Discrete logarithm record in a 508-bit finite field \(\text{GF}(p^3) \) with the Number Field Sieve algorithm

Aurore Guillevic and François Morain and Emmanuel Thomé

University of Calgary, PIMS–CNRS, LIX–École Polytechnique, Inria, Loria

CNTA, June 24, 2016
Motivation: Pairing-based cryptography

The Number Field Sieve algorithm

$GF(p^3)$: breaking a 508-bit MNT curve
Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie–Hellman, etc)

Given a finite cyclic group \((G, \cdot)\), a generator \(g\) and \(y \in G\), compute \(x\) s.t. \(y = g^x\).

Common choice of \(G\):
- prime finite field \(\mathbb{F}_p\) (since 1976),
- characteristic 2 finite field \(\mathbb{F}_{2^n}\),
- elliptic curve \(E(\mathbb{F}_p)\) (since 1985)
Elliptic curves in cryptography

\[E : y^2 = x^3 + ax + b, \quad a, b \in \mathbb{F}_p \]

- proposed in 1985 by Koblitz, Miller
- \(E(\mathbb{F}_p) \) has an efficient group law (chord an tangent rule) \(\rightarrow G \)
- \(\#E(\mathbb{F}_p) = p + 1 - t \), trace \(t \): \(|t| \leq 2\sqrt{p} \)

Need a prime-order (or with tiny cofactor) elliptic curve:

\[h \cdot \ell = \#E(\mathbb{F}_p), \quad \ell \text{ is prime}, \quad h \text{ tiny, e.g. } h = 1, 2 \]

- compute \(t \)
- slow to compute in 1985: can use \textit{supersingular curves} whose trace is known.
Supersingular elliptic curves

Example over \mathbb{F}_p, $p \geq 5$

$$E : y^2 = x^3 + x \mod \mathbb{F}_p, \quad p = 3 \mod 4$$

s.t. $t = 0$, $\#E(\mathbb{F}_p) = p + 1$.

take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.
Supersingular elliptic curves

Example over \mathbb{F}_p, $p \geq 5$

$$E : y^2 = x^3 + x / \mathbb{F}_p, \quad p = 3 \mod 4$$

s.t. $t = 0$, $\#E(\mathbb{F}_p) = p + 1$.

take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks

There exists a pairing e that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2}

where DLP is much easier.

Do not use supersingular curves.
Supersingular elliptic curves

Example over \mathbb{F}_p, $p \geq 5$

$$E : y^2 = x^3 + x \mod \mathbb{F}_p, \quad p = 3 \mod 4$$

s.t. $t = 0$, $\#E(\mathbb{F}_p) = p + 1$.

take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks

There exists a pairing e that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2}
where DLP is much easier.

Do not use supersingular curves.

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $G_T \subset \mathbb{F}_{p^2}$ of 326 bits.
Supersingular elliptic curves

Example over \mathbb{F}_p, $p \geq 5$

$$E : y^2 = x^3 + x / \mathbb{F}_p, \quad p = 3 \text{ mod } 4$$

s.t. $t = 0$, $\#E(\mathbb{F}_p) = p + 1$.

take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks
There exists a pairing e that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_p^2 where DLP is much easier.

Do not use supersingular curves.

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $G_T \subset \mathbb{F}_p^2$ of 326 bits.
Pairing-based cryptography

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $G_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \to \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $G_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

\[
e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \rightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}
\]

Attacks

- inversion of e: hard problem (exponential)
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $G_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \rightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e: hard problem (exponential)
- discrete logarithm computation in $E(\mathbb{F}_p)$: hard problem (exponential, in $O(\sqrt{\ell})$)
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbb{G}_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$ e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \rightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab} $$

Attacks

- inversion of e: hard problem (exponential)
- discrete logarithm computation in $E(\mathbb{F}_p)$: hard problem (exponential, in $O(\sqrt{\ell})$)
- discrete logarithm computation in \mathbb{F}_{p^n}: easier, subexponential → take a large enough field
Common target groups \mathbb{F}_{p^n}

- \mathbb{F}_{p^2} where E/\mathbb{F}_p is a supersingular curve
- $\mathbb{F}_{p^3}, \mathbb{F}_{p^4}, \mathbb{F}_{p^6}$ where E is an ordinary MNT curve
 [Miyaji Nakabayashi Takano 01]
- $\mathbb{F}_{p^{12}}$ where E is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:

- **hard** in \mathbb{F}_p where p is a 3072-bit prime
- **easy** in \mathbb{F}_{2^n} where $n = 3072$
 [Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]
- what about \mathbb{F}_{p^3} where p is a 1024-bit prime?
NFS algorithm to compute discrete logarithms

Input: finite field \mathbb{F}_{p^n}, generator g, target y

Output: discrete logarithm x of y in basis g, $g^x = y$
Relation collection and Linear algebra

1. Polynomial selection
2. Relation collection (cado-nfs: Gaudry, Grémy)
3. Linear algebra (cado-nfs: Thomé, Bouvier)

<table>
<thead>
<tr>
<th>log DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i < B</td>
</tr>
</tbody>
</table>

- We know the log of small elements in $\mathbb{Z}[x]/(f(x))$ and $\mathbb{Z}[x]/(g(x))$
- small elements are of the form $a_i - b_i x = p_i \in \mathbb{Z}[x]/(f(x))$, s.t. $|\text{Norm}(p_i)| = p_i < B$

4. Individual discrete logarithm
NFS algorithm for DL in GF(p^n)

How to generate relations?
Use two distinct rings $R_f = \mathbb{Z}[x]/(f(x))$, $R_g = \mathbb{Z}[x]/(g(x))$ and two maps ρ_f, ρ_g that map $x \in R_f$, resp. $x \in R_g$ to the same element $z \in GF(p^n)$:

\[
\begin{align*}
\rho_f &: x \in R_f \mapsto z, \\
\rho_g &: x \in R_g \mapsto z
\end{align*}
\]

$\mathbb{Z}[x]$

$R_f = \mathbb{Z}[x]/(f(x))$

$R_g = \mathbb{Z}[x]/(g(x))$

$GF(p^n) = GF(p)[z]/(\varphi(z))$
[Miyaji Nakabayashi Takano 01]

$E/\mathbb{F}_p : \ y^2 = x^3 + ax + b$, where

\[
\begin{align*}
a &= 0x22ffbb20cc052993fa27dc507800b624c650e4ff3d2 \\
b &= 0x1c7be6fa8da953b5624efc72406af7fa77499803d08 \\
p &= 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af \\
\ell &= 0xa60fd646ad409b3312c3b23ba64e082ad7b354d
\end{align*}
\]

such that

\[
\begin{align*}
x_0 &= -0x732c8cf5f983038060466 \\
t &= 6x_0 - 1 \\
p &= 12x_0^2 - 1 \\
\#E(\mathbb{F}_p) &= p + 1 - t = 7^2 \cdot 313 \cdot \ell
\end{align*}
\]
Polynomial selection: norm estimates

\[\log_2(\text{product of norms}), \quad \text{Bistritz–Lifshitz bound} \]

- JP, Conj, \((\deg f, \deg g) = (6, 3)\)
- GJL, \((\deg f, \deg g) = (4, 3)\)
- JLSV_1, \((\deg f, \deg g) = (3, 3)\)
- JLSV_2, \((\deg f, \deg g) = (4, 3)\)
Polynomial selection: norm estimates

<table>
<thead>
<tr>
<th>Method</th>
<th>Bits</th>
<th>Galois aut. order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joux–Pierrot and Conjugation</td>
<td>319</td>
<td>3</td>
</tr>
<tr>
<td>Generalized Joux–Lercier</td>
<td>310</td>
<td>–</td>
</tr>
<tr>
<td>JouxLercierSmartVercauteren JLSV1</td>
<td>326</td>
<td>3</td>
</tr>
</tbody>
</table>

Galois automorphism of order 3 → will obtain 3 times more relations for free

- **JLSV1**: $\sqrt{p} \approx 2^{85}$ possible polynomials f
- **Conjugation**: allow non-monic polynomials $\rightarrow \approx 2^{20}$ possible f
Polynomial Selection

Parameterized family:
\[\varphi(x, y) = x^3 - yx^2 - (y + 3)x - 1 \] s.t. \(\mathbb{Q}[x]/(\varphi(x)) \) has a degree 3 Galois automorphism \(x \mapsto -1 - 1/x \)

\(f(x) = \text{Resultant}_y(\varphi(x, y), A(y)) \) where \(A(y) = ay^2 - by + c \)

Precomputation (independant of \(p \)):
Enumerate many \(A \) s.t. \(\Delta(A) > 0, \|f\|_\infty \leq 2^9 \) and \(f \) has good smoothness properties (\(\alpha \), Murphy’s \(E \) value)
\(\rightarrow \) enumerated \(320749 \approx 2^{18} \) polys \(A(y) \), kept 4143 ones s.t. \(\alpha(f) < -1.5 \).

For each good \(f \):
1. compute a root \(y_0 \) mod \(p \) of \(P(y) \)
2. compute two rational reconstructions
 \(y_0 \equiv u_1/v_1 \equiv u_2/v_2 \) mod \(p \) s.t. \(|u_i|, |v_i| \approx \sqrt{p} \)
3. \(g_i \leftarrow v_i x^3 - u_i x^2 - (u_i + 3v_i)x - v_i \) so that \(g_i = v_i \varphi \) mod \(p \).
4. take the best linear combination \(g \leftarrow \lambda_1 g_1 + \lambda_2 g_2 \), where \(|\lambda_i| < 2^5 \).
Polynomial Selection

\[p = 908761003790427908077548955758380356675829026531247 \]

of 170 bits

\[A = 28y^2 + 16y - 109 \]

\[f = 28x^6 + 16x^5 - 261x^4 - 322x^3 + 79x^2 + 152x + 28 \]

\[\|f\|_\infty = 8.33 \text{ bits} \]

\[\alpha(f) = -2.9 \]

\[g = 24757815186639197370442122x^3 + 40806897040253680471775183x^2 \]

\[-33466548519663911639551183x - 24757815186639197370442122 \]

\[\|g\|_\infty = 85.01 \text{ bits} \]

\[\alpha(g) = -4.1 \]

Murphy’s E value:

\[\mathbb{E}(f, g) = 1.31 \cdot 10^{-12} \]
Smoothness bound $B = 50000000 (= 2^{25.6})$ on both sides
Special-q in $[B, 2^{27}]$

660 core-days (4-core Intel Xeon E5520 @ 2.27GHz).

$57 \cdot 10^6$ relations \rightarrow filtered \rightarrow

1982791×1982784 matrix with weight $w(M) = 396558692$.
The whole matrix would have 7 more columns for taking the 7
Schirokaurer Maps into account.
8 sequences in Block-Wiedemann algorithm.
8 Krylov sequences 250 core-days, four 16-code nodes / sequence
finding linear matrix generator 3.1 core-days / 64 cores
building solution 170 core-days
we were able to reconstruct virtual logarithms for 15196345 out of
the 15206761 elements of the bases (99.9%).

423 core-days on a cluster Intel Xeon E5-2650, 2.4GHz
Individual discrete logarithm

Take \(P_0 = [x_P, y_P] \in E(\mathbb{F}_p) \),
\[
x_P = \lfloor \pi 10^{50} \rfloor = 314159265358979323846264338327950288419716939937510
\]
\[
y_P = \sqrt{x_P^3 + ax_P + b} = 460095575547938627692618282835762310592027720907930
\]
and set Target \(E = P = [7^2 \cdot 313]P_0 \).

\(e \) is the reduced Tate pairing \(e_\ell(P, Q)^{(p^3-1)/\ell} \)

\[
E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z} \cong \langle G_1 \rangle \oplus \langle G_2 \rangle \text{ where }
\]
\(G_1 \) a generator of \(E(\mathbb{F}_p)[\ell] \)
\(G_2 \) a generator of \(E(\mathbb{F}_{p^3})[\ell] \cap \ker(\pi_p - [p]) \)

Target in \(\mathbb{F}_{p^3} \): \(T = e(P, G_2) \), Basis: \(g = e(G_1, G_2) \)
Change \(\mathbb{F}_{p^3} = \mathbb{F}_p[X]/(X^3 + X + 1) \) to \(\mathbb{F}_p[Z]/(\varphi(Z)) \)

\[
T = 0x11a2f1f13fa9b08703a033ee3c4321539156f865ee9+0x1098c3b7280ef2cf8b091d08197de0a9ba935ff79c6 \ Z
+0x221205020e7729cb46166a9edfd5acb3bf59dd0a7d4 \ Z^2
\]
\[
G_T = 0xd772111b150ec08f0ad89d987f1b037c630155608c+0xf956cab6840c7e909abc29584f1ae48ccbd39d698 \ Z
+0x205eb5b1e09f76bf0ef85efea3fdbc3827d43441b3 \ Z^2
\]
Individual discrete logarithm

Initial splitting: 32-core hours
preimage of g^{52154} in K_f has 59-bit-smooth norm
preimage of $g^{35313}T$ in K_f has 54-bit-smooth norm

Descent procedure: 13.4 hours.

Virtual log of g:
$vlog(g) = \text{0x8c58b6f0d8b2e99a1c0530b2649ec0c76501c3}$

virtual log of the target:
$vlog(T) = \text{0x48a6bcf57cacca997658c98a0c196c25116a0aa}$

Then $\log_g(T) = vlog(T)/vlog(g) \mod \ell$.

$\log(T) = \log(P) = \text{0x711d13ed75e05cc2ab2c9ec2c910a98288ec038} \mod \ell$.
Future work

- 600-bit DL record in $\mathbb{F}_{p^3}, \mathbb{F}_{p^4}, \mathbb{F}_{p^6}, \mathbb{F}_{p^{12}}$ (with Gaudry, Grémy, Morain, Thomé)
- Need new techniques for $\mathbb{F}_{p^4}, \mathbb{F}_{p^6}, \mathbb{F}_{p^{12}}$ ([Kim] and [Barbulescu–Gaudry–Kleinjung])
- Implementation in cado-nfs

Consequences:
Increase the size of the target groups \mathbb{F}_{p^n} in pairing-based cryptography

https://hal.inria.fr/hal-01320496