Co-factor clearing and subgroup membership testing in pairing groups

Aurore Guillevic

Aarhus University and Inria Nancy

$$
\text { July 4, } 2022
$$

https://members.loria.fr/AGuillevic/files/talks/22-Aarhus-Crypto-Day.pdf

Outline

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on \mathbf{G}_{1}

Faster co-factor clearing

Ensuring correct subgroup membership testing in \mathbf{G}_{2} and \mathbf{G}_{T}

References

E Youssef El Housni and Aurore Guillevic.
Families of SNARK-friendly 2-chains of elliptic curves.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, volume 13276 of LNCS, pages 367-396. Springer, 2022. ePrint 2021/1359.
囯 Youssef El Housni, Aurore Guillevic, and Thomas Piellard.
Co-factor clearing and subgroup membership testing on pairing-friendly curves. In Lejla Batina and Joan Daemen, editors, AFRICACRYPT'2022, LNCS, Fes, Morocco, 7 2022. Springer.
to appear, ePrint 2022/352.

Outline

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on \mathbf{G}_{1}

Faster co-factor clearing

Ensuring correct subgroup membership testing in \mathbf{G}_{2} and \mathbf{G}_{T}

Scalar multiplication on elliptic curves (Double-and-Add)

Input: Elliptic curve E over \mathbb{F}_{q}, point $P \in E\left(\mathbb{F}_{q}\right)$, scalar $m \in \mathbb{Z}$ Output: $[m] P$
1 if $m=0$ then
2 return \mathcal{O}
3 if $m<0$ then
$4 \quad m \leftarrow-m ; P \leftarrow-P$
5 write m in binary expansion $m=\sum_{i=0}^{n-1} b_{i} 2^{i}$, where $b_{i} \in\{0,1\}$
$6 R \leftarrow P$
7 for $i=n-2$ downto 0 do
$8 \quad R \leftarrow[2] R$
9 if $b_{i}=1$ then
$10 \quad R \leftarrow R+P$
11 return R

Scalar multiplication on elliptic curves (Double-and-Add)

Input: Elliptic curve E over \mathbb{F}_{q}, point $P \in E\left(\mathbb{F}_{q}\right)$, scalar $m \in \mathbb{Z}$ Output: $[m] P$
1 if $m=0$ then
2 return \mathcal{O}
3 if $m<0$ then
$4 \quad m \leftarrow-m ; P \leftarrow-P$
5 write m in binary expansion $m=\sum_{i=0}^{n-1} b_{i} 2^{i}$, where $b_{i} \in\{0,1\}$
$6 R \leftarrow P$
7 for $i=n-2$ downto 0 do
$8 \quad R \leftarrow[2] R$
$9 \quad$ if $b_{i}=1$ then
$10 \quad R \leftarrow R+P$
11 return $R \quad \log _{2} m\left(\mathbf{D b l}+\frac{1}{2}\right.$ Add) in average

Multi-scalar multiplication

Input: Elliptic curve E over \mathbb{F}_{q}, points $P, Q \in E\left(\mathbb{F}_{q}\right)$, scalars $m \geq m^{\prime}>0 \in \mathbb{Z}^{+*}$ Output: $[m] P+\left[m^{\prime}\right] Q$
1 write $m=\sum_{i=0}^{n-1} b_{i} 2^{i}, m^{\prime}=\sum_{i=0}^{n^{\prime}-1} b_{i}^{\prime} 2^{i}$, where $b_{i}, b_{i}^{\prime} \in\{0,1\}$
$2 S \leftarrow P+Q$
3 if $n>n^{\prime}$ then $R \leftarrow P$
4 else $R \leftarrow S \quad\left(n=n^{\prime}\right)$
5 for $i=n-2$ downto 0 do
$6 \quad R \leftarrow[2] R$
7 if $b_{i}=1$ and $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then
$8 \quad R \leftarrow R+S$
$9 \quad$ else if $b_{i}=1$ and $\left(n^{\prime}<i\right.$ or $\left.b_{i}^{\prime}=0\right)$ then
$10 \quad R \leftarrow R+P$
11 else if $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then
12

$$
R \leftarrow R+Q
$$

13 return R

Multi-scalar multiplication

Input: Elliptic curve E over \mathbb{F}_{q}, points $P, Q \in E\left(\mathbb{F}_{q}\right)$, scalars $m \geq m^{\prime}>0 \in \mathbb{Z}^{+*}$ Output: $[m] P+\left[m^{\prime}\right] Q$
1 write $m=\sum_{i=0}^{n-1} b_{i} 2^{i}, m^{\prime}=\sum_{i=0}^{n^{\prime}-1} b_{i}^{\prime} 2^{i}$, where $b_{i}, b_{i}^{\prime} \in\{0,1\}$
$2 S \leftarrow P+Q$
3 if $n>n^{\prime}$ then $R \leftarrow P$
4 else $R \leftarrow S \quad\left(n=n^{\prime}\right)$
5 for $i=n-2$ downto 0 do
$6 \quad R \leftarrow[2] R$
7 if $b_{i}=1$ and $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then
$8 \quad R \leftarrow R+S$
$9 \quad$ else if $b_{i}=1$ and $\left(n^{\prime}<i\right.$ or $\left.b_{i}^{\prime}=0\right)$ then
$10 \quad R \leftarrow R+P$
11 else if $n^{\prime} \geq i$ and $b_{i}^{\prime}=1$ then
$12 \quad R \leftarrow R+Q$
13 return R
$\log _{2} m\left(\mathrm{Dbl}+\frac{3}{4}\right.$ Add) in average

Gallant-Lambert-Vanstone (GLV) with endomorphism

An example: $j=0$
Let $E: y^{2}=x^{3}+b$ defined over a prime field \mathbb{F}_{q} where $q=1 \bmod 3$.

$$
\begin{aligned}
\phi: E\left(\mathbb{F}_{q}\right) & \rightarrow E\left(\mathbb{F}_{q}\right) \\
P(x, y) & \mapsto(\omega x, y), \text { where } \omega \in \mathbb{F}_{q}, \omega^{2}+\omega+1=0
\end{aligned}
$$

ϕ is an endomorphism and $\phi^{2}+\phi+1=0$

ℓ-torsion points

Let $E: y^{2}=x^{3}+a x+b / \mathbb{F}_{q}$

$$
E[\ell]=\{P \in E:[\ell] P=\mathcal{O}\}
$$

and $\mathcal{O} \in E[\ell]$

ℓ-torsion points

Let $E: y^{2}=x^{3}+a x+b / \mathbb{F}_{q}$

$$
E[\ell]=\{P \in E:[\ell] P=\mathcal{O}\}
$$

and $\mathcal{O} \in E[\ell]$

Example

$\ell=2, q \geq 5$: points of order 2 have $y=0 \Longleftrightarrow x^{3}+a x+b=0$.
Factor $x^{3}+a x+b$ in \mathbb{F}_{q} :

- $x^{3}+a x+b$ has no root in $\mathbb{F}_{q}: E\left(\mathbb{F}_{q}\right)[2]=\{\mathcal{O}\}$
- $\left(x-e_{0}\right)\left(x^{2}+u x+v\right)$ over $\mathbb{F}_{q}: E\left(\mathbb{F}_{q}\right)[2]=\left\{\left(e_{0}, 0\right), \mathcal{O}\right\}$
- $\left(x-e_{0}\right)\left(x-e_{1}\right)\left(x-e_{2}\right)$ over $\mathbb{F}_{q}: E\left(\mathbb{F}_{q}\right)[2]=\left\{\left(e_{0}, 0\right),\left(e_{1}, 0\right),\left(e_{2}, 0\right), \mathcal{O}\right\}$

There exists an extension $\mathbb{F}_{q^{\prime}}$ such that $E\left(\mathbb{F}_{q^{\prime}}\right)[2]=\left\{\left(x_{0}, 0\right),\left(x_{1}, 0\right),\left(x_{2}, 0\right), \mathcal{O}\right\}$

ℓ-torsion points

Let $E: y^{2}=x^{3}+a x+b / \mathbb{F}_{q}$

$$
E[\ell]=\{P \in E:[\ell] P=\mathcal{O}\}
$$

and $\mathcal{O} \in E[\ell]$

Example

$\ell=2, q \geq 5$: points of order 2 have $y=0 \Longleftrightarrow x^{3}+a x+b=0$.
Factor $x^{3}+a x+b$ in \mathbb{F}_{q} :

- $x^{3}+a x+b$ has no root in $\mathbb{F}_{q}: E\left(\mathbb{F}_{q}\right)[2]=\{\mathcal{O}\}$
- $\left(x-e_{0}\right)\left(x^{2}+u x+v\right)$ over $\mathbb{F}_{q}: E\left(\mathbb{F}_{q}\right)[2]=\left\{\left(e_{0}, 0\right), \mathcal{O}\right\}$
- $\left(x-e_{0}\right)\left(x-e_{1}\right)\left(x-e_{2}\right)$ over $\mathbb{F}_{q}: E\left(\mathbb{F}_{q}\right)[2]=\left\{\left(e_{0}, 0\right),\left(e_{1}, 0\right),\left(e_{2}, 0\right), \mathcal{O}\right\}$

There exists an extension $\mathbb{F}_{q^{\prime}}$ such that $E\left(\mathbb{F}_{q^{\prime}}\right)[2]=\left\{\left(x_{0}, 0\right),\left(x_{1}, 0\right),\left(x_{2}, 0\right), \mathcal{O}\right\}$

$$
\ell \text { coprime to } q, \# E[\ell]=\ell^{2}
$$

ℓ-torsion points

Let ℓ coprime to q, the structure of the points of ℓ-torsion is

$$
E[\ell]=\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}
$$

a $\mathbb{Z} / \ell \mathbb{Z}$ two-dimensional vector space.
\rightarrow there exists a basis $\{P, Q\}$, with P, Q of order ℓ and "independent".
Endomorphism ϕ with basis $\{P, Q\}$
$\phi(P)=[a] P+[c] Q$
$\phi(Q)=[b] P+[d] Q$

$$
\phi \leftrightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { w.r.t. basis }\{P, Q\}
$$

Gallant-Lambert-Vanstone (GLV)

$E: y^{2}=x^{3}+b$
ℓ is prime, $\ell \mid \# E\left(\mathbb{F}_{q}\right), \ell^{2} \nmid \# E\left(\mathbb{F}_{q}\right)$:

$$
\begin{aligned}
P \in E\left(\mathbb{F}_{q}\right)[\ell], Q & \notin\left(\mathbb{F}_{q}\right) \text { but over an extension of } \mathbb{F}_{q} \\
& \Longrightarrow \phi(P)=[\lambda] P
\end{aligned}
$$

where $\lambda \bmod \ell$ is the eigenvalue of ϕ.

Gallant-Lambert-Vanstone (GLV)

$E: y^{2}=x^{3}+b$
ℓ is prime, $\ell \mid \# E\left(\mathbb{F}_{q}\right), \ell^{2} \nmid \# E\left(\mathbb{F}_{q}\right)$:

$$
\begin{aligned}
P \in E\left(\mathbb{F}_{q}\right)[\ell], Q \notin E\left(\mathbb{F}_{q}\right) \text { but over an extension of } \mathbb{F}_{q} \\
\Longrightarrow \phi(P)=[\lambda] P
\end{aligned}
$$

where $\lambda \bmod \ell$ is the eigenvalue of ϕ.
To speed-up $[m] P$, decompose $m=m_{0}+m_{1} \lambda$ with $\left|m_{0}\right|,\left|m_{1}\right| \approx \sqrt{\ell}$ and use $[m] P=\left[m_{0}\right] P+\left[m_{1} \lambda\right] P=\left[m_{0}\right] P+\left[m_{1}\right] \underbrace{\phi(P)}_{\text {cheap }}$ with multi-scalar mutliplication

$$
\frac{1}{2} \log _{2} \ell\left(\mathrm{Dbl}+\frac{3}{4} \mathrm{Add}\right)
$$

instead of $\log _{2}|m|\left(\mathrm{Dbl}+\frac{1}{2} \mathrm{Add}\right) \Longrightarrow$ factor ≈ 2 speed-up but cost of decomposition

Outline

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on \mathbf{G}_{1}

Faster co-factor clearing

Ensuring correct subgroup membership testing in \mathbf{G}_{2} and \mathbf{G}_{T}

Bilinear pairing

$\left(\mathbf{G}_{1},+\right),\left(\mathbf{G}_{2},+\right),\left(\mathbf{G}_{T}, \cdot\right)$ three cyclic groups of large prime order ℓ
Pairing: map e: $\mathbf{G}_{1} \times \mathbf{G}_{2} \rightarrow \mathbf{G}_{T}$

1. bilinear: $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) \cdot e\left(P_{2}, Q\right), e\left(P, Q_{1}+Q_{2}\right)=e\left(P, Q_{1}\right) \cdot e\left(P, Q_{2}\right)$
2. non-degenerate: $e\left(G_{1}, G_{2}\right) \neq 1$ for $\left\langle G_{1}\right\rangle=\mathbf{G}_{1},\left\langle G_{2}\right\rangle=\mathbf{G}_{2}$
3. efficiently computable.

Most often used in practice:

$$
e([a] P,[b] Q)=e([b] P,[a] Q)=e(P, Q)^{a b}
$$

Focus on \mathbf{G}_{1} : Endomorphism on an elliptic curve

$$
E: y^{2}=x^{3}+b / \mathbb{F}_{q}, q=1 \bmod 3, j(E)=0
$$

$\mathbf{G}_{1} \subset E\left(\mathbb{F}_{q}\right)$ subgroup of prime order

- $r=\# \mathbf{G}_{1}$ is prime
- $r \mid \# E\left(\mathbb{F}_{q}\right)$
- $r^{2} \nmid \# E\left(\mathbb{F}_{q}\right)$
$\Longrightarrow \phi$ acts as $[\lambda]$ in \mathbf{G}_{1}, and $\lambda^{2}+\lambda+1=0 \bmod r$
Given $m \in \mathbb{Z} / r \mathbb{Z}$, decompose $m=m_{0}+m_{1} \lambda \bmod r$ with $\left|m_{0}\right|,\left|m_{1}\right| \approx \sqrt{r}$

Focus on \mathbf{G}_{1} : Endomorphism on an elliptic curve

$$
E: y^{2}=x^{3}+b / \mathbb{F}_{q}, q=1 \bmod 3, j(E)=0
$$

$\mathbf{G}_{1} \subset E\left(\mathbb{F}_{q}\right)$ subgroup of prime order

- $r=\# \mathbf{G}_{1}$ is prime
- $r \mid \# E\left(\mathbb{F}_{q}\right)$
- $r^{2} \nmid \# E\left(\mathbb{F}_{q}\right)$
$\Longrightarrow \phi$ acts as $[\lambda]$ in \mathbf{G}_{1}, and $\lambda^{2}+\lambda+1=0 \bmod r$
Given $m \in \mathbb{Z} / r \mathbb{Z}$, decompose $m=m_{0}+m_{1} \lambda \bmod r$ with $\left|m_{0}\right|,\left|m_{1}\right| \approx \sqrt{r}$
No computable endomorphism on most of standard curves (NIST, Edwards 25519...) Exception: Four- \mathbb{Q}, characteristic $2 \mathbb{F}_{2^{n}}$ (next talk)

BLS12

Barreto, Lynn, Scott method to get pairing-friendly curves.
Becomes more and more popular, replacing BN curves

$$
\begin{aligned}
& E_{B L S}: y^{2}=x^{3}+b, q \equiv 1 \bmod 3, D=-3 \text { (ordinary) } \\
& q=(u-1)^{2} / 3\left(u^{4}-u^{2}+1\right)+u \\
& t= u+1 \\
& r=\left(u^{4}-u^{2}+1\right)=\Phi_{12}(u) \\
& q+1-t=(u-1)^{2} / 3\left(u^{4}-u^{2}+1\right) \\
& t^{2}-4 q=-3 y(u)^{2} \rightarrow \text { no CM method needed } \\
& \text { BLS12-381 with seed } u_{0}=-0 \times d 201000000010000
\end{aligned}
$$

BLS12 curves, testing if $P \in \mathbf{G}_{1}$ for $P \in E\left(\mathbb{F}_{q}\right)$

GLV trick: write $r_{0}+r_{1} \lambda=0 \bmod r$ with λ the eigenvalue of $\phi \bmod r$.

$$
\lambda=-u^{2}, 1+\left(1-u^{2}\right) \lambda=r=u^{4}-u^{2}+1
$$

Compute $P+\left[1-u^{2}\right] \phi(P)=? \mathcal{O}$
Works because ϕ is a distorsion map on the cofactor subgroup

$$
P \in E\left(\mathbb{F}_{q}\right)[r] \Longrightarrow \phi(P)=[\lambda] P
$$

but no \Longleftrightarrow in the general case unless r prime and $\operatorname{gcd}\left(r, \# E\left(\mathbb{F}_{q}\right) / r\right)=1$.

Outline

Introduction: GLV on elliptic curves

Subgroup membership testing with GLV on \mathbf{G}_{1}

Faster co-factor clearing

Ensuring correct subgroup membership testing in \mathbf{G}_{2} and \mathbf{G}_{T}

BLS12

Order $\# E\left(\mathbb{F}_{q}\right)=3 \ell^{2} r$ where $\ell=(u-1) / 3, r=u^{4}-u^{2}+1$
Co-factor clearing
Given $P \in E\left(\mathbb{F}_{q}\right)$ (e.g. result of a hash map $\{0,1\}^{*} \rightarrow E\left(\mathbb{F}_{q}\right)$), compute $[c] P$ where $c=\# E\left(\mathbb{F}_{q}\right) / \# \mathbf{G}_{1}$
Wahby-Boneh, CHES'2019: $c=3 \ell^{2}$ but no point of order ℓ^{2}, only points of order dividing ℓ \Longrightarrow compute only $[\ell] P$
Luck or generic pattern?

Schoof's theorem 3.7 (1987), simplified

René Schoof.
Nonsingular plane cubic curves over finite fields.
Journal of Combinatorial Theory, Series A, 46(2):183-211, 1987.

$$
E[\ell] \subset E\left(\mathbb{F}_{q}\right) \Longleftrightarrow\left\{\begin{array}{l}
\ell^{2} \mid \# E\left(\mathbb{F}_{q}\right) \\
\ell \mid q-1 \\
\ell \mid y \text { where } t^{2}-4 q=-D y^{2}
\end{array}\right.
$$

Generic pattern for all BLS curves
BLS-k curves, $3 \mid k$

- $c=(x-1)^{2} / 3\left(x^{2 k / 3}+x^{k / 3}+1\right) / \Phi_{k}(x), k=3 \bmod 6$
- $c=(x-1)^{2} / 3\left(x^{k / 3}-x^{k / 6}+1\right) / \Phi_{k}(x), k=0 \bmod 6$
and $E\left(\mathbb{F}_{q}\right)[\ell]=\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$ where $\ell=(x-1) / 3$.

Other pairing-friendly curves

For all curves in the Taxonomy paper of Freeman, Scott, Teske,

- we identify the families such that the cofactor has a square factor
- we check the conditions of Schoof's theorem
- we list the curves with faster co-factor clearing: all but KSS and 6.6 where $k \equiv 2,3 \bmod 6$.
SageMath verification script at
gitlab.inria.fr/zk-curves/cofactor

Outline

> Introduction: GLV on elliptic curves

> Subgroup membership testing with GLV on \mathbf{G}_{1}

> Faster co-factor clearing

Ensuring correct subgroup membership testing in \mathbf{G}_{2} and \mathbf{G}_{T}

\mathbf{G}_{2} technicalities

\mathbf{G}_{2} is more tricky and the edomorphism is ψ, of characteristic polynomial

$$
X^{2}-t X+q
$$

where t is the trace of E over \mathbb{F}_{q}.
GLV on $\mathbf{G}_{1} \rightarrow$ GLS (Galbraith Lin Scott) on \mathbf{G}_{2}
A point $Q \in E^{\prime}\left(\mathbb{F}_{q^{i}}\right)$ has some eigenvalue μ under ψ is a consequence of Q having order r

- flaw in Scott's proof identified
- and fixed
- corner cases under control
\rightarrow all safe as long as r is prime

\mathbf{G}_{T} membership testing

$$
\mathbf{G}_{T}=\mu_{r}=\left\{z \in \mathbb{F}_{q^{k}}^{*}, z^{r}=1\right\}
$$

Proposition

- $E: y^{2}=x^{3}+a x+b / \mathbb{F}_{q}$
- prime $r \mid \# E\left(\mathbb{F}_{q}\right), r^{2} \nmid \# E\left(\mathbb{F}_{q}\right)$
- $E[r] \subset E\left(\mathbb{F}_{q^{k}}\right)$ and k is minimal $\Longleftrightarrow \mathbf{G}_{T} \subset \mathbb{F}_{q^{k}}^{*}$

Let $z \in \mathbb{F}_{q^{k}}^{*}$.

$$
z^{\Phi_{k}(q)}=1 \text { and } z^{q}=z^{t-1} \text { and } \operatorname{gcd}\left(q+1-t, \Phi_{k}(q)\right)=r \Longrightarrow z^{r}=1\left(z \in \mathbf{G}_{T}\right)
$$

Future work

- fix the problem of $m_{0}+m_{1} \lambda=h \cdot r$ and h is not coprime to the cofactor hint of the fix in ePrint 2022/348
- alternative def of \mathbf{G}_{2} : trace-zero subgroup, $\operatorname{ker} \xi \circ\left(1+\pi_{q}+\pi_{q^{2}}+\ldots+\pi_{q^{k-1}}\right) \circ \xi^{-1}$ early abort test?
- Apply to other curves, e.g. BW6 for 2-chain SNARKs

