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Scalar multiplication on elliptic curves (Double-and-Add)

Input: Elliptic curve E over Fq, point P ∈ E (Fq), scalar m ∈ Z
Output: [m]P

1 if m = 0 then
2 return O
3 if m < 0 then
4 m← −m; P ← −P
5 write m in binary expansion m =

∑n−1
i=0 bi2i , where bi ∈ {0, 1}

6 R ← P
7 for i = n − 2 downto 0 do
8 R ← [2]R
9 if bi = 1 then

10 R ← R + P
11 return R

log2 m (Dbl + 1
2 Add) in average
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Multi-scalar multiplication
Input: Elliptic curve E over Fq, points P,Q ∈ E (Fq), scalars m ≥ m′ > 0 ∈ Z+∗

Output: [m]P + [m′]Q
1 write m =

∑n−1
i=0 bi2i , m′ =

∑n′−1
i=0 b′i2i , where bi , b′i ∈ {0, 1}

2 S ← P + Q
3 if n > n′ then R ← P
4 else R ← S (n = n′)
5 for i = n − 2 downto 0 do
6 R ← [2]R
7 if bi = 1 and n′ ≥ i and b′i = 1 then
8 R ← R + S
9 else if bi = 1 and (n′ < i or b′i = 0) then

10 R ← R + P
11 else if n′ ≥ i and b′i = 1 then
12 R ← R + Q
13 return R

log2 m (Dbl + 3
4 Add) in average
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Gallant–Lambert–Vanstone (GLV) with endomorphism

An example: j = 0
Let E : y2 = x3 + b defined over a prime field Fq where q = 1 mod 3.

φ : E (Fq) → E (Fq)
P(x , y) 7→ (ωx , y), where ω ∈ Fq, ω

2 + ω + 1 = 0

φ is an endomorphism and φ2 + φ+ 1 = 0
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`-torsion points
Let E : y2 = x3 + ax + b/Fq

E [`] = {P ∈ E : [`]P = O}

and O ∈ E [`]

Example
` = 2, q ≥ 5: points of order 2 have y = 0 ⇐⇒ x3 + ax + b = 0.
Factor x3 + ax + b in Fq:
• x3 + ax + b has no root in Fq: E (Fq)[2] = {O}
• (x − e0)(x2 + ux + v) over Fq: E (Fq)[2] = {(e0, 0),O}
• (x − e0)(x − e1)(x − e2) over Fq: E (Fq)[2] = {(e0, 0), (e1, 0), (e2, 0),O}

There exists an extension Fqi such that E (Fqi )[2] = {(x0, 0), (x1, 0), (x2, 0),O}

` coprime to q, #E [`] = `2
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`-torsion points

Let ` coprime to q, the structure of the points of `-torsion is

E [`] = Z/`Z× Z/`Z

a Z/`Z two-dimensional vector space.
→ there exists a basis {P,Q}, with P,Q of order ` and “independent”.

Endomorphism φ with basis {P,Q}
φ(P) = [a]P + [c]Q
φ(Q) = [b]P + [d ]Q

φ↔
[
a b
c d

]
w.r.t. basis {P,Q}
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Gallant–Lambert–Vanstone (GLV)
E : y2 = x3 + b
` is prime, ` | #E (Fq), `2 - #E (Fq):

P ∈ E (Fq)[`],Q /∈ E (Fq) but over an extension of Fq

=⇒ φ(P) = [λ]P

where λ mod ` is the eigenvalue of φ.

To speed-up [m]P, decompose m = m0 + m1λ with |m0|, |m1| ≈
√
` and use

[m]P = [m0]P + [m1λ]P = [m0]P + [m1]φ(P)︸ ︷︷ ︸
cheap

with multi-scalar mutliplication

1
2 log2 `

(
Dbl + 3

4Add
)

instead of log2 |m|
(
Dbl + 1

2Add
)

=⇒ factor ≈ 2 speed-up but cost of decomposition
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Bilinear pairing

(G1,+), (G2,+), (GT , ·) three cyclic groups of large prime order `
Pairing: map e : G1 × G2 → GT

1. bilinear: e(P1 + P2,Q) = e(P1,Q) · e(P2,Q), e(P,Q1 + Q2) = e(P,Q1) · e(P,Q2)
2. non-degenerate: e(G1,G2) 6= 1 for 〈G1〉 = G1, 〈G2〉 = G2

3. efficiently computable.
Most often used in practice:

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P,Q)ab .
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Focus on G1: Endomorphism on an elliptic curve

E : y2 = x3 + b/Fq, q = 1 mod 3, j(E ) = 0

G1 ⊂ E (Fq) subgroup of prime order

• r = #G1 is prime
• r | #E (Fq)
• r2 - #E (Fq)

=⇒ φ acts as [λ] in G1, and λ2 + λ+ 1 = 0 mod r
Given m ∈ Z/rZ, decompose m = m0 + m1λ mod r with |m0|, |m1| ≈

√
r

No computable endomorphism on most of standard curves (NIST, Edwards 25519. . .)
Exception: Four-Q, characteristic 2 F2n (next talk)
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BLS12

Barreto, Lynn, Scott method to get pairing-friendly curves.
Becomes more and more popular, replacing BN curves

EBLS : y2 = x3 + b, q ≡ 1 mod 3, D = −3 (ordinary)

q = (u − 1)2/3(u4 − u2 + 1) + u
t = u + 1
r = (u4 − u2 + 1) = Φ12(u)

q + 1− t = (u − 1)2/3(u4 − u2 + 1)
t2 − 4q = −3y(u)2 → no CM method needed

BLS12-381 with seed u0 =-0xd201000000010000
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BLS12 curves, testing if P ∈ G1 for P ∈ E (Fq)

GLV trick: write r0 + r1λ = 0 mod r
with λ the eigenvalue of φ mod r .

λ = −u2, 1 + (1− u2)λ = r = u4 − u2 + 1

Compute P + [1− u2]φ(P) =?O
Works because φ is a distorsion map on the cofactor subgroup

P ∈ E (Fq)[r ] =⇒ φ(P) = [λ]P

but no ⇐⇒ in the general case unless r prime and gcd(r ,#E (Fq)/r) = 1.
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BLS12

Order #E (Fq) = 3`2r where ` = (u − 1)/3, r = u4 − u2 + 1

Co-factor clearing
Given P ∈ E (Fq) (e.g. result of a hash map {0, 1}∗ → E (Fq)), compute [c]P where
c = #E (Fq)/#G1

Wahby–Boneh, CHES’2019: c = 3`2 but no point of order `2, only points of order
dividing `

=⇒ compute only [`]P

Luck or generic pattern?
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Schoof’s theorem 3.7 (1987), simplified

René Schoof.
Nonsingular plane cubic curves over finite fields.
Journal of Combinatorial Theory, Series A, 46(2):183–211, 1987.

E [`] ⊂ E (Fq) ⇐⇒


`2 | #E (Fq)
` | q − 1
` | y where t2 − 4q = −Dy2

Generic pattern for all BLS curves
BLS-k curves, 3 | k
• c = (x − 1)2/3(x2k/3 + xk/3 + 1)/Φk(x), k = 3 mod 6
• c = (x − 1)2/3(xk/3 − xk/6 + 1)/Φk(x), k = 0 mod 6

and E (Fq)[`] = Z/`Z× Z/`Z where ` = (x − 1)/3.
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Other pairing-friendly curves

For all curves in the Taxonomy paper of Freeman, Scott, Teske,
• we identify the families such that the cofactor has a square factor
• we check the conditions of Schoof’s theorem
• we list the curves with faster co-factor clearing: all but KSS and 6.6 where

k ≡ 2, 3 mod 6.
SageMath verification script at

gitlab.inria.fr/zk-curves/cofactor
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G2 technicalities

G2 is more tricky and the edomorphism is ψ, of characteristic polynomial

X 2 − tX + q

where t is the trace of E over Fq.
GLV on G1 → GLS (Galbraith Lin Scott) on G2
A point Q ∈ E ′(Fqi ) has some eigenvalue µ under ψ is a consequence of Q having
order r
• flaw in Scott’s proof identified
• and fixed
• corner cases under control
→ all safe as long as r is prime

21/23



GT membership testing

GT = µr = {z ∈ F∗qk , z r = 1}

Proposition
• E : y2 = x3 + ax + b/Fq
• prime r | #E (Fq), r2 - #E (Fq)
• E [r ] ⊂ E (Fqk ) and k is minimal ⇐⇒ GT ⊂ F∗qk

Let z ∈ F∗qk .

zΦk (q) = 1 and zq = z t−1 and gcd(q + 1− t,Φk(q)) = r =⇒ z r = 1 (z ∈ GT )
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Future work

• fix the problem of m0 + m1λ = h · r and h is not coprime to the cofactor
hint of the fix in ePrint 2022/348
• alternative def of G2: trace-zero subgroup, ker ξ ◦ (1+πq +πq2 + . . .+πqk−1)◦ ξ−1

early abort test?
• Apply to other curves, e.g. BW6 for 2-chain SNARKs
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