Drinfeld modules in SageMath

arXiv:2305.00422

Antoine Leudièrè (Université de Lorraine, INRIA)
Joint work with David Ayotte, Xavier Caruso and Yossef Musleh

Wednesday July 26th, 2023

ISSAC’23
Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo
Mathematical context

Drinfeld modules:

- Foundation of the class field theory for function fields.
- Function field analogues to elliptic curves
- Theory well developed and established.
Applications and algorithmics

Applications to cryptography:
- Diffie-Hellman analogues Scanlon, 2001
- Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra:
- Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021,

Algorithmics:
- Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost, ISSAC 2019; Musleh, Schost, ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- Class field theory: Leudière, Spaenlehauer, 2021 (preprint).
Why this implementation?

We want to help mathematicians using Drinfeld modules.

- Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases

SageMath benefits:

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.
Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo
Definition: algebraic structure on geometric objects

A Drinfeld module endows \overline{K} with a structure of $\mathbb{F}_q[T]$-module.

Definition

A Drinfeld $\mathbb{F}_q[T]$-module over K is an \mathbb{F}_q-algebra morphism (satisfying extra conditions)

$$
\phi : \mathbb{F}_q[T] \rightarrow \{ f \in \text{End}_{\mathbb{F}_q}(\overline{K}) \text{ defined over } K \} = \text{Span}_K((\tau^i : x \mapsto x^{q^i})_{i \in \mathbb{Z}_{\geq 0}}) = K \{ \tau \}.
$$
Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo
A Drinfeld module $\phi : \mathbb{F}_q[T] \rightarrow K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1\tau + \cdots + g_r\tau^r \in K\{\tau\}$.

A Drinfeld module is *not* a set!
The Parent/Element framework

Every object is either:
- a set (Parent);
- an element in the set (Element);
- a category whose objects are Parents.

Drinfeld modules do not really fit.

- Drinfeld modules should be objects in a category, so Parents.
- Drinfeld modules are not sets, so should not be Parents.
Possible solutions

1. Making Drinfeld modules Parents without Elements.
 ◦ Strong mathematical soundness.
 ◦ Follow EllipticCurve.
 ◦ Drawback 1: Parents should have Elements.
 ◦ Drawback 2: the category of a Parent must be a subcategory of Sets.

 ◦ Drawback: barely used in the codebase.

 ◦ Drawback 1: the category of Drinfeld modules should be a proper Category.
 ◦ Drawback 2: technical difficulties for the implementation of morphisms.

After a passionate debate, we made Drinfeld modules Parents without Elements.
Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo
Main features

Features:

◦ General constructions (Drinfeld modules, morphisms, category).
◦ Basic computations (evaluation, rank, height, j-invariant, action on \bar{K}).
◦ Morphism computations (action on homsets, Velu, generalized j-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
◦ Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

◦ Simple, high-level, elegant interface.
◦ Exhaustive, useful documentation.
◦ Thorough testing.
◦ The development is still active, with contributions welcome.
◦ We had great feedback from the community.

First features were released in SageMath 10.0. The rest is being reviewed.
Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo
Demo

https://xavier.caruso.ovh/notebook/drinfeld-modules