019/485, 2019.
R Paulo SLM Barreto, Ben Lynn, and Michael Scott.
Constructing elliptic curves with prescribed embedding degrees.
In Security in Communication Networks: Third International Conference, SCN 2002 Amalfi, Italy, September 11-13, 2002 Revised Papers 3, pages 257-267. Springer, 2003.
Rémi Clarisse, Sylvain Duquesne, and Olivier Sanders.
Curves with fast computations in the first pairing group.
In CANS'2020, pages 280-298. Springer, 2020.

References II

國 Jorge Chávez－Saab，Francisco Rodríguez－Henríquez，and Mehdi Tibouchi．
Swiftec：Shallue－van de woestijne indifferentiable function to elliptic curves：Faster indifferentiable hashing to elliptic curves．
In International Conference on the Theory and Application of Cryptology and Information Security， pages 63－92．Springer， 2022.

國 Yu Dai，Kaizhan Lin，Chang－An Zhao，and Zijian Zhou．
Fast subgroup membership testings for $\mathrm{g} 1, \mathrm{~g} 2$ and gt on pairing－friendly curves．
Designs，Codes and Cryptography，pages 1－26， 2023.
國 Georgios Fotiadis and Elisavet Konstantinou．
TNFS Resistant Families of Pairing－Friendly Elliptic Curves．
Journal of Theoretical Computer Science，800：73－89， 2019.
國 Georgios Fotiadis and Chloe Martindale．
Optimal TNFS－secure Pairings on Elliptic Curves with Composite Embedding Degree．
Cryptology ePrint Archive，Report 2019／555， 2019.

References III

David Freeman, Michael Scott, and Edlyn Teske.
A taxonomy of pairing-friendly elliptic curves.
Journal of cryptology, 23:224-280, 2010.
囯 Steven D Galbraith, Xibin Lin, and Michael Scott.
Endomorphisms for faster elliptic curve cryptography on a large class of curves.
Journal of cryptology, 24(3):446-469, 2011.
R Robert P Gallant, Robert J Lambert, and Scott A Vanstone.
Faster point multiplication on elliptic curves with efficient endomorphisms.
In Annual International Cryptology Conference, pages 190-200. Springer, 2001.
目 Aurore Guillevic and Shashank Singh.
On the alpha value of polynomials in the tower number field sieve algorithm.
Cryptology ePrint Archive, Report 2019/885, 2019.

References IV

國 Aurore Guillevic．
A Short－List of Pairing－Friendly Curves Resistant to Special TNFS at the 128－bit Security Level． In $P K C^{\prime} 2020$ ，pages 535－564．Springer， 2020.
國 Taechan Kim and Razvan Barbulescu．
Extended tower number field sieve：A new complexity for the medium prime case．
In CRYPTO＇2016，pages 543－571．Springer， 2016.
圊 Dmitrii Koshelev．
The most efficient indifferentiable hashing to elliptic curves of j－invariant 1728.
Journal of Mathematical Cryptology，16（1）：298－309， 2022.
D Dmitrii Koshelev．
Optimal encodings to elliptic curves of j－invariants $0,1728$.
SIAM Journal on Applied Algebra and Geometry，6（4）：600－617， 2022.

References V

E Ezekiel J Kachisa, Edward F Schaefer, and Michael Scott.
Constructing brezing-weng pairing-friendly elliptic curves using elements in the cyclotomic field.
In Pairing'2008, pages 126-135. Springer, 2008.
盏 Michael Scott and Aurore Guillevic.
A new family of pairing-friendly elliptic curves.
In WAIFI 2018, pages 43-57. Springer, 2018.
Riad S. Wahby and Dan Boneh.
Fast and simple constant-time hashing to the BLS12-381 elliptic curve.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):154-179, 2019.

[^0]: ${ }^{1}$ Simulation tool in SageMath under MIT license: https:/ / gitlab.inria.fr/tnfs-alpha/alpha

[^1]: ${ }^{2}$ Credit to Mónica P. Arenas for the plots.

