Individual Discrete Logarithm in $\text{GF}(p^k)$
(last step of the Number Field Sieve algorithm)

Aurore Guillevic
INRIA Saclay / GRACE Team
École Polytechnique / LIX

Asiacrypt 2015 Conference, Auckland, New Zealand, November 30
Logjam attack (weakdh.org)

Solving actual practical problem:
Given a \textbf{fixed} finite field $\text{GF}(q)$,

Huge massive precomputation (weeks, months, years)
Logjam attack (weakdh.org)

Solving actual practical problem:
Given a **fixed** finite field $\text{GF}(q)$,

Huge massive precomputation (weeks, months, years)

![log tab](image)

$p_i < B_0$
Logjam attack (weakdh.org)

Solving actual practical problem:
Given a **fixed** finite field $\text{GF}(q)$,

- Huge massive precomputation (weeks, months, years)
- $\log \text{tab}$
- $p_i < B_0$
- Thousands of individual log computation $< 1 \text{ min each}$
Logjam attack (weakdh.org)

Solving actual practical problem:
Given a **fixed** finite field $\mathbb{GF}(q)$,

- **Huge massive precomputation** (weeks, months, years)
- Log tab
- $p_i < B_0$
- **Thousands of individual log computation**
 - < 1 min each

- **Logjam**: $\mathbb{GF}(q) = \mathbb{GF}(p)$ (standardized) prime field of 512 bits
- real-time man-in-the-middle attack on Diffie-Hellman key exchange
- compute a discrete log in $\mathbb{GF}(p)$ in 70s in average
Logjam attack (weakdh.org)

Solving actual practical problem:
Given a **fixed** finite field GF(q),

- Huge massive precomputation (weeks, months, years)
- log tab
- Thousands of individual log computation < 1 min each

- Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits
real-time man-in-the-middle attack on Diffie-Hellman key exchange
compute a discrete log in GF(p) in 70s in average

- Pairing-based cryptography: GF(q) = GF(p^2), GF(p^6), GF(p^{12})

Logjam attack (weakdh.org)

Solving actual practical problem:
Given a **fixed** finite field GF(q),

- Huge massive precomputation (weeks, months, years)
- Log tab
- Thousands of individual log computation < 1 min each

- Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits real-time man-in-the-middle attack on Diffie-Hellman key exchange compute a discrete log in GF(p) in 70s in average
- Pairing-based cryptography: GF(q) = GF(p^2), GF(p^6), GF(p^{12})

Could we compute individual discrete logs in GF(p^2), GF(p^6), GF(p^{12}) in **less than 1 min**?
DLP in the target group of pairing-friendly curves
Why DLP in finite fields $\mathbb{F}_{p^2}, \mathbb{F}_{p^3}, \ldots$?

In a subgroup $G = \langle g \rangle$ of order ℓ,

- $(g, x) \mapsto g^x$ is easy (polynomial time)
- $(g, g^x) \mapsto x$ is (in well-chosen subgroup) hard: DLP.

pairing:

$$
G_1 \times G_2 \rightarrow G_T
$$

$$
\cap E(\mathbb{F}_p) \cap E(\mathbb{F}_{p^k}) \cap \mathbb{F}_{p^k}^*
$$

- where E/\mathbb{F}_p is a *pairing-friendly* curve
- G_1, G_2, G_T of large prime order ℓ (generic attacks in $O(\sqrt{\ell})$: take e.g. 256-bit ℓ)
- $1 \leq k \leq 12$ embedding degree: very specific property (specific attacks (NFS): take 3072-bit p^k)
DL records in small characteristic

- **Small characteristic:**
 - supersingular curves E/\mathbb{F}_{2^n}: $G_T \subset \mathbb{F}_{2^{4n}}$, E/\mathbb{F}_{3^m}: $G_T \subset \mathbb{F}_{3^{6m}}$

Practical attacks (first one and most recent):
- Hayashi, Shimoyama, Shinohara, Takagi: GF($3^{6.97}$) (923 bit field) (2012)
- Granger, Kleinjung, Zumbragel: GF(2^{9234}), GF(2^{4404}) (2014)
- Adj, Menezes, Oliveira, Rodríguez-Henríquez: GF(3^{822}), GF(3^{978}) (2014)
- Joux: GF(3^{2395}) (with Pierrot, 2014), GF(2^{6168}) (2013)

Theoretical attacks: Quasi-Polynomial-time Algorithm (QPA)
- [Barbulescu Gaudry Joux Thomé 14]
- [Granger Kleinjung Zumbragel 14]
Curves over prime fields E/\mathbb{F}_p where QPA does NOT apply (with $\log p \geq \log \ell \approx 256$ bits, s.t. $k \log p \geq 3072$)

- supersingular: $G_T \subset \mathbb{F}_{p^2}$ ($\log p = 1536$)
- [Miyaji Nakabayashi Takano 01] (MNT): $G_T \subset \mathbb{F}_{p^3}$ ($\log p = 1024$), \mathbb{F}_{p^4} ($\log p = 768$), \mathbb{F}_{p^6} ($\log p = 512$)
- [Freeman 06] $G_T \subset \mathbb{F}_{p^{10}}$
- [Barreto Naehrig 05] (BN): $G_T \subset \mathbb{F}_{p^{12}}$ ($\log p = 256$, optimal)
- [Kachisa Schaefer Scott 08] (KSS): $G_T \subset \mathbb{F}_{p^{18}}$ (used for 192-bit security level: 384-bit ℓ, $\log p = 512$, $k \log p = 9216$)
Last DL records, with the NFS-DL algorithm

<table>
<thead>
<tr>
<th>GF(p)</th>
<th>GF(p'^2), $p'^2 = q$ [BGGM15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive precomputation ($d=$core-day, $y=$core-year)</td>
<td></td>
</tr>
<tr>
<td>[Logjam] 512-bit p: 10y</td>
<td>175× faster</td>
</tr>
<tr>
<td>[BGIJT14] 596-bit p: 131y</td>
<td>598-bit q: 0.75y + 18 GPU-d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual Discrete Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>512-bit p: 70s median ✓</td>
</tr>
<tr>
<td>596-bit p: 2d</td>
</tr>
</tbody>
</table>

[Logjam]: see weakdh.org
[BGGM15]: Barbulescu, Gaudry, G., Morain
[BGIJT14]: Bouvier, Gaudry, Imbert, Jeljeli, Thomé
This work:

- Faster **individual** discrete logarithm in \mathbb{F}_{p^k}, especially $k = 2, 3, 4, 6$
- **Apply to pairing target group** G_T
 - large characteristic $\mathbb{F}_{p^2}, \mathbb{F}_{p^3}$
 - medium characteristic $\mathbb{F}_{p^4}, \mathbb{F}_{p^6}, \ldots$

- **source code:** written in Magma
 + part of http://cado-nfs.gforge.inria.fr/
Number Field Sieve algorithm for DL in \mathbb{F}_{p^k}

Polynomial selection:

1. Compute $f(x), g(x)$ with

 $$\varphi = \gcd(f, g) \pmod{p}$$

 and

 $$\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$$
Number Field Sieve algorithm for DL in \mathbb{F}_{p^k}

Polynomial selection:
compute $f(x), g(x)$ with
1. $\varphi = \gcd(f, g) \pmod{p}$ and
 $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$
2. *Relation collection*
Number Field Sieve algorithm for DL in \mathbb{F}_{p^k}

Polynomial selection:

compute $f(x), g(x)$ with

1. $\varphi = \gcd(f, g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

2. *Relation collection*

3. *Linear algebra modulo* $\ell | p^k - 1$.

\iff here we know the discrete log of a subset of elements.

\[\log \text{DB} \]

\[p_i < B_0 \]
Number Field Sieve algorithm for DL in \(\mathbb{F}_{p^k} \)

Polynomial selection:

1. Compute \(f(x) \) and \(g(x) \) with \(\varphi = \gcd(f, g) \pmod{p} \) and \(\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x)) \)

2. **Relation collection**

3. **Linear algebra modulo** \(\ell \mid p^k - 1 \)

\(\rightarrow \) here we know the discrete log of a subset of elements.

Massive precomputation

<table>
<thead>
<tr>
<th>Log DB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

\(p_i < B_0 \)
Number Field Sieve algorithm for DL in \mathbb{F}_{p^k}

Polynomial selection:
Compute $f(x)$, $g(x)$ with

$\varphi = \gcd(f, g) \pmod{p}$ and

$\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

1. **Relation collection**
2. **Linear algebra modulo** $\ell | p^k - 1$

\Rightarrow here we know the discrete log of a subset of elements.

<table>
<thead>
<tr>
<th>log DB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

$p_i < B_0$

1. **Individual target discrete logarithm**
Number Field Sieve algorithm for DL in \mathbb{F}_{p^k}

Polynomial selection:

1. compute $f(x), g(x)$ with $\varphi = \gcd(f, g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

2. Relation collection

3. Linear algebra modulo $\ell | p^k - 1$

\rightarrow here we know the discrete log of a subset of elements.

1. Individual target discrete logarithm for each given DLP instance

- not so trivial
- this talk: practical improvements very efficient for small k or even k
Polynomial Selection for DL in \mathbb{F}_{p^k}, and norm

- f, g irreducible over \mathbb{Q}, $f \neq g$ (define \neq number fields)
- $\gcd(f \mod p, g \mod p) = \varphi$ irreducible of degree k
- $\|f\|_\infty, \|g\|_\infty$, $\deg f, \deg g$ small enough s.t. $\text{Norm}_f(\cdot), \text{Norm}_g(\cdot)$ are as small as possible

Norm of degree 1 element $a - bx \in \mathbb{Z}[x]/(f(x))$:

- $\text{Norm}_f(a - bx) = \sum_{i=0}^{\deg f} a_i b^{\deg f - i} f_i$

More generally, when f is monic:

- $\text{Norm}_f(T) = \text{Res}(T, f) \leq A(\deg f, \deg T)\|T\|_\infty^{\deg f} \|f\|_\infty^d$

where $\|f\|_\infty = \max_{0 \leq i \leq \deg f} |f_i|$
Polynomial Selection for \mathbb{F}_{p^4}

Both polynomials have large coefficients. \mathbb{F}_{p^4} record of 392 bits (120 dd):

- $p = 314159265358979323846270891033$ of 98 bits (30 decimal digits dd)
- $f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1$
- let $y = 560499121640472$ and compute $u/v \equiv y \pmod{p}$
- $g = v \cdot f_y \leftarrow u/v(x)$

 \[
 g = 560499121639105x^4 + 4898685125033473x^3 - 3362994729834630x^2 - 4898685125033473x + 560499121639105
 \]

- $\text{Norm}_{\mathbb{Q}[x]/(f(x))}(a - bx) = a^4 - 560499121640472a^3b - 6a^2b^2 + 560499121640472ab^3 + b^4$

 \[
 \approx \max(|a|, |b|)^4 \|f\|_\infty
 \]
Relation collection and Linear algebra

2. Relation collection (cado-nfs: Pierrick Gaudry and Laurent Grémy)
3. Linear algebra (cado-nfs: Emmanuel Thomé and Cyril Bouvier)

- We know the log of small elements in \(\mathbb{Z}[x]/(f(x)) \) and \(\mathbb{Z}[x]/(g(x)) \)
- small elements are of the form \(a_i - b_ix = \in \mathbb{Z}[x]/(f(x)) \), s.t.
 \[|\text{Norm}(a_i - b_ix)| = q_i \leq B_0 \]
Individual Discrete Logarithm
Preimage in $\mathbb{Z}[x]/(f(x))$ and ρ map

\[
\begin{array}{ccc}
\mathbb{Z}[x] & \xrightarrow{\rho_f} & \mathbb{Z}[x]/(f(x)) \\
\downarrow & & \downarrow \\
\mathbb{Z}[x]/(f(x)) & \xrightarrow{\rho_g} & \mathbb{Z}[x']//(g(x')) \\
\end{array}
\]

Randomized target $T = t_0 + t_1X + t_2X^2 + t_3X^3 \in \mathbb{F}_{p^4}^* = \mathbb{F}_p[X]/(\varphi(X))$

Simplest choice of preimage T: since $f = \varphi$,
\[
T = t_0 + t_1x + t_2x^2 + t_3x^3 \in \mathbb{Z}[x]/(f(x)), \text{ with } t_i \equiv t_i \pmod{p}.
\]

We can always choose T s.t.
- $|t_i| < p$
- $\deg T < \deg \varphi$

We need $\rho(T) = T$

(where ρ is simply a reduction modulo (φ, p) when f (resp. g) is monic)
Individual DL of random target $T_0 \in \mathbb{F}_{p^k}^*$

Given G and a log database s.t. for all $p_i < B_0$, $\log p_i \in \mathbb{F}_{p^k}^*$
Individual DL of random target $T_0 \in \mathbb{F}^{*}_{p^k}$

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in \log DB$

1. boot step (a.k.a. smoothing step):
 DO
 1.1 take t at random in $\{1, \ldots, \ell - 1\}$ and set $T = G^t T_0$
 (hence $\log_G(T_0) = \log_G(T) - t$)
 1.2 factorize $\text{Norm}(T) = q_1 \cdots q_i \times (\text{elements in DL database}),$
 too large: $B_0 < q_i \leq B_1$
 UNTIL $q_i \leq B_1$
Given G and a log database s.t. for all $p_i < B_0$, $\log p_i \in \{1, \ldots, \ell - 1\}$, and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$).

1. Boot step (a.k.a. smoothing step):
 DO
 1.1 take t at random in $\{1, \ldots, \ell - 1\}$ and set $T = G^t T_0$
 (hence $\log_G(T_0) = \log_G(T) - t$)
 1.2 factorize $\text{Norm}(T) = q_1 \cdots q_i \times (\text{elements in DL database})$,

UNTIL $q_i \leq B_1$

2. Descent strategy: set $S = \{q_i : B_0 < q_i \leq B_1\}$
 while $S \neq \emptyset$ do
 set $B_j < B_i$
 find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times (\text{elements in log DB})$
 $S \leftarrow S \setminus \{q_i\} \cup \{q_j\}_{j \in J}$
 end while
Individual DL of random target $T_0 \in \mathbb{F}_{p^k}^*$

Given G and a log database s.t. for all $p_i < B_0$, $\log p_i \in \log DB$

1. boot step (a.k.a. smoothing step):
 DO
 1.1 take t at random in $\{1, \ldots, \ell - 1\}$ and set $T = G^t T_0$
 (hence $\log_G(T_0) = \log_G(T) - t$)
 1.2 factorize $\text{Norm}(T) = \prod_{q_i \leq B_1} q_i \times (\text{elements in DL database})$

 UNTIL $q_i \leq B_1$

2. Descent strategy: set $S = \{q_i : B_0 < q_i \leq B_1\}$
 while $S \neq \emptyset$ do
 set $B_j < B_i$
 find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times (\text{elements in log DB})$
 $S \leftarrow S \setminus \{q_i\} \cup \{q_j\}_{j \in J}$
 end while

3. log combination to find the individual target DL
Individual DL of random target $T_0 \in F_{p^k}^*$

Given G and a log database s.t. for all $p_i < B_0$, $\log p_i \in \log DB$

1. boot step (a.k.a. smoothing step):

 DO
 1.1 take t at random in $\{1, \ldots, \ell - 1\}$ and set $T = G^t T_0$
 (hence $\log_G(T_0) = \log_G(T) - t$)
 1.2 factorize $\text{Norm}(T) = \prod q_i \times (\text{elements in DL database})$,
 reduce this $q_i \leq B_1$
 too large: $B_0 < q_i \leq B_1$

 UNTIL $q_i \leq B_1$

2. Descent strategy: set $S = \{q_i : B_0 < q_i \leq B_1\}$
 while $S \neq \emptyset$ do
 set $B_j < B_i$
 find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times (\text{elements in log DB})$
 $S \leftarrow S \setminus \{q_i\} \cup \{q_j\}_{j \in J}$
 end while

3. log combination to find the individual target DL
Boot step complexity

Given random target $T_0 \in \mathbb{F}_p^*$, and G a generator of \mathbb{F}_p^*

repeat

1. take t at random in $\{1, \ldots, \ell - 1\}$ and set $T = G^t T_0$

2. factorize $\text{Norm}(T)$

until it is B_1-smooth: $\text{Norm}(T) = \prod_{q_i \leq B_1} q_i \times (\text{elts in log DB})$

L-notation: $Q = p^k$, $L_Q[1/3, c] = e^{(c+o(1))(\log Q)^{1/3} (\log \log Q)^{2/3}}$ for $c > 0$.

Norm factorization done with ECM method, in time $L_{B_1}[1/2, \sqrt{2}]$

Lemma (Boot step running-time)

If $\text{Norm}(T) \leq Q^e$, *take* $B_1 = L_Q[2/3, (e^2/3)^{1/3}]$, *then* the running-time is $L_Q[1/3, (3e)^{1/3}]$ (and this is optimal).
Preimage optimization

\[f, \deg f, \|f\|_\infty, g, \deg g, \|g\|_\infty \text{ are given by the polynomial selection step (NFS-DL step 1)} \]

\[
\text{Norm}_f(T) = \text{Res}(f, T) \leq A \|T\|_\infty^{\deg f} \|f\|_\infty^d
\]

To reduce the norm,

- reduce \(\|T\|_\infty \)
- and/or reduce \(d = \deg T \)
Boot step: First experiments

Commonly assumed to be very easy and very fast. This is not always so easy!

- $\mathbb{F}_{p_{90}^2}$ 600 bits (BGGM15 record) was easy, as fast as for $\mathbb{F}_{p_{180}^2}$ ($< \text{one day}$) with [JLSV06] improvement technique
- \mathbb{F}_{p^3} MNT 508 bits was much slower (days, week)
- \mathbb{F}_{p^4} 392 bits was even worse ($> \text{one week}$)

What happened?

- \mathbb{F}_{p^3}: asymptotically the same as \mathbb{F}_{p^2}: $L_Q[1/3, c = 1.44]$ but still much slower, Because of the constant hidden in the $O()$?
- \mathbb{F}_{p^4}: [JLSV06] not suited, $\|f\|_{\infty} = O(p^{1/2})$, $\text{Norm}(T) \approx Q^{3/2} \rightarrow L_Q[1/3, c = 1.65]$
Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$.
Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k}.
Our solution

Lemma

Let \(T \in \mathbb{F}_{p^k} \).
Then \(\log(T) = \log(u \cdot T) \pmod{\ell} \) for any \(u \) in a proper subfield of \(\mathbb{F}_{p^k} \).

- \(\mathbb{F}_p \) is a proper subfield of \(\mathbb{F}_{p^k} \)
- target \(T = t_0 + t_1x + \ldots + t_dx^d \)
- we divide the target by its leading term:

\[
\log(T) = \log(T/t_d) \pmod{\ell}
\]

From now on we assume that the target is monic.
Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$. Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k}.

- \mathbb{F}_p is a proper subfield of \mathbb{F}_{p^k}
- target $T = t_0 + t_1x + \ldots + t_dx^d$
- we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \pmod{\ell}$$

From now on we assume that the target is monic.

Similar technique in pairing computation:
Miller loop denominator elimination [Boneh Kim Lynn Scott 02]
\(\mathbb{F}_{p^4} \) of 392 bits: Terribly slow booting step

- \(p = 314159265358979323846270891033 \) of 98 bits (30 dd)
- \(f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1 \)
- \(T = t_0 + t_1x + t_2x^2 + x^3 \)
- we want to reduce \(\| T \|_\infty \). Define \(L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \)
- \(\text{dim } 4 \) because \(\max(\deg f, \deg g) = 4 \)
- \(\text{LLL}(L) \) outputs a short vector \(r \), linear combination of \(L \)'s rows.
 \[r = \lambda_0 p + \lambda_1 px + \lambda_2 px^2 + \lambda_3 T, \]
\(\mathbb{F}_{p^4} \) of 392 bits: Terribly slow booting step

- \(p = 314159265358979323846270891033 \) of 98 bits (30 dd)
- \(f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1 \)
- \(T = t_0 + t_1x + t_2x^2 + x^3 \)
- we want to reduce \(\|T\|_\infty \). Define \(L = \)
 \[
 \begin{bmatrix}
 p & 0 & 0 & 0 \\
 0 & p & 0 & 0 \\
 0 & 0 & p & 0 \\
 t_0 & t_1 & t_2 & 1 \\
 \end{bmatrix}
 \]
 \(p \mapsto 0 \) in \(\mathbb{F}_{p^4} \)
 \(px \mapsto 0 \)
 \(px^2 \mapsto 0 \)
 \(T \mapsto T \)
- \(\dim 4 \) because \(\max(\deg f, \deg g) = 4 \)
- LLL(\(L \)) outputs a short vector \(r \), linear combination of \(L \)'s rows.
 \[r = \lambda_0 p + \lambda_1 px + \lambda_2 px^2 + \lambda_3 T, \]
\(\mathbb{F}_{p^4} \) of 392 bits: Terribly slow booting step

- \(p = 314159265358979323846270891033 \) of 98 bits (30 dd)
- \(f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1 \)
- \(T = t_0 + t_1x + t_2x^2 + x^3 \)
- we want to reduce \(\| T \|_\infty \). Define \(L = \)
 \[
 \begin{bmatrix}
 p & 0 & 0 & 0 \\
 0 & p & 0 & 0 \\
 0 & 0 & p & 0 \\
 t_0 & t_1 & t_2 & 1
 \end{bmatrix}
 \]
 \(p \mapsto 0 \) in \(\mathbb{F}_{p^4} \)
 \(px \mapsto 0 \)
 \(px^2 \mapsto 0 \)
 \(T \mapsto T \)
- \(\text{dim 4 because } \max(\deg f, \deg g) = 4 \)
- \(\text{LLL}(L) \) outputs a short vector \(r \), linear combination of \(L \)'s rows.
 \[
 r = \lambda_0 p + \lambda_1 px + \lambda_2 px^2 + \lambda_3 T ,
 \]
\mathbb{F}_{p^4} of 392 bits: Terribly slow booting step

- $p = 314159265358979323846270891033$ of 98 bits (30 dd)
- $f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1$
- $T = t_0 + t_1x + t_2x^2 + x^3$
- We want to reduce $\|T\|_\infty$. Define $L =$
 \[
 \begin{bmatrix}
 p & 0 & 0 & 0 \\
 0 & p & 0 & 0 \\
 0 & 0 & p & 0 \\
 t_0 & t_1 & t_2 & 1 \\
 \end{bmatrix}
 \]
 - $p \mapsto 0$ in \mathbb{F}_{p^4}
 - $px \mapsto 0$
 - $px^2 \mapsto 0$
 - $T \mapsto T$
- Dim 4 because $\max(\deg f, \deg g) = 4$
- LLL(L) outputs a short vector r, linear combination of L's rows.
 \[
 r = \lambda_0 p + \lambda_1 px + \lambda_2 px^2 + \lambda_3 T, \quad \log \rho(r) = \log(T) \pmod{\ell}
 \]
\(\mathbb{F}_{p^4} \) of 392 bits: Terribly slow booting step

- \(p = 314159265358979323846270891033 \) of 98 bits (30 dd)
- \(f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1 \)
- \(T = t_0 + t_1x + t_2x^2 + x^3 \)
- we want to reduce \(\|T\|_\infty \). Define \(L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \)
 \(p \mapsto 0 \) in \(\mathbb{F}_{p^4} \)
 \(px \mapsto 0 \)
 \(px^2 \mapsto 0 \)
 \(T \mapsto T \)
- \(\dim 4 \) because \(\max(\deg f, \deg g) = 4 \)
- LLL(\(L \)) outputs a short vector \(r \), linear combination of \(L \)'s rows.
 \(r = \lambda_0 p + \lambda_1 px + \lambda_2 px^2 + \lambda_3 T \), \(\log \rho(r) = \log(T) \) (mod \(\ell \))
- \(r = r_0 + \ldots + r_3 x^3 \), \(\|r_i\|_\infty \leq C \det(L)^{1/4} = O(p^{3/4}) \)
- \(\text{Norm}_f(r) \approx \|r\|_\infty^4 \|f\|_\infty^3 \approx p^{9/2} = Q^{9/8} \) of 450 bits instead of 588 b
- Booting step, number of operations: \(2^{44} \)
- Large prime bound \(B_1 \) of 81 bits
\(\mathbb{F}_{p^4} \) of 392 bits: Terribly slow booting step

- \(p = 314159265358979323846270891033 \) of 98 bits (30 dd)
- \(f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1 \)
- \(T = t_0 + t_1x + t_2x^2 + x^3 \)
- we want to reduce \(\|T\|_\infty \). Define \(L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \) \(p \mapsto 0 \) in \(\mathbb{F}_{p^4} \)
- \(\|T\|_\infty \leq C \det(L)^{1/4} = O(p^{3/4}) \)
- \(\text{Norm}_f(r) \approx \| r \|_\infty^4 \| f \|_\infty^3 \approx p^{9/2} = Q^{9/8} \) of 450 bits instead of 588 b
- Large prime bound \(B_1 \) of 81 bits
Our solution: quadratic subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree $k - 2$ instead of $k - 1$.
Our solution: quadratic subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree $k - 2$ instead of $k - 1$.

- define $L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix}$

- $\text{LLL}(L) \rightarrow$ short vector r linear combination of L's rows $r = r_0 + \ldots + r_3x^3$, $\|r_i\|_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$
Our solution: quadratic subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree $k - 2$ instead of $k - 1$.

- define $L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix}$
- $\rho(p) = 0 \in \mathbb{F}_{p^k}$
- $\rho(px) = 0 \in \mathbb{F}_{p^k}$
- T'
- T

LLL(L) \rightarrow short vector r linear combination of L’s rows

$r = r_0 + \ldots + r_3 x^3$, $\|r_i\|_\infty \leq C \det(L)^{1/4} = O(p^{1/2})$

- $\rho(r) = \lambda_2 T' + \lambda_3 T = \left(\lambda_2 u + \lambda_3\right) T$
- \in subfield $\mathbb{F}_{p^{k/2}}$
Our solution: quadratic subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree $k - 2$ instead of $k - 1$.

- define $L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix}$
 - $\rho(p) = 0 \in \mathbb{F}_{p^k}$
 - $\rho(px) = 0 \in \mathbb{F}_{p^k}$
 - T'

- $\text{LLL}(L) \rightarrow$ short vector r linear combination of L's rows
 - $r = r_0 + \ldots + r_3 x^3$, $\|r_i\|_\infty \leq C \det(L)^{1/4} = O(p^{1/2})$
 - $\rho(r) = \lambda_2 T' + \lambda_3 T = (\lambda_2 u + \lambda_3) T$
 - \in subfield $\mathbb{F}_{p^{k/2}}$

- $\log \rho(r) = \log(T) \pmod{\ell}$

- $\text{Norm}_f(r) = \|r\|_\infty^4 \|f\|_\infty^3 = p^{7/2} = Q^{7/8} < Q$
Subfield Cofactor Simplification + LLL results

<table>
<thead>
<tr>
<th>Field</th>
<th>Size</th>
<th>Norm $f(T)$</th>
<th>$L_Q[1/3, c]$</th>
<th>$q_i \leq B_1 = L_Q[2/3, c]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{F}_{p^2}</td>
<td>600 bits</td>
<td>$T = U/V$</td>
<td>$Q^{1/2} Q^{1/2}$</td>
<td>600</td>
</tr>
<tr>
<td>This work</td>
<td>300</td>
<td>$Q^{1/2}$</td>
<td>1.14</td>
<td>2^{41}</td>
</tr>
<tr>
<td>\mathbb{F}_{p^3}</td>
<td>508 bits</td>
<td>$T = U/V$</td>
<td>$Q^{1/2} Q^{1/2}$</td>
<td>508</td>
</tr>
<tr>
<td>This work</td>
<td>340</td>
<td>$Q^{2/3}$</td>
<td>1.26</td>
<td>2^{42}</td>
</tr>
<tr>
<td>\mathbb{F}_{p^4}</td>
<td>392 bits</td>
<td>prev.</td>
<td>$Q^{3/2}$</td>
<td>588</td>
</tr>
<tr>
<td>This work</td>
<td>343</td>
<td>$Q^{7/8}$</td>
<td>1.38</td>
<td>2^{41}</td>
</tr>
</tbody>
</table>
Subfield Cofactor Simplification + LLL results

<table>
<thead>
<tr>
<th>Field \mathbb{F}_{p^2}</th>
<th>$T = U/V$</th>
<th>$\text{Norm}_f(T)$</th>
<th>$L_Q[1/3, c]$</th>
<th>$q_i \leq B_1 =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 bits</td>
<td>$Q^{1/2}Q^{1/2}$</td>
<td>600</td>
<td>1.44</td>
<td>2^{52}</td>
</tr>
<tr>
<td>This work</td>
<td>$Q^{1/2}$</td>
<td>300</td>
<td>1.14</td>
<td>2^{41}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field \mathbb{F}_{p^3}</th>
<th>$T = U/V$</th>
<th>$\text{Norm}_f(T)$</th>
<th>$L_Q[2/3, c]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>508 bits</td>
<td>$Q^{1/2}Q^{1/2}$</td>
<td>508</td>
<td>1.44</td>
</tr>
<tr>
<td>This work</td>
<td>$Q^{2/3}$</td>
<td>340</td>
<td>1.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field \mathbb{F}_{p^4}</th>
<th>prev.</th>
<th>$\text{Norm}_f(T)$</th>
<th>$L_Q[3/2, c]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>392 bits</td>
<td>$Q^{3/2}$</td>
<td>588</td>
<td>1.65</td>
</tr>
<tr>
<td>This work</td>
<td>$Q^{7/8}$</td>
<td>343</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Faster descent
DL record computation in \mathbb{F}_{p^4} of 392 bits (120dd)

Joint work with R. Barbulescu, P. Gaudry, F. Morain

\[
p = 314159265358979323846270891033 \text{ of 98 bits (30 dd)}
\]
\[
\ell = 9869604401089358618834902718477057428144064232778775980709 \text{ of 192 bits}
\]
\[
f = x^4 - 560499121640472x^3 - 6x^2 + 560499121640472x + 1
\]
\[
g = 560499121639105x^4 + 4898685125033473x^3 - 3362994729834630x^2
\]
\[
-4898685125033473x + 560499121639105
\]
\[
\varphi = g
\]
\[
G = x + 3 \in \mathbb{F}_{p^4}
\]
\[
T_0 = 31415926535897x^3 + 93238462643383x^2 + 27950288419716x + 93993751058209
\]

\[\log_G(T_0) =\]
\[
13643947258683983852940907219583201821950591984194257022 \pmod{\ell}
\]
Summary of results

- better practical and asymptotic running-time of the boot step
- better when k is even

- online version HAL 01157378
- guillevic@lix.polytechnique.fr
Future work

- Degree-\(d\) subfield cofactor simplification thanks to an anonymous Asiacrypt 2015 reviewer remark, generalization in large characteristic, application to small characteristic
- Look at Sarkar Singh (eprint 2015/944) polynomial selection
- Optimize the descent
- Add early abort strategy (Barbulescu improvement)
- \(\mathbb{F}_{p^6}, \mathbb{F}_{p^{12}}\)
Future work

- Degree-d subfield cofactor simplification thanks to an anonymous Asiacrypt 2015 reviewer remark, generalization in large characteristic, application to small characteristic
- Look at Sarkar Singh (eprint 2015/944) polynomial selection
- Optimize the descent
- Add early abort strategy (Barbulescu improvement)
- \mathbb{F}_{p^6}, $\mathbb{F}_{p^{12}}$

Be careful with the hidden constant in the $O(\cdot)$