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Scalar multiplication on elliptic curves (Double-and-Add)

Input: Elliptic curve E over Fg, point P € E(F,), scalar m € Z
Output: [m]P
if m =0 then

return O
if m <0 then

m<+ —m; P+ —P
write m in binary expansion m = Zf’;ol b2, where b; € {0,1}
R+ P
for i = n— 2 downto 0 do

R+ [2]R

if b =1 then

R—~R+P

return R

© O N o g & W N =

-
- o
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Scalar multiplication on elliptic curves (Double-and-Add)

Input: Elliptic curve E over Fg, point P € E(F,), scalar m € Z
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if m =0 then
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write m in binary expansion m = Z,f';ol b2, where b; € {0,1}
R+ P
for i = n— 2 downto 0 do

R+ [2]R

if b =1 then

R—~R+P

return R log, m (Dbl + } Add) in average
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Multi-scalar multiplication

© 0 N o a0 & WO N =

[
N = O

-
w

Input: Elliptic curve E over Fy, points P, Q € E(F,), scalars m > m’' >0 € Z**

Output: [m]|P + [m']Q
write m = S0 b2l m' = YL b2, where by, b) € {0,1}
S« P+Q
if n>n"then R+ P
else R+ S (n=1n')
for i = n— 2 downto 0 do
R+ [2]R
if by =1 and " > i and b} =1 then
R+<R+S
else if b; =1 and (n" < i or b} = 0) then
R+~ R+P
else if n > i and b} =1 then
R+ R+Q
return R
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Multi-scalar multiplication

© 0 N o a0 & WO N =
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Input: Elliptic curve E over Fy, points P, Q € E(F,), scalars m > m’' >0 € Z**
Output: [m]P —i— [m']Q
write m = S0 b2l m' = YL b2, where by, b) € {0,1}
S+ P+Q
if n>n' then R+ P
else R+ S (n=1n')
for i = n — 2 downto 0 do
R« [2]R
if by =1 and " > i and b} =1 then
R+~R+S
else if b; =1 and (n" < i or b} = 0) then
R+~R+P
else if n > i and b} =1 then
R+ R+Q
return R log, m (Dbl + 2 Add) in average
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Gallant-Lambert—Vanstone (GLV) with endomorphism

An example: j =0
Let E: y? = x3 + b defined over a prime field Fq where g =1 mod 3.

¢: E(Fq) — E(Fq)
P(x,y) ~ (wx,y), wherew € Fg, w?+w+1=0

¢ is an endomorphism and ¢?> + ¢ +1 =0
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(-torsion points
Let E: y2 = x3 + ax + b/Fy

E[f] = {P € E: [P = O}

and O € E[/]
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(-torsion points
Let E: y2 = x3 + ax + b/Fy

E[f] = {P € E: [P = O}

and O € E[/]

Example

¢ =2, q>5: points of order 2 have y =0 <= x3+ax+ b =0.
Factor x3 + ax + b in Fy:

® x3 + ax + b has no root in Fy: E(F,)[2] = {O}

® (x —ep)(x?+ ux + v) over Fy: E(Fy)[2] = {(e0,0), O}

® (x —ep)(x — e1)(x — &) over Fy: E(IFq)[2] = {(e0,0), (e1,0), (e2,0),0}
There exists an extension F,i such that E(F.)[2] = {(x0,0), (x1,0), (x2,0), O}
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(-torsion points
Let E: y2 = x3 + ax + b/Fy

E[f] = {P € E: [P = O}

and O € E[/]

Example

¢ =2, q>5: points of order 2 have y =0 <= x3+ax+ b =0.
Factor x3 + ax + b in Fy:

® x3 + ax + b has no root in Fy: E(F,)[2] = {O}

® (x —ep)(x?+ ux + v) over Fy: E(Fy)[2] = {(e0,0), O}

® (x —ep)(x — e1)(x — &) over Fy: E(IFq)[2] = {(e0,0), (e1,0), (e2,0),0}
There exists an extension F,i such that E(F.)[2] = {(x0,0), (x1,0), (x2,0), O}

¢ coprime to q, #E[(] = ¢?
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(-torsion points

Let £ coprime to g, the structure of the points of /-torsion is
E0)=Z/0Z xZ]lZ

a Z/V{Z two-dimensional vector space.
— there exists a basis {P, Q}, with P, Q of order ¢ and "independent”.

Endomorphism ¢ with basis {P, Q}

¢(P) = [a]P +[c]@
$(Q) = [b]P +[d]Q

RS [i Z} w.r.t. basis {P, Q}

9/23



Gallant-Lambert—Vanstone (GLV)

E:y>=x3+b
Cis prime, ¢ | #E(Fy), (2t #E(F,):

P e E(Fg)[4], Q@ ¢ E(Fg) but over an extension of [

= ¢(P)=[\P

where A mod /£ is the eigenvalue of ¢.
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Gallant-Lambert—Vanstone (GLV)
E:y>=x3+b
Cis prime, ¢ | #E(Fy), (2t #E(F,):
P e E(Fg)[4], Q@ ¢ E(Fg) but over an extension of [

= o(P) =[P
where A mod /£ is the eigenvalue of ¢.
To speed-up [m]P, decompose m = mg + my\ with |mg|, |m1| =~ v/¢ and use
[m]P = [mg] P + [mA]P = [mg] P + [m1] ¢(P) with multi-scalar mutliplication
~——
cheap

1
log, ¢ (Dbl + iAdd)

2
instead of log, |m| (Dbl + %Add) — factor ~ 2 speed-up but cost of decomposition
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Subgroup membership testing with GLV on G
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Bilinear pairing

(G1,+),(G2,4), (G, ) three cyclic groups of large prime order ¢
Pairing: map e: G; x G = G

1. bilinear: e(P1+ P2, Q) = e(P1, Q) - (P2, Q), e(P, @1 + Q2) = e(P, Q1) - (P, Q)
2. non-degenerate: e(Gi, Go) # 1 for (G1) = G1, (G2) = G2
3. efficiently computable.

Most often used in practice:

e([a]P, [b]Q) = e([b]P, [a] Q) = e(P, Q)ab _
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Focus on G;: Endomorphism on an elliptic curve

E:y?>=x>+b/F,;, g=1mod3, j(E)=0
G C E(Fg) subgroup of prime order

® r = #G; is prime
o 1| HE(F,)
o r*{ #E(Fq)
— ¢ actsas [\ in Gy, and A2+ A +1=0mod r

Given m € Z/rZ, decompose m = mg + my A mod r with |mgl, |mi| = \/r
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Focus on G;: Endomorphism on an elliptic curve

E:y?>=x>+b/F,;, g=1mod3, j(E)=0
G C E(Fg) subgroup of prime order

® r = #G; is prime
o 1| HE(F,)
o r*{ #E(Fq)
— ¢ actsas [\ in Gy, and A2+ A +1=0mod r

Given m € Z/rZ, decompose m = my + mi\ mod r with |mg|, |m1| =~ /r
No computable endomorphism on most of standard curves (NIST, Edwards 25519. . .)
Exception: Four-Q, characteristic 2 Fon (next talk)
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BLS12

Barreto, Lynn, Scott method to get pairing-friendly curves.
Becomes more and more popular, replacing BN curves

Egis: y>=x3+b, g=1mod3, D= —3 (ordinary)

g = (u—1)2/3*—v?>+1)+u

t = u+1
ro= (v*—u?+1)=dp(v)
g+1—-t = (uv—1)2/3(u*-uv?>+1)
t>?—4qg = -3y(u)> — no CM method needed

BLS12-381 with seed up =-0xd201000000010000
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BLS12 curves, testing if P € Gy for P € E(F,)

GLV trick: write rp + nA =0 mod r
with A the eigenvalue of ¢ mod r.

A= 1+(1-’)A=r=uv*—-1”+1

Compute P + [1 — u?]¢(P) =70
Works because ¢ is a distorsion map on the cofactor subgroup

P e E(Fg)lr] = o(P) =[AP

but no <= in the general case unless r prime and ged(r, #E(Fg)/r) = 1.
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Faster co-factor clearing
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BLS12

Order #E(Fg) = 30%r where £ = (u—1)/3, r=u*—v?>+1

Co-factor clearing
Given P € E(FF,) (e.g. result of a hash map {0,1}* — E(Fg)), compute [c]P where
¢ = #E(Fq)/#Gl
Wahby—Boneh, CHES'2019: ¢ = 3/? but no point of order ¢2, only points of order
dividing /¢

= compute only [¢(]P

Luck or generic pattern?
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Schoof's theorem 3.7 (1987), simplified

[ René Schoof.
Nonsingular plane cubic curves over finite fields.

Journal of Combinatorial Theory, Series A, 46(2):183-211, 1987.

(2 | #E(Fq)
Ef] CE(Fq) <  {]|q—1
| y where t?> — 4q = —Dy?
Generic pattern for all BLS curves
BLS-k curves, 3| k
o c=(x—1)%/3(x?/3 £ xK3 £ 1) /d(x), k =3 mod 6
o c=(x—1)2/3(xk/3 — xk/® 1-1)/®4(x), k =0 mod 6
and E(Fq)[¢] = Z/VZ x Z/lZ where { = (x — 1)/3.
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Other pairing-friendly curves

For all curves in the Taxonomy paper of Freeman, Scott, Teske,
® we identify the families such that the cofactor has a square factor

® we check the conditions of Schoof's theorem

® we list the curves with faster co-factor clearing: all but KSS and 6.6 where
k=2,3 mod 6.

SageMath verification script at

gitlab.inria.fr/zk-curves/cofactor
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Ensuring correct subgroup membership testing in Gy and Gt
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G, technicalities

G5 is more tricky and the edomorphism is 1, of characteristic polynomial
X?—tX+q

where t is the trace of E over Fg.

GLV on G; — GLS (Galbraith Lin Scott) on G2

A point Q € E'(F,i) has some eigenvalue y under 1 is a consequence of Q having
order r

® flaw in Scott’s proof identified
® and fixed
® corner cases under control

— all safe as long as r is prime
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G+ membership testing

Gr=u={z€F, 2z =1}

Proposition

e £:y?2=x3+ax+ b/F,

o prime r | #E(F,), r? 1 #E(F,)

® E[r] C E(Fu) and k is minimal <= Gt C Fo
Let z € IFZk.

7@ =1and 29 =z and ged(g+1—t,d(q)) =r = 2" =1 (z€Gr)
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Future work

® fix the problem of mg 4+ miA = h-r and h is not coprime to the cofactor
hint of the fix in ePrint 2022/348

® alternative def of Gy: trace-zero subgroup, ker o (1 +mg+mge + ...+ Tg-1)0 ¢t
early abort test?

e Apply to other curves, e.g. BW6 for 2-chain SNARKSs
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