The knapsack algorithm in analytical chemistry

Myriam Guillevic, Aurore Guillevic, Martin K. Vollmer, Paul Schlauri, Matthias Hill, Lukas Emmenegger, Stefan Reimann

Laboratory for Air Pollution /Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf, Switzerland
Université de Lorraine, CNRS, Inria, LORIA Nancy, France

June 29, 2021
The software development team, 2018–2021

- Myriam Guillevic, PhD in Climate Sciences with V. Masson-Delmotte, now at Group for Climate Gases, EMPA, ETH, Dübendorf, Switzerland
 https://www.empa.ch/web/s503/climate-gases
 Like LNE-CNAM in France (Laboratoire National de Métrologie et d’Essais, Conservatoire National des Arts et Métiers)

- Aurore Guillevic, computer scientist, Inria Nancy, in 2017–2020: adjunct assistant professor, Introduction to algorithms and programming in Java (INF411, J.-C. Filliâtre), Python (CSE103, H. Zhou, I. Mackie) at École Polytechnique, Palaiseau, France
Aims

Trace gases: 0.066% of the (dry) atmosphere, gases other than nitrogen (78.1%), oxygen (20.9%) and argon (0.934%) (i.e. 99.934%, water vapor excluded).

- Measuring trace gases known to be present (e.g. CO$_2$, CH$_4$, CFCl$_3$): target screening (mass spectra in databases) e.g. banned or regulated substances (Montreal protocol)
- Searching for expected/potential pollutants (known to be used in industry) and start monitoring them before emissions to the atmosphere is rising: suspect screening (chemical compound known, e.g. HFO-1234yf)
- Searching for unexpected pollutants or unknown unknowns: non-target screening (detecting new substances in the air) e.g. industrial disaster (Lubrizol fire in Rouen in 2019, Beirut (Beyrouth) harbour explosion in 2020)
How to search for unknown unknowns?
Target screening: Aprecon – GC – ToF-MS

Gas Chromatography
GasPro column
Pre-concentration (APRECON)
Target screening: Aprecon – GC – ToF-MS

Gas Chromatography

GasPro column

Electron impact (EI)

Time-of-Flight

Mass spectrometer

Tofwerk AG

Pre-concentration (APRECON)

Gas Chromatography
GasPro column
Target screening: Aprecon – GC – ToF-MS

Electron impact (EI)
Time-of-Flight
Mass spectrometer
Tofwerk AG

Pre-concentration (APRECON)

Gas Chromatography
GasPro column

SCS meeting | 2020-08-25 | myriam.guillevic@empa.ch
EI ToF MS: Electron Ionisation Time-of-Flight Mass Spectrometer

source: air sample

column: different molecules finish at different retention times (RT)

electron ionisation (EI)

neutral fragments are lost

ionised fragments are detected

detector

mass (m/z)
Input data: mass spectrum

![Mass spectrum graph]

- Mass (m/z):
 - 34.97
 - 35.98
 - 36.97
 - 46.97
 - 48.97
 - 59.97
 - 81.94
 - 83.93
 - 85.93
 - 88.94
 - 97.93
 - 99.92
 - 116.91
 - 117.91
 - 118.91
 - 119.91
 - 120.9
 - 122.9

- Intensity (log):
 - 10^2
 - 10^3
 - 10^4
Aim: annotate the figure

Intensity (log)

mass (m/z)

10^2 10^3 10^4

CCl, CCl[37Cl], CCl_2, CCl_[37Cl], CCl_3

HCl, HCCl, HCCl_[37Cl], COCl, COCl_[37Cl], COCl_[37Cl]

[37Cl], [13C]Cl_3, [13C]Cl_2, [37Cl]

?
Target vs non-target screening

Target screening:

CFC-11
CFCl₃

Instrumental fingerprint

SCS meeting | 2020-08-25 | myriam.guillevic@empa.ch
Target vs non-target screening

Target screening:

- CFC-11
- CFCl₃

Instrumental fingerprint

Non-target screening

SCS meeting | 2020-08-25 | myriam.guillevic@empa.ch
Which atoms can be packed together to match the measured masses, ± u?

9 atoms: H, C, N, O, S, F, Cl, Br, I

Weight: 100.936 ± 0.0002 g/mol
(U = 2 ppm)
The knapsack algorithm

Inputs:
- measured mass intervals
- IUPAC masses of atoms

Run the knapsack on each interval, list all solutions.

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0078250319</td>
</tr>
<tr>
<td>B</td>
<td>11.00930536</td>
</tr>
<tr>
<td>C</td>
<td>12.</td>
</tr>
<tr>
<td>N</td>
<td>14.0030740074</td>
</tr>
<tr>
<td>O</td>
<td>15.9949146223</td>
</tr>
<tr>
<td>F</td>
<td>18.99840316</td>
</tr>
<tr>
<td>P</td>
<td>30.973762</td>
</tr>
<tr>
<td>S</td>
<td>31.97207073</td>
</tr>
<tr>
<td>Cl</td>
<td>34.96885271</td>
</tr>
<tr>
<td>Br</td>
<td>78.9183376</td>
</tr>
<tr>
<td>I</td>
<td>126.9044719</td>
</tr>
<tr>
<td>mass min</td>
<td>mass max</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>34.96751071</td>
<td>34.97006625</td>
</tr>
<tr>
<td>35.97413780</td>
<td>35.97778836</td>
</tr>
<tr>
<td>36.96406557</td>
<td>36.96750599</td>
</tr>
<tr>
<td>46.96648952</td>
<td>46.97028744</td>
</tr>
<tr>
<td>48.96255817</td>
<td>48.96840119</td>
</tr>
<tr>
<td>59.96022019</td>
<td>59.97131577</td>
</tr>
<tr>
<td>81.93308641</td>
<td>81.93953315</td>
</tr>
<tr>
<td>82.93831759</td>
<td>82.9511397</td>
</tr>
<tr>
<td>83.93024931</td>
<td>83.93724265</td>
</tr>
<tr>
<td>84.92634272</td>
<td>84.97112964</td>
</tr>
<tr>
<td>85.92419323</td>
<td>85.93924313</td>
</tr>
<tr>
<td>97.92364853</td>
<td>97.93896563</td>
</tr>
<tr>
<td>99.90729357</td>
<td>99.94127719</td>
</tr>
<tr>
<td>116.90200574</td>
<td>116.90847942</td>
</tr>
<tr>
<td>117.89455759</td>
<td>117.92205637</td>
</tr>
<tr>
<td>118.89897942</td>
<td>118.90567754</td>
</tr>
<tr>
<td>119.89648859</td>
<td>119.91785117</td>
</tr>
<tr>
<td>120.89523104</td>
<td>120.90302932</td>
</tr>
<tr>
<td>122.88755350</td>
<td>122.90537266</td>
</tr>
<tr>
<td>mass min</td>
<td>mass max</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>34.96751071</td>
<td>34.97006625</td>
</tr>
<tr>
<td>35.97413780</td>
<td>35.97778836</td>
</tr>
<tr>
<td>36.96406557</td>
<td>36.96750599</td>
</tr>
<tr>
<td>46.96648952</td>
<td>46.97028744</td>
</tr>
<tr>
<td>48.96255817</td>
<td>48.96840119</td>
</tr>
<tr>
<td>59.96022019</td>
<td>59.97131577</td>
</tr>
<tr>
<td>81.93308641</td>
<td>81.93953315</td>
</tr>
<tr>
<td>82.93831759</td>
<td>82.95111397</td>
</tr>
<tr>
<td>83.93024931</td>
<td>83.93724265</td>
</tr>
<tr>
<td>84.92634272</td>
<td>84.97112964</td>
</tr>
<tr>
<td>85.92419323</td>
<td>85.93924313</td>
</tr>
<tr>
<td>97.92364853</td>
<td>97.93896563</td>
</tr>
<tr>
<td>99.90729357</td>
<td>99.94127719</td>
</tr>
<tr>
<td>116.90200574</td>
<td>116.90847942</td>
</tr>
<tr>
<td>117.89455759</td>
<td>117.92205637</td>
</tr>
<tr>
<td>118.89897942</td>
<td>118.90567754</td>
</tr>
<tr>
<td>119.89648859</td>
<td>119.91785117</td>
</tr>
<tr>
<td>120.89523104</td>
<td>120.90302932</td>
</tr>
<tr>
<td>122.88755350</td>
<td>122.90537266</td>
</tr>
<tr>
<td>mass min</td>
<td>mass max</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>34.96751071</td>
<td>34.97006625</td>
</tr>
<tr>
<td>35.97413780</td>
<td>35.97778836</td>
</tr>
<tr>
<td>36.96406557</td>
<td>36.96750599</td>
</tr>
<tr>
<td>46.96648952</td>
<td>46.97028744</td>
</tr>
<tr>
<td>48.96255817</td>
<td>48.96840119</td>
</tr>
<tr>
<td>59.96022019</td>
<td>59.97131577</td>
</tr>
<tr>
<td>81.93308641</td>
<td>81.93953315</td>
</tr>
<tr>
<td>82.93831759</td>
<td>82.95111397</td>
</tr>
<tr>
<td>83.93024931</td>
<td>83.93724265</td>
</tr>
<tr>
<td>84.92634272</td>
<td>84.97112964</td>
</tr>
<tr>
<td>85.92419323</td>
<td>85.93924313</td>
</tr>
<tr>
<td>97.92364853</td>
<td>97.93896563</td>
</tr>
<tr>
<td>99.90729357</td>
<td>99.94127719</td>
</tr>
<tr>
<td>116.90200574</td>
<td>116.90847942</td>
</tr>
<tr>
<td>117.89455759</td>
<td>117.92205637</td>
</tr>
<tr>
<td>118.89897942</td>
<td>118.90567754</td>
</tr>
<tr>
<td>119.89648859</td>
<td>119.91785117</td>
</tr>
<tr>
<td>120.89523104</td>
<td>120.90302932</td>
</tr>
<tr>
<td>122.88755350</td>
<td>122.90537266</td>
</tr>
</tbody>
</table>
The knapsack algorithm in cryptography

Richard Schroeppel and Adi Shamir.
\[T = O(2^{n/2}), \quad S = O(2^{n/4}) \]
Algorithm for Certain NP-Complete Problems.

A. M. Odlyzko.
The rise and fall of knapsack cryptosystems.
In Carl Pomerance, editor, *Cryptology and Computational Number Theory*,
The knapsack algorithm in computer science

Divide-and-conquer method, target \([m_{\text{min}}, m_{\text{max}}]\):
(Thanks to Paul Zimmermann for pointing out the method)

1. Divide the element masses in two balanced sets \(A\) and \(B\)

2. In parallel:
 - List all possible sums in \([0, m_{\text{max}}]\) of masses from set \(A\), sort in increasing order \(\rightarrow S_A\)
 - List all possible sums in \([0, m_{\text{max}}]\) of masses from set \(B\), sort in increasing order \(\rightarrow S_B\)

3. Read onwards the masses from \(S_A\) and downwards the masses from \(S_B\), find matches \(m_{A,i} + m_{B,j} \in [m_{\text{min}}, m_{\text{max}}]\)

Linear complexity in \(\text{length}(S_A) + \text{length}(S_B)\)
Our knapsack algorithm in chemistry

Set A: masses of multi-valent atoms C (4), N (3), O (2), S (6)
Set B: masses of mono-valent atoms H, F, Cl, Br, I
Our knapsack algorithm in chemistry

Set A: masses of multi-valent atoms C (4), N (3), O (2), S (6)
Set B: masses of mono-valent atoms H, F, Cl, Br, I

1. List all sums in $[0, m_{\text{max}}]$ of masses from set A, sort in increasing order $\rightarrow S_A$
2. Compute maximum valence of each solution of $S_A \rightarrow \text{valence}_{\text{max}}$
Our knapsack algorithm in chemistry

Set \(A \): masses of multi-valent atoms C (4), N (3), O (2), S (6)
Set \(B \): masses of mono-valent atoms H, F, Cl, Br, I

1. List all sums in \([0, m_{\text{max}}]\) of masses from set \(A \), sort in increasing order \(\rightarrow S_A \)
2. Compute maximum valence of each solution of \(S_A \) \(\rightarrow \text{valence}_{\text{max}} \)
3. List all sums in \([0, m_{\text{max}}]\) of at most \(\text{valence}_{\text{max}} \) masses from set \(B \), sort in increasing order \(\rightarrow S_B \)
4. Read onwards the masses from \(S_A \) and downwards the masses from \(S_B \), find matches \(m_{A,i} + m_{B,j} \in [m_{\text{min}}, m_{\text{max}}] \) and check \(\text{DBE} \geq 0 \)

Linear complexity in \(\text{length}(S_A) + \text{length}(S_B) \)
Our knapsack algorithm in chemistry

Observe that:

- atoms in A are heavy (lightest one C of 12.0 m/z),
 $\text{valence}_{\text{max}} \leq 4 \cdot \frac{m_{\text{max}}}{12.0} = \frac{m_{\text{max}}}{3}$

- lightest atom $H \in B$ of mass 1.0078250319, but $\# H$ bounded by $\text{valence}_{\text{max}}$
 → in average, reduce the length of S_B by a factor 2
Other knapsack algorithm in analytical chemistry

SIRIUS software, AGPL https://github.com/boecker-lab/sirius
https://bio.informatik.uni-jena.de
Universität Jena, Germany, Bio-informatic group

 Sebastian Böcker and Zsuzsanna Liptak.
A fast and simple algorithm for the money changing problem.

 Kai Dührkop, Marcus Ludwig, Marvin Meusel, and Sebastian Böcker.
Faster mass decomposition.
Workflow: mimick fragmentation process

Molecular ion

\[\text{CCl}_4 \rightarrow e^- \rightarrow \text{CCl}^+ \rightarrow \text{CCl}_3^+ \rightarrow \text{CCl}_2^+ \rightarrow \text{Cl}^+ \]

Measured fragments
More about graph algorithms: CCl$_4$

- Singleton
- Maximal
- Node
- Leaf

Fragmentation graph of CCl$_4$
More about graph algorithms: CCl$_4$

Singleton, Maximal, Node, Leaf.

Pseudo-fragmentation graph of knapsack fragments w.r.t. partial order

Fragmentation graph of CCl$_4$
More about graph algorithms: CCl₄

Output of knapsack: a list of candidate fragment formulas

Define a partial order on the fragment formulas

Cl ≤ CCl ≤ CCl₂ ≤ CCl₃ ≤ HCCl₃, but COS incomparable

Build a Directed Acyclic Graph according to the ordering

Setting edges has quadratic complexity in the number of vertices (nodes)
More about graph algorithms: CCl₄

Output of knapsack: a list of candidate fragment formulas
Define a partial order on the fragment formulas
Cl ≤ CCl ≤ CCl₂ ≤ CCl₃ ≤ HCCl₃, but COS incomparable

Build a Directed Acyclic Graph according to the ordering
Setting edges has quadratic complexity in the number of vertices (nodes)

- Fragments in batches, per target interval mass, decreasing mass
- All fragments in one batch are incomparable (mass diff ≪ 1)
More about graph algorithms: CCl_4

Output of knapsack: a list of candidate fragment formulas

Define a partial order on the fragment formulas

$\text{Cl} \leq \text{CCl} \leq \text{CCl}_2 \leq \text{CCl}_3 \leq \text{HCCl}_3$, but COS incomparable

Build a Directed Acyclic Graph according to the ordering

Setting edges has quadratic complexity in the number of vertices (nodes)

- Fragments in batches, per target interval mass, decreasing mass
- All fragments in one batch are incomparable (mass diff $\ll 1$)

Much faster complexity, starting with the heaviest target mass

1. First batch: roots (maximal elements)
More about graph algorithms: CCl$_4$

Output of knapsack: a list of candidate fragment formulas
Define a partial order on the fragment formulas
$\text{Cl} \leq \text{CCl} \leq \text{CCl}_2 \leq \text{CCl}_3 \leq \text{HCCl}_3$, but COS incomparable
Build a Directed Acyclic Graph according to the ordering
Setting edges has quadratic complexity in the number of vertices (nodes)
• Fragments in batches, per target interval mass, decreasing mass
• All fragments in one batch are incomparable (mass diff $\ll 1$)

Much faster complexity, starting with the heaviest target mass

1. First batch: roots (maximal elements)
2. Process one batch of fragments as a whole
 2.1 Compare each fragment to the roots
 2.2 If a subfragment, recursively visit the children until it is a leaf, set a new edge from the parent node
 2.3 if incomparable to any root, keep it aside
More about graph algorithms: \(\text{CCl}_4 \)

Output of knapsack: a list of candidate fragment formulas

Define a partial order on the fragment formulas

\(\text{Cl} \leq \text{CCl} \leq \text{CCl}_2 \leq \text{CCl}_3 \leq \text{HCCl}_3 \), but COS incomparable

Build a Directed Acyclic Graph according to the ordering

Setting edges has quadratic complexity in the number of vertices (nodes)

- Fragments in batches, per target interval mass, decreasing mass
- All fragments in one batch are incomparable (mass diff \(\ll 1 \))

Much faster complexity, starting with the heaviest target mass

1. First batch: roots (maximal elements)
2. Process one batch of fragments as a whole
 2.1 Compare each fragment to the roots
 2.2 If a subfragment, recursively visit the children until it is a leaf, set a new edge from the parent node
 2.3 If incomparable to any root, keep it aside
3. Update the list of roots with the incomparable fragments of the batch
More about graph algorithms: CCl_4

- Singleton
- Maximal
- Node
- Leaf

CSBr
More about graph algorithms: CCl_4

Singleton, Maximal, Node, Leaf.

CSBr, C_2S_3
More about graph algorithms: CCl_4

Singleton, Maximal, Node, Leaf.

CCl, CSBr, C$_2$S$_3$, HCCl, OSCI$_2$, FS$_2$Cl, HOSNCl, F$_2$HCCl, CF$_2$Cl.
More about graph algorithms: CCl_4

- Singleton
- Maximal
- Node
- Leaf

Chemical structures:
- CSBr
- C_2S_3
- HCCl$_3$
- OSCl$_2$
- CCl$_3$
- FS$_2$Cl
More about graph algorithms: \(\text{CCl}_4 \)

- Singleton
- Maximal
- Node
- Leaf
More about graph algorithms: CCl_4

- Singleton, Maximal, Node, Leaf.

Diagram:
- CSBr
- C_2S_3
- HCCl_3
- H_2S_3
- OSCl_2
- NOC_2Cl_2
- COCl_2
- CCl_3
- HS_2Cl
- HO_2SCl
- FS_2Cl
More about graph algorithms: CCl₄

Singleton, Maximal, Node, Leaf.
More about graph algorithms: CCl_4

- Singleton
- Maximal
- Node
- Leaf

Graph with nodes labeled with chemical formulas: CSBr, C_2S_3, HCCl$_3$, H$_2$S$_3$, OSCl_2, NOCl$_2$, COCl$_2$, CCl$_3$, HS$_2$Cl, HO$_2$SCI, H$_2$OSCI, HNCl$_2$, H$_2$FS$_2$, FS$_2$Cl.
More about graph algorithms: CCl_4

Singleton, Maximal, Node, Leaf.
More about graph algorithms: \(\text{CCl}_4 \)

- Singleton
- Maximal
- Node
- Leaf

Diagram of molecular structures.
More about graph algorithms: \(\text{CCl}_4 \)

- **Singleton**
- **Maximal**
- **Node**
- **Leaf**

![Graph Diagram]

- CSBr
- \(\text{C}_2\text{S}_3 \)
- \(\text{HCCl}_3 \)
- \(\text{H}_2\text{S}_3 \)
- COS
- \(\text{OSCl}_2 \)
- \(\text{NOCl}_2 \)
- \(\text{COCl}_2 \)
- \(\text{CCl}_3 \)
- \(\text{HCCl}_2 \)
- \(\text{HS}_2\text{Cl} \)
- \(\text{HO}_2\text{SCl} \)
- \(\text{H}_2\text{OSCl} \)
- HNCl\(_2\)

- \(\text{H}_2\text{FS}_2 \)
- \(\text{FS}_2\text{Cl} \)
- \(\text{H}_2 \)
- \(\text{Cl} \)
- \(\text{FS}_2 \)
More about graph algorithms: CCl₄

Singleton, Maximal, Node, Leaf.
More about graph algorithms: CCl₄

Singleton, Maximal, Node, Leaf.
More about graph algorithms: CCl_4

- Singleton
- Maximal
- Node
- Leaf

Remove singletons
More about graph algorithms: CCl_4

- Singleton
- Maximal
- Node
- Leaf

Remove singletons
More about graph algorithms: CCl$_4$

Singleton, Maximal, Node, Leaf.

Remove singletons
Optimise isotopic profiles

Aim: eliminate all unlikely candidate formulas.

1. Compute the intensity profile of isotopologues →
2. Define a likelihood estimator
3. Fit the theoretic intensities to the measured signal (next slide)
4. Update pseudo-frag graph:
 Remove candidate formulas below LOD (limit of detection)
 Remove new singletons
Workflow: optimise isotopic ‘profiles’

knapsack

Isotopologue profiles

Python
lmfit

CCl_2^+

HCCl_2^+

OCl_2^+
Workflow: optimise isotopic ‘profiles’

knapsack

Isotopologue profiles

Python lmfit

Optimised contributions

\[
\text{Measured limit of detection (Nachweisgrenze)}
\]

\[
\begin{align*}
\text{Measured} & \quad \text{limit of detection} \\
\text{Nachweisgrenze} & \quad \text{limit of detection}
\end{align*}
\]
Workflow: optimise isotopic ‘profiles’

knapsack

Isotopologue profiles

- $^{13}\text{CCl}_2$
- CCl^{37}Cl

Python lmfit

- k_1
- k_2
- k_3

Optimised contributions

- Measured limit of detection
 - Nachweisgrenze

Species

- CCl_2^+
- HCCl_2^+
- CCI_2^+

23/30
Results – example for CCl$_4$

- 19 measured masses
- 23 knapsack solutions using C, H, N, O, S, F, Cl, Br, I
- 3 singletons removed
- 2 solutions < LOD
- 98% correctly assigned signal
- Runtime: 4 s on a laptop
Result: final graph for CCl$_4$
Result: final graph for CCl₄

Molecular Ion CCl₄ not in the graph!!!
In 40% of measured samples, the molecular ion is not measured (due to the Electron Ionisation technique)
New in Dübendorf air...

>75 newly found substances:

1,3-dichloropropane
CH₂FBr (~LOD)
Bromoethane (~LOD)
HCFC-225cb
Chloroethane
1-chloro-2-fluoroethene
Validation of the results

1. Buy the suspected substances on catalog
2. Measure with the same machine and same settings
3. Check Retention Time (RT), and mass spectra: peaks at same masses, same proportion of peak intensities

24 substances validated so far.

Issues:
- unavailable substances (exist, but cannot buy them on catalog)
- too toxic for shipping
- too costly ($1000/5g) (our threshold cost: $750/5g)
- all are banned substances
- special authorization from Ministry of Environment for customs department
Future Work

Solve the knapsack problem with LLL?

- François Morain says it will work
- Paul Zimmermann says it will work
- Léo Ducas says it will work

It’s only a question of time and human resources...
Conclusion

Fruitful collaboration between computer-scientist and environmental science researchers and engineers

- learned about chemistry
- learned about how to teach CS to senior researchers and engineers
- co-authors learned about algorithms, Python programming, software architecture, and development tools (git)

Python source code released on June 30, 2021 with LGPL license at https://gitlab.inria.fr/guillevi/alpinac/

Paper under review process at a computational chemistry journal
Preprint at https://hal.inria.fr/hal-03176025

EMPA will be looking to hire a computer scientist.