Co-factor clearing and subgroup membership testing in pairing groups

Aurore Guillevic

Aarhus University and Inria Nancy

July 4, 2022

https://members.loria.fr/AGuillevic/files/talks/22-Aarhus-Crypto-Day.pdf

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on $\boldsymbol{\mathsf{G}}_1$

Faster co-factor clearing

Ensuring correct subgroup membership testing in \mathbf{G}_2 and \mathbf{G}_T

References

Youssef El Housni and Aurore Guillevic. Families of SNARK-friendly 2-chains of elliptic curves. In Orr Dunkelman and Stefan Dziembowski, editors, *EUROCRYPT 2022*, volume 13276 of *LNCS*, pages 367–396. Springer, 2022. ePrint 2021/1359.

 Youssef El Housni, Aurore Guillevic, and Thomas Piellard.
 Co-factor clearing and subgroup membership testing on pairing-friendly curves.
 In Lejla Batina and Joan Daemen, editors, AFRICACRYPT'2022, LNCS, Fes, Morocco, 7 2022. Springer.
 to appear, ePrint 2022/352.

Outline

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on $\boldsymbol{\mathsf{G}}_1$

Faster co-factor clearing

Ensuring correct subgroup membership testing in ${f G}_2$ and ${f G}_{{\cal T}}$

Scalar multiplication on elliptic curves (Double-and-Add)

```
Input: Elliptic curve E over \mathbb{F}_a, point P \in E(\mathbb{F}_a), scalar m \in \mathbb{Z}
   Output: [m]P
 1 if m = 0 then
       return ()
 2
 3 if m < 0 then
    m \leftarrow -m^{\cdot} P \leftarrow -P
 4
5 write m in binary expansion m = \sum_{i=0}^{n-1} b_i 2^i, where b_i \in \{0, 1\}
6 R \leftarrow P
 7 for i = n - 2 downto 0 do
8 R \leftarrow [2]R
 9 if b_i = 1 then
   R \leftarrow R + P
10
11 return R
```

Scalar multiplication on elliptic curves (Double-and-Add)

```
Input: Elliptic curve E over \mathbb{F}_a, point P \in E(\mathbb{F}_a), scalar m \in \mathbb{Z}
   Output: [m]P
 1 if m = 0 then
       return ()
 2
 3 if m < 0 then
   m \leftarrow -m: P \leftarrow -P
 4
5 write m in binary expansion m = \sum_{i=0}^{n-1} b_i 2^i, where b_i \in \{0, 1\}
6 R \leftarrow P
 7 for i = n - 2 downto 0 do
8 R \leftarrow [2]R
 9 if b_i = 1 then
   R \leftarrow R + P
10
                                            \log_2 m (Dbl + \frac{1}{2} Add) in average
11 return R
```

Multi-scalar multiplication

Input: Elliptic curve *E* over \mathbb{F}_a , points $P, Q \in E(\mathbb{F}_a)$, scalars $m \ge m' > 0 \in \mathbb{Z}^{+*}$ **Output:** [m]P + [m']Q1 write $m = \sum_{i=0}^{n-1} b_i 2^i$, $m' = \sum_{i=0}^{n'-1} b'_i 2^i$, where $b_i, b'_i \in \{0, 1\}$ 2 $S \leftarrow P + Q$ 3 if n > n' then $R \leftarrow P$ 4 else $R \leftarrow S$ (n = n')5 for i = n - 2 downto 0 do $R \leftarrow [2]R$ 6 if $b_i = 1$ and n' > i and $b'_i = 1$ then 7 8 $R \leftarrow R + S$ else if $b_i = 1$ and $(n' < i \text{ or } b'_i = 0)$ then 9 $R \leftarrow R + P$ 10 else if $n' \ge i$ and $b'_i = 1$ then 11 $R \leftarrow R + O$ 12 13 return R

Multi-scalar multiplication

Input: Elliptic curve *E* over \mathbb{F}_a , points $P, Q \in E(\mathbb{F}_a)$, scalars $m \ge m' > 0 \in \mathbb{Z}^{+*}$ **Output:** [m]P + [m']Q1 write $m = \sum_{i=0}^{n-1} b_i 2^i$, $m' = \sum_{i=0}^{n'-1} b'_i 2^i$, where $b_i, b'_i \in \{0, 1\}$ 2 $S \leftarrow P + Q$ 3 if n > n' then $R \leftarrow P$ 4 else $R \leftarrow S$ (n = n')5 for i = n - 2 downto 0 do $R \leftarrow [2]R$ 6 if $b_i = 1$ and n' > i and $b'_i = 1$ then 7 8 $R \leftarrow R + S$ else if $b_i = 1$ and $(n' < i \text{ or } b'_i = 0)$ then 9 $R \leftarrow R + P$ 10 else if $n' \ge i$ and $b'_i = 1$ then 11 $R \leftarrow R + Q$ 12 $\log_2 m$ (Dbl + $\frac{3}{4}$ Add) in average 13 return R

Gallant–Lambert–Vanstone (GLV) with endomorphism

An example: j = 0Let $E: y^2 = x^3 + b$ defined over a prime field \mathbb{F}_q where $q = 1 \mod 3$.

$$egin{array}{rcl} \phi\colon {\cal E}({\mathbb F}_q)& o&{\cal E}({\mathbb F}_q)\ P(x,y)&\mapsto&(\omega x,y), \ {
m where}\ \omega\in {\mathbb F}_q,\ \omega^2+\omega+1=0 \end{array}$$

 ϕ is an **endomorphism** and $\phi^2 + \phi + 1 = 0$

 ℓ -torsion points Let $E: y^2 = x^3 + ax + b/\mathbb{F}_q$ $E[\ell] = \{P \in E: [\ell]P = \mathcal{O}\}$

and $\mathcal{O} \in E[\ell]$

 ℓ -torsion points

Let
$$E: y^2 = x^3 + ax + b/\mathbb{F}_q$$

$$E[\ell] = \{P \in E : [\ell]P = \mathcal{O}\}$$

and $\mathcal{O} \in E[\ell]$

Example

$$\ell = 2, q \ge 5$$
: points of order 2 have $y = 0 \iff x^3 + ax + b = 0$.
Factor $x^3 + ax + b$ in \mathbb{F}_q :

•
$$x^3 + ax + b$$
 has no root in \mathbb{F}_q : $E(\mathbb{F}_q)[2] = \{\mathcal{O}\}$
• $(x - e_0)(x^2 + ux + v)$ over \mathbb{F}_q : $E(\mathbb{F}_q)[2] = \{(e_0, 0), \mathcal{O}\}$
• $(x - e_0)(x - e_1)(x - e_2)$ over \mathbb{F}_q : $E(\mathbb{F}_q)[2] = \{(e_0, 0), (e_1, 0), (e_2, 0), \mathcal{O}\}$
There exists an extension \mathbb{F}_{q^i} such that $E(\mathbb{F}_{q^i})[2] = \{(x_0, 0), (x_1, 0), (x_2, 0), \mathcal{O}\}$

 ℓ -torsion points

Let
$$E: y^2 = x^3 + ax + b/\mathbb{F}_q$$

$$E[\ell] = \{P \in E : [\ell]P = \mathcal{O}\}$$

and $\mathcal{O} \in E[\ell]$

Example

$$\ell = 2, q \ge 5$$
: points of order 2 have $y = 0 \iff x^3 + ax + b = 0$.
Factor $x^3 + ax + b$ in \mathbb{F}_q :

•
$$x^3 + ax + b$$
 has no root in \mathbb{F}_q : $E(\mathbb{F}_q)[2] = \{\mathcal{O}\}$
• $(x - e_0)(x^2 + ux + v)$ over \mathbb{F}_q : $E(\mathbb{F}_q)[2] = \{(e_0, 0), \mathcal{O}\}$
• $(x - e_0)(x - e_1)(x - e_2)$ over \mathbb{F}_q : $E(\mathbb{F}_q)[2] = \{(e_0, 0), (e_1, 0), (e_2, 0), \mathcal{O}\}$
There exists an extension \mathbb{F}_{q^i} such that $E(\mathbb{F}_{q^i})[2] = \{(x_0, 0), (x_1, 0), (x_2, 0), \mathcal{O}\}$

 ℓ coprime to $q,\ \# E[\ell] = \ell^2$

ℓ -torsion points

Let ℓ coprime to q, the structure of the points of ℓ -torsion is

 $E[\ell] = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$

a $\mathbb{Z}/\ell\mathbb{Z}$ two-dimensional vector space. \rightarrow there exists a basis $\{P, Q\}$, with P, Q of order ℓ and "independent".

Endomorphism ϕ with basis $\{P, Q\}$ $\phi(P) = [a]P + [c]Q$ $\phi(Q) = [b]P + [d]Q$

$$\phi \leftrightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ w.r.t. basis } \{P, Q\}$$

Gallant–Lambert–Vanstone (GLV)

 $E: y^2 = x^3 + b$ ℓ is prime, $\ell \mid \#E(\mathbb{F}_q), \ \ell^2 \nmid \#E(\mathbb{F}_q)$:

 $P \in E(\mathbb{F}_q)[\ell], Q \notin E(\mathbb{F}_q)$ but over an extension of \mathbb{F}_q

$$\implies \phi(P) = [\lambda]P$$

where $\lambda \mod \ell$ is the **eigenvalue** of ϕ .

Gallant–Lambert–Vanstone (GLV)

 $E: y^2 = x^3 + b$ ℓ is prime, $\ell \mid \#E(\mathbb{F}_q), \ \ell^2 \nmid \#E(\mathbb{F}_q)$:

 $P \in E(\mathbb{F}_q)[\ell], Q \notin E(\mathbb{F}_q)$ but over an extension of \mathbb{F}_q

$$\implies \phi(P) = [\lambda]P$$

where $\lambda \mod \ell$ is the **eigenvalue** of ϕ .

To speed-up [m]P, decompose $m = m_0 + m_1\lambda$ with $|m_0|, |m_1| \approx \sqrt{\ell}$ and use $[m]P = [m_0]P + [m_1\lambda]P = [m_0]P + [m_1] \underbrace{\phi(P)}_{\text{cheap}}$ with **multi-scalar** multiplication $\frac{1}{2}\log_2\ell\left(\text{Dbl} + \frac{3}{4}\text{Add}\right)$

instead of $\log_2 |m| \left(\text{Dbl} + \frac{1}{2} \text{Add} \right) \implies \text{factor} \approx 2 \text{ speed-up but cost of decomposition}$

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on $\boldsymbol{\mathsf{G}}_1$

Faster co-factor clearing

Ensuring correct subgroup membership testing in G_2 and $G_{\mathcal{T}}$

Bilinear pairing

 $(\mathbf{G}_1, +), (\mathbf{G}_2, +), (\mathbf{G}_T, \cdot)$ three cyclic groups of large prime order ℓ Pairing: map $e : \mathbf{G}_1 \times \mathbf{G}_2 \to \mathbf{G}_T$

1. bilinear: $e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$, $e(P, Q_1 + Q_2) = e(P, Q_1) \cdot e(P, Q_2)$

- 2. non-degenerate: $e(G_1,G_2) \neq 1$ for $\langle G_1 \rangle = {f G}_1$, $\langle G_2 \rangle = {f G}_2$
- 3. efficiently computable.

Most often used in practice:

$$e([a]P, [b]Q) = e([b]P, [a]Q) = e(P, Q)^{ab}$$
.

Focus on G_1 : Endomorphism on an elliptic curve

$$E\colon y^2=x^3+b/\mathbb{F}_q, \,\, q=1 moded{modes} \ {f G}_1\subset E(\mathbb{F}_q) \ {f subgroup} \ {f of} \ {f prime order}$$

- $r = #\mathbf{G}_1$ is prime
- $r \mid \#E(\mathbb{F}_q)$
- $r^2 \nmid \#E(\mathbb{F}_q)$

 $\implies \phi$ acts as $[\lambda]$ in **G**₁, and $\lambda^2 + \lambda + 1 = 0 \mod r$

Given $m \in \mathbb{Z}/r\mathbb{Z}$, decompose $m = m_0 + m_1\lambda \mod r$ with $|m_0|, |m_1| \approx \sqrt{r}$

Focus on G_1 : Endomorphism on an elliptic curve

$$E: y^2 = x^3 + b/\mathbb{F}_q, \ q = 1 \mod 3, \ j(E) = 0$$
$$\mathbf{G}_1 \subset E(\mathbb{F}_q) \text{ subgroup of prime order}$$

- $r = #\mathbf{G}_1$ is prime
- $r \mid \#E(\mathbb{F}_q)$
- $r^2 \nmid \#E(\mathbb{F}_q)$
- $\implies \phi$ acts as $[\lambda]$ in **G**₁, and $\lambda^2 + \lambda + 1 = 0 \mod r$

Given $m \in \mathbb{Z}/r\mathbb{Z}$, decompose $m = m_0 + m_1\lambda \mod r$ with $|m_0|, |m_1| \approx \sqrt{r}$ No computable endomorphism on most of standard curves (NIST, Edwards 25519...) Exception: Four- \mathbb{Q} , characteristic 2 \mathbb{F}_{2^n} (next talk)

BLS12

Barreto, Lynn, Scott method to get pairing-friendly curves. Becomes more and more popular, replacing BN curves

$$E_{BLS}: y^2 = x^3 + b, \ q \equiv 1 \mod 3, \ D = -3 \ (ordinary)$$

$$q = (u-1)^2/3(u^4 - u^2 + 1) + u$$

$$t = u+1$$

$$r = (u^4 - u^2 + 1) = \Phi_{12}(u)$$

$$q+1-t = (u-1)^2/3(u^4 - u^2 + 1)$$

$$t^2 - 4q = -3y(u)^2 \rightarrow \text{ no CM method needed}$$

BLS12-381 with seed $u_0 = -0xd20100000010000$

BLS12 curves, testing if $P \in \mathbf{G}_1$ for $P \in E(\mathbb{F}_q)$

GLV trick: write $r_0 + r_1\lambda = 0 \mod r$ with λ the eigenvalue of $\phi \mod r$.

$$\lambda = -u^2, \ 1 + (1 - u^2)\lambda = r = u^4 - u^2 + 1$$

Compute $P + [1 - u^2]\phi(P) = ?O$ Works because ϕ is a distorsion map on the cofactor subgroup

$$P \in E(\mathbb{F}_q)[r] \implies \phi(P) = [\lambda]P$$

but no \iff in the general case unless r prime and $gcd(r, \#E(\mathbb{F}_q)/r) = 1$.

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on G_1

Faster co-factor clearing

Ensuring correct subgroup membership testing in ${f G}_2$ and ${f G}_{{\cal T}}$

BLS12

Order
$$\#E(\mathbb{F}_q) = 3\ell^2 r$$
 where $\ell = (u-1)/3$, $r = u^4 - u^2 + 1$

Co-factor clearing

Given $P \in E(\mathbb{F}_q)$ (e.g. result of a hash map $\{0,1\}^* \to E(\mathbb{F}_q)$), compute [c]P where $c = \#E(\mathbb{F}_q)/\#\mathbf{G}_1$

Wahby–Boneh, CHES'2019: $c=3\ell^2$ but no point of order $\ell^2,$ only points of order dividing ℓ

$$\implies$$
 compute only $[\ell]P$

Luck or generic pattern?

Schoof's theorem 3.7 (1987), simplified

René Schoof.

Nonsingular plane cubic curves over finite fields.

Journal of Combinatorial Theory, Series A, 46(2):183–211, 1987.

$$E[\ell] \subset E(\mathbb{F}_q) \iff \begin{cases} \ell^2 \mid \#E(\mathbb{F}_q) \\ \ell \mid q-1 \\ \ell \mid y \text{ where } t^2 - 4q = -Dy^2 \end{cases}$$

Generic pattern for all BLS curves

BLS-k curves, $3 \mid k$ • $c = (x-1)^2/3(x^{2k/3} + x^{k/3} + 1)/\Phi_k(x)$, $k = 3 \mod 6$ • $c = (x-1)^2/3(x^{k/3} - x^{k/6} + 1)/\Phi_k(x)$, $k = 0 \mod 6$ and $E(\mathbb{F}_q)[\ell] = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$ where $\ell = (x-1)/3$.

Other pairing-friendly curves

For all curves in the Taxonomy paper of Freeman, Scott, Teske,

- we identify the families such that the cofactor has a square factor
- we check the conditions of Schoof's theorem
- we list the curves with faster co-factor clearing: all but KSS and 6.6 where $k \equiv 2, 3 \mod 6$.

SageMath verification script at

gitlab.inria.fr/zk-curves/cofactor

Outline

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on G_1

Faster co-factor clearing

Ensuring correct subgroup membership testing in \textbf{G}_2 and $\textbf{G}_{\mathcal{T}}$

G₂ technicalities

 \mathbf{G}_2 is more tricky and the edomorphism is ψ , of characteristic polynomial

 $X^2 - tX + q$

where t is the trace of E over \mathbb{F}_{q} . GLV on $\mathbf{G}_{1} \to \text{GLS}$ (Galbraith Lin Scott) on \mathbf{G}_{2} A point $Q \in E'(\mathbb{F}_{q^{i}})$ has some eigenvalue μ under ψ is a *consequence* of Q having order r

- flaw in Scott's proof identified
- and fixed
- corner cases under control
- \rightarrow all safe as long as *r* is prime

$\mathbf{G}_{\mathcal{T}}$ membership testing

$$\mathbf{G}_{\mathcal{T}} = \mu_{\mathbf{r}} = \{ \mathbf{z} \in \mathbb{F}_{q^k}^*, \mathbf{z}^{\mathbf{r}} = 1 \}$$

Proposition

•
$$E: y^2 = x^3 + ax + b/\mathbb{F}_q$$

• prime $r \mid \#E(\mathbb{F}_q), r^2 \nmid \#E(\mathbb{F}_q)$
• $E[r] \subset E(\mathbb{F}_{q^k})$ and k is minimal $\iff \mathbf{G}_T \subset \mathbb{F}_{q^k}^*$
Let $z \in \mathbb{F}_{q^k}^*$.

$$z^{\Phi_k(q)}=1 ext{ and } z^q=z^{t-1} ext{ and } \gcd(q+1-t,\Phi_k(q))=r \implies z^r=1 \ (z\in \mathbf{G}_{\mathcal{T}})$$

Future work

- fix the problem of $m_0 + m_1\lambda = h \cdot r$ and h is not coprime to the cofactor hint of the fix in ePrint 2022/348
- alternative def of **G**₂: trace-zero subgroup, ker $\xi \circ (1 + \pi_q + \pi_{q^2} + \ldots + \pi_{q^{k-1}}) \circ \xi^{-1}$ early abort test?
- Apply to other curves, e.g. BW6 for 2-chain SNARKs