Drinfeld modules in SageMath

arXiv:2305.00422

Antoine Leudière (Université de Lorraine, INRIA)

Joint work with David Ayotte, Xavier Caruso and Yossef Musleh

Wednesday July 26th, 2023

ISSAC'23

Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo

- o Introduced in the 1970s Drinfeld, 1974.
- Foundation of the class field theory for function fields.
- Function field analogues to elliptic curves
- Theory well developed and established.

- Introduced in the 1970s Drinfeld, 1974.
- Foundation of the class field theory for function fields.
- Function field analogues to elliptic curves
- Theory well developed and established.

- Introduced in the 1970s Drinfeld, 1974.
- Foundation of the class field theory for function fields.
- Function field analogues to elliptic curves
- Theory well developed and established.

- Introduced in the 1970s Drinfeld, 1974.
- Foundation of the class field theory for function fields.
- Function field analogues to elliptic curves
- Theory well developed and established.

- Introduced in the 1970s Drinfeld, 1974.
- Foundation of the class field theory for function fields.
- Function field analogues to elliptic curves
- Theory well developed and established.

Applications to cryptography:

- O Diffie-Hellman analogues Scanlon, 2001
- Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography
 Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021,

- o Isogenies Caranay, 2018 (thesis)
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost, ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- Diffie-Hellman analogues Scanlon, 2001
- Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021,

- o Isogenies Caranay, 2018 (thesis)
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost,
 ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020.
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- Diffie-Hellman analogues Scanlon, 2001
- o Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021,

- o Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost,
 ISSAC 2023; Caruso,
 Leudière,
 2023 (preprint).
- o Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- o Diffie-Hellman analogues Scanlon, 2001
- o Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021,

- o Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost,
 ISSAC 2023; Caruso,
 Leudière,
 2023 (preprint).
- o Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- Diffie-Hellman analogues Scanlon, 2001
- Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra:

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021, .

- o Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost,
 ISSAC 2023; Caruso,
 Leudière,
 2023 (preprint).
- o Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020.
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- Diffie-Hellman analogues Scanlon, 2001
- o Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra:

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021, .

- o Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost, ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- o Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020.
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- Diffie-Hellman analogues Scanlon, 2001
- o Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra:

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021, .

- Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost, ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- o Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020.
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- Diffie-Hellman analogues Scanlon, 2001
- Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra:

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021, .

- Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost, ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- o Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- Diffie-Hellman analogues Scanlon, 2001
- o Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra:

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021, .

- Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost, ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020.
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

Applications to cryptography:

- o Diffie-Hellman analogues Scanlon, 2001
- Isogeny-based cryptography Joux, Narayanan, 2019; Leudière, Spaenlehauer, 2022; Wesolowski, 2022
- Cryptanalysis of code-base cryptography Bombar, Couvreur, Debris-Alazard, 2022

Applications to computer algebra:

 \circ Efficient factorization in $\mathbb{F}_q[X]$ Doliskani, Narayanan, Schost, 2021, .

- Isogenies Caranay, 2018 (thesis).
- Characteristic polynomials of endomorphisms and norms of isogenies Musleh, Schost,
 ISSAC 2019; Musleh, Schost, ISSAC 2023; Caruso, Leudière, 2023 (preprint).
- Isogenies and modular polynomials: Caranay, Greenberg, Scheidler, 2020.
- o Class field theory: Leudière, Spaenlehauer, 2021 (preprint).

We want to help mathematicians using Drinfeld modules.

- Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition
- Create conjectures
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- o Develop intuition.
- Create conjectures
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

We want to help mathematicians using Drinfeld modules.

- o Drinfeld modules are very abstract project with no graphical representation.
- Develop intuition.
- Create conjectures.
- Test conjectures and create databases Hayes, 1994.

- SageMath reaches numerous and various mathematicians.
- Benefit from Free and Open Source Software.
- Elementary building blocks were already in SageMath.

Outline of the talk

Why this project?

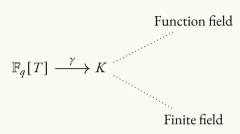
What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo

Definition: algebraic structure on geometric objects



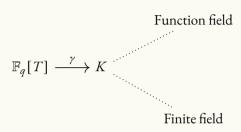
A Drinfeld module endows \overline{K} with a structure of $\mathbb{F}_q[T]$ -module.

Definition

A Drinfeld $\mathbb{F}_q[T]$ -module over K is an \mathbb{F}_q -algebra morphism (satisfying extra conditions)

$$\phi: \mathbb{F}_q[T] \to \{ f \in \operatorname{End}_{\mathbb{F}_q}(\overline{K}) \text{ defined over } K \} = \operatorname{Span}_K((\tau^i : x \mapsto x^{q^i})_{i \in \mathbb{Z}_{\geqslant 0}}) = K\{\tau\}.$$

Definition: algebraic structure on geometric objects



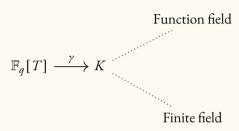
A Drinfeld module endows \overline{K} with a structure of $\mathbb{F}_q[T]$ -module.

Definition

A Drinfeld $\mathbb{F}_q[T]$ -module over K is an \mathbb{F}_q -algebra morphism (satisfying extra conditions)

$$\phi: \mathbb{F}_q[T] \to \{ f \in \operatorname{End}_{\mathbb{F}_q}(\overline{K}) \text{ defined over } K \} = \operatorname{Span}_K((\tau^i : x \mapsto x^{q^i})_{i \in \mathbb{Z}_{\geqslant 0}}) = K\{\tau\}.$$

Definition: algebraic structure on geometric objects



A Drinfeld module endows \overline{K} with a structure of $\mathbb{F}_q[T]$ -module.

Definition

A Drinfeld $\mathbb{F}_q[T]$ -module over K is an \mathbb{F}_q -algebra morphism (satisfying extra conditions)

$$\phi: \mathbb{F}_q[T] \to \{ f \in \operatorname{End}_{\mathbb{F}_q}(\overline{K}) \text{ defined over } K \} = \operatorname{Span}_K((\tau^i : x \mapsto x^{q^i})_{i \in \mathbb{Z}_{\geqslant 0}}) = K\{\tau\}.$$

Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo

A Drinfeld module $\phi : \mathbb{F}_q[T] \to K\{\tau\}$ can be represented by:

- o A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1 \tau + \dots + g_r \tau^r \in K\{\tau\}$.

A Drinfeld module is *not* a set

A Drinfeld module $\phi : \mathbb{F}_q[T] \to K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1 \tau + \dots + g_r \tau^r \in K\{\tau\}$

A Drinfeld module is *not* a set

A Drinfeld module $\phi : \mathbb{F}_q[T] \to K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1 \tau + \dots + g_r \tau^r \in K\{\tau\}.$

A Drinfeld module is not a set.

A Drinfeld module $\phi : \mathbb{F}_q[T] \to K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1 \tau + \dots + g_r \tau^r \in K\{\tau\}$.

A Drinfeld module is *not* a set!

The Parent/Element framework

Parent/Element framework

Every object is either:

- a set (Parent);
- an element in the set (Element);
- o a category whose objects are Parents.

Drinfeld modules do not really fit

- Drinfeld modules should be objects in a category, so Parents
- o Drinfeld modules are not sets, so should not be Parents.

Parent/Element framework

Every object is either:

- a set (Parent);
- an element in the set (Element);
- o a category whose objects are Parents

- o Drinfeld modules should be objects in a category, so Parents.
- o Drinfeld modules are not sets, so should not be Parents.

Parent/Element framework

Every object is either:

- a set (Parent);
- an element in the set (Element);
- a category whose objects are Parents.

- Drinfeld modules should be objects in a category, so Parents
- o Drinfeld modules are not sets, so should not be Parents.

Parent/Element framework

Every object is either:

- a set (Parent);
- an element in the set (Element);
- a category whose objects are Parents.

- o Drinfeld modules should be objects in a category, so Parents.
- o Drinfeld modules are not sets, so should not be Parents.

Parent/Element framework

Every object is either:

- a set (Parent);
- an element in the set (Element);
- a category whose objects are Parents.

- o Drinfeld modules should be objects in a category, so Parents
- o Drinfeld modules are not sets, so should not be Parents.

Parent/Element framework

Every object is either:

- a set (Parent);
- an element in the set (Element);
- a category whose objects are Parents.

- Drinfeld modules should be objects in a category, so Parents.
- Drinfeld modules are not sets, so should not be Parents.

Parent/Element framework

Every object is either:

- a set (Parent);
- an element in the set (Element);
- a category whose objects are Parents.

- Drinfeld modules should be objects in a category, so Parents.
- Drinfeld modules are not sets, so should not be Parents.

1. Making Drinfeld modules Parents without Elements.

- Strong mathematical soundness.
- Follow EllipticCurve.
- Drawback 1: Parents should have Elements.
- Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve
 - Drawback 1: Parents should have Elements.
 - Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - o Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - Drawback 1: Parents should have Elements.
 - Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - o Drawback 1: the category of Drinfeld modules should be a proper Category.
 - o Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - o Drawback 1: Parents should have Elements.
 - Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - Drawback 1: Parents should have Elements.
 - o Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - Drawback 1: Parents should have Elements.
 - o Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - o Drawback 1: the category of Drinfeld modules should be a proper Category.
 - Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - o Drawback 1: Parents should have Elements.
 - o Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - o Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - Drawback 1: Parents should have Elements.
 - o Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - o Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - o Drawback 1: Parents should have Elements.
 - o Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - o Drawback 1: Parents should have Elements.
 - o Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - o Drawback 2: technical difficulties for the implementation of morphisms.

- 1. Making Drinfeld modules Parents without Elements.
 - Strong mathematical soundness.
 - Follow EllipticCurve.
 - o Drawback 1: Parents should have Elements.
 - o Drawback 2: the category of a Parent must be a subcategory of **Sets**.
- 2. Making Drinfeld modules a CategoryObject.
 - o Drawback: barely used in the codebase.
- 3. Making Drinfeld modules Elements and their category a Parent.
 - Drawback 1: the category of Drinfeld modules should be a proper Category.
 - o Drawback 2: technical difficulties for the implementation of morphisms.

Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design

- Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

- o Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community.

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

- Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community.

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

- Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community.

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

- Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community.

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

- Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community.

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

- Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community.

Features:

- o General constructions (Drinfeld modules, morphisms, category).
- Basic computations (evaluation, rank, height, *j*-invariant, action on \overline{K}).
- Morphism computations (action on *homsets*, Velu, generalized *j*-invariants, characteristic polynomials of endomorphisms and norms of isogenies).
- Analytic construction of Drinfeld modules (logarithm and exponential).

User-oriented design:

- Simple, high-level, elegant interface.
- Exhaustive, useful documentation.
- Thorough testing.
- The development is still active, with contributions welcome.
- We had great feedback from the community.

Outline of the talk

Why this project?

What is a Drinfeld module?

Focus: the crucial question of data representation

Main features

Demo

Demo

https://xavier.caruso.ovh/notebook/drinfeld-modules