Drinfeld modules in SageMath

arXiv:2305.00422

Antoine Leudière
INRIA Caramba

Joint work with David Ayotte, Xavier Caruso and Yossef Musleh

Journée du D1 du Loria

4 July 2023
Outline of the Talk

What is SageMath?

What is a Drinfeld module?

What are Drinfeld modules in SageMath?
History

SageMath is the leading computer algebra FOSS system. It was created in 2005 by William Stein; hundreds of mathematicians contributed to it.

SageMath is a free open-source mathematics software system licensed under the GPL. It builds on top of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more. Access their combined power through a common, Python-based language or directly via interfaces or wrappers.

Mission: *Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab.*
Outline of the Talk

What is SageMath?

What is a Drinfeld module?

What are Drinfeld modules in SageMath?
Drinfeld modules were introduced by Vladimir Drinfeld in the 1970s to solve problems from the class field theory of function fields.

🐱 Laurent Lafforgue received the Fields medal thanks to Drinfeld modules!

😍 Growing interest for computational research on Drinfeld modules.

😭 Before our contribution, no Drinfeld module implementation in standard systems.
Drinfeld modules were introduced by Vladimir Drinfeld in the 1970s to solve problems from the class field theory of function fields.

Laurent Lafforgue received the Fields medal thanks to Drinfeld modules!

Growing interest for computational research on Drinfeld modules.

Before our contribution, no Drinfeld module implementation in standard systems.
Drinfeld modules were introduced by Vladimir Drinfeld in the 1970s to solve problems from the class field theory of function fields.

[result]

Laurent Lafforgue received the Fields medal thanks to Drinfeld modules!

Growing interest for computational research on Drinfeld modules.

Before our contribution, no Drinfeld module implementation in standard systems.
Drinfeld modules were introduced by Vladimir Drinfeld in the 1970s to solve problems from the class field theory of function fields.

🎉 Laurent Lafforgue received the Fields medal thanks to Drinfeld modules!

😍 Growing interest for computational research on Drinfeld modules.

😭 Before our contribution, no Drinfeld module implementation in standard systems.
Definition

Let:

- \(\mathbb{F}_q \) be a finite field with \(q \) elements.
- \(K \) be a field containing \(\mathbb{F}_q \).
- \(\mathbb{F}_q[T] \) be the ring of polynomials with coefficients in \(\mathbb{F}_q \).
- \(K\{\tau\} \) be the ring of ”skew” polynomials \(a_0 + a_1\tau + \cdots + a_n\tau^n \) in \(K \) satisfying \(\tau a_i = a_i^q \tau \), for all \(a_i \in K \):

\[
K\{\tau\} = \left\{ \sum_{i=0}^{n} a_i \tau^i, \quad n \in \mathbb{Z}_{\geq 0}, a_i \in K \right\}.
\]

Definition

A Drinfeld module is a special case of \(\mathbb{F}_q \)-algebra morphism

\[
\phi : \mathbb{F}_q[T] \rightarrow K\{\tau\}.
\]
Definition

Let:

- \(\mathbb{F}_q \) be a finite field with \(q \) elements.
- \(K \) be a field containing \(\mathbb{F}_q \).
- \(\mathbb{F}_q[T] \) be the ring of polynomials with coefficients in \(\mathbb{F}_q \).
- \(K\{\tau\} \) be the ring of ”skew” polynomials \(a_0 + a_1\tau + \cdots + a_n\tau^n \) in \(K \) satisfying \(\tau a_i = a_i^q \tau \), for all \(a_i \in K \):

\[
K\{\tau\} = \left\{ \sum_{i=0}^n a_i\tau^i, \quad n \in \mathbb{Z}_{\geq 0}, a_i \in K \right\}.
\]

Definition

A Drinfeld module is a special case of \(\mathbb{F}_q \)-algebra morphism

\[
\phi : \mathbb{F}_q[T] \to K\{\tau\}.
\]
Definition

Let:

- \mathbb{F}_q be a finite field with q elements.
- K be a field containing \mathbb{F}_q.
- $\mathbb{F}_q[T]$ be the ring of polynomials with coefficients in \mathbb{F}_q.
- $K\{\tau\}$ be the ring of "skew" polynomials $a_0 + a_1\tau + \cdots + a_n\tau^n$ in K satisfying $\tau a_i = a_i^q \tau$, for all $a_i \in K$:

$$K\{\tau\} = \left\{ \sum_{i=0}^n a_i \tau^i, \quad n \in \mathbb{Z}_{\geq 0}, a_i \in K \right\}.$$

Definition

A Drinfeld module is a special case of \mathbb{F}_q-algebra morphism

$$\phi : \mathbb{F}_q[T] \to K\{\tau\}.$$
Definition

Let:

- \mathbb{F}_q be a finite field with q elements.
- K be a field containing \mathbb{F}_q.
- $\mathbb{F}_q[T]$ be the ring of polynomials with coefficients in \mathbb{F}_q.
- $K\{\tau\}$ be the ring of ”skew” polynomials $a_0 + a_1\tau + \cdots + a_n\tau^n$ in K satisfying $\tau a_i = a_i^q \tau$, for all $a_i \in K$:

$$K\{\tau\} = \left\{ \sum_{i=0}^{n} a_i \tau^i \mid n \in \mathbb{Z}_{\geq 0}, a_i \in K \right\}.$$

Definition

A Drinfeld module is a special case of \mathbb{F}_q-algebra morphism

$$\phi : \mathbb{F}_q[T] \to K\{\tau\}.$$
Definition

Let:

- \mathbb{F}_q be a finite field with q elements.
- K be a field containing \mathbb{F}_q.
- $\mathbb{F}_q[T]$ be the ring of polynomials with coefficients in \mathbb{F}_q.
- $K\{\tau\}$ be the ring of ”skew” polynomials $a_0 + a_1 \tau + \cdots + a_n \tau^n$ in K satisfying $\tau a_i = a_i^q \tau$, for all $a_i \in K$:

$$K\{\tau\} = \left\{ \sum_{i=0}^{n} a_i \tau^i, \quad n \in \mathbb{Z}_{\geq 0}, a_i \in K \right\}.$$

Definition

A Drinfeld module is a special case of \mathbb{F}_q-algebra morphism

$$\phi : \mathbb{F}_q[T] \rightarrow K\{\tau\}.$$
Definition

Let:

- \mathbb{F}_q be a finite field with q elements.
- K be a field containing \mathbb{F}_q.
- $\mathbb{F}_q[T]$ be the ring of polynomials with coefficients in \mathbb{F}_q.
- $K\{\tau\}$ be the ring of "skew" polynomials $a_0 + a_1\tau + \cdots + a_n\tau^n$ in K satisfying $\tau a_i = a_i^q\tau$, for all $a_i \in K$:

$$K\{\tau\} = \left\{ \sum_{i=0}^{n} a_i\tau^i, \quad n \in \mathbb{Z}_{\geq 0}, a_i \in K \right\}.$$

Definition

A Drinfeld module is a special case of \mathbb{F}_q-algebra morphism

$$\phi : \mathbb{F}_q[T] \rightarrow K\{\tau\}.$$
A Drinfeld module $\phi : \mathbb{F}_q[T] \rightarrow K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1\tau + \cdots + g_r\tau^r$.
- A list of coefficients $[g_0, g_1, \ldots, g_r]$.

A Drinfeld module is not a set!
A Drinfeld module \(\phi : \mathbb{F}_q[T] \to K\{\tau\} \) can be represented by:

- A morphism.
- A skew polynomial \(\phi(T) = g_0 + g_1 \tau + \cdots + g_r \tau^r \).
- A list of coefficients \([g_0, g_1, \ldots, g_r]\).

A Drinfeld module is \textit{not} a set!
A Drinfeld module $\phi : \mathbb{F}_q[T] \to K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1\tau + \cdots + g_r\tau^r$.
- A list of coefficients $[g_0, g_1, \ldots, g_r]$.

A Drinfeld module is not a set!
A Drinfeld module $\phi : \mathbb{F}_q[T] \rightarrow K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1 \tau + \cdots + g_r \tau^r$.
- A list of coefficients $[g_0, g_1, \ldots, g_r]$.

A Drinfeld module is *not* a set!
A Drinfeld module $\phi : \mathbb{F}_q[T] \rightarrow K\{\tau\}$ can be represented by:

- A morphism.
- A skew polynomial $\phi(T) = g_0 + g_1\tau + \cdots + g_r\tau^r$.
- A list of coefficients $[g_0, g_1, \ldots, g_r]$.

A Drinfeld module is not a set!
Outline of the Talk

What is SageMath?

What is a Drinfeld module?

What are Drinfeld modules in SageMath?
SageMath is built on the Parent/Element framework: SageMath objects are usually either a set (Parent) or an element in the set (Element). And Parents should belong to a category. This does not really fit Drinfeld modules:

- Drinfeld form a category, and as such should be Parents.
- But Drinfeld modules have no underlying sets, so they don’t have elements and as such should not be Parents.
- A Drinfeld module is a special kind of morphism, so it technically is an element in a set of morphisms, but mathematicians do not think about them this way.
SageMath is built on the Parent/Element framework: SageMath objects are usually either a set (Parent) or an element in the set (Element). And Parents should belong to a category. This does not really fit Drinfeld modules:

- Drinfeld form a category, and as such should be Parents.
- But Drinfeld modules have no underlying sets, so they don’t have elements and as such should not be Parents.
- A Drinfeld module is a special kind of morphism, so it technically is an element in a set of morphisms, but mathematicians do not think about them this way.
SageMath is built on the Parent/Element framework: SageMath objects are usually either a set (Parent) or an element in the set (Element). And Parents should belong to a category. This does not really fit Drinfeld modules:

- Drinfeld form a category, and as such should be Parents.
- But Drinfeld modules have no underlying sets, so they don’t have elements and as such should not be Parents.
- A Drinfeld module is a special kind of morphism, so it technically is an element in a set of morphisms, but mathematicians do not think about them this way.
SageMath is built on the Parent/Element framework: SageMath objects are usually either a set (Parent) or an element in the set (Element). And Parents should belong to a category. This does not really fit Drinfeld modules:

- Drinfeld form a category, and as such should be Parents.
- But Drinfeld modules have no underlying sets, so they don’t have elements and as such should not be Parents.
- A Drinfeld module is a special kind of morphism, so it technically is an element in a set of morphisms, but mathematicians do not think about them this way.
There are multiple possible solutions:

1. Making Drinfeld modules \texttt{Parents} without \texttt{Elements}. In fact this solution has a strong mathematical soundness. Drawbacks: \texttt{Parents} are supposed to have elements; their category must be a subcategory of the category of sets.

2. Making Drinfeld modules a \texttt{CategoryObject}. Drawbacks: this class is barely used in the codebase.

3. Making Drinfeld modules elements and their category a \texttt{Parent} without a category. Drawbacks: no mathematical satisfaction, and this prevents from having a standard implementation for morphisms.

After a passionate debate with the community, we chose to make Drinfeld modules \texttt{Parents} without \texttt{Elements}.
Possible solutions

There are multiple possible solutions:

1. Making Drinfeld modules Parents without Elements. In fact this solution has a strong mathematical soundness. Drawbacks: Parents are supposed to have elements; their category must be a subcategory of the category of sets.

2. Making Drinfeld modules a CategoryObject. Drawbacks: this class is barely used in the codebase.

3. Making Drinfeld modules elements and their category a Parent without a category. Drawbacks: no mathematical satisfaction, and this prevents from having a standard implementation for morphisms.

After a passionate debate with the community, we chose to make Drinfeld modules Parents without Elements.
Possible solutions

There are multiple possible solutions:

1. Making Drinfeld modules Parents without Elements. In fact this solution has a strong mathematical soundness. Drawbacks: Parents are supposed to have elements; their category must be a subcategory of the category of sets.

2. Making Drinfeld modules a CategoryObject. Drawbacks: this class is barely used in the codebase.

3. Making Drinfeld modules elements and their category a Parent without a category. Drawbacks: no mathematical satisfaction, and this prevents from having a standard implementation for morphisms.

After a passionate debate with the community, we chose to make Drinfeld modules Parents without Elements.
Possible solutions

There are multiple possible solutions:

1. Making Drinfeld modules Parents without Elements. In fact this solution has a strong mathematical soundness. Drawbacks: Parents are supposed to have elements; their category must be a subcategory of the category of sets.

2. Making Drinfeld modules a CategoryObject. Drawbacks: this class is barely used in the codebase.

3. Making Drinfeld modules elements and their category a Parent without a category. Drawbacks: no mathematical satisfaction, and this prevents from having a standard implementation for morphisms.

After a passionate debate with the community, we chose to make Drinfeld modules Parents without Elements.
Possible solutions

There are multiple possible solutions:

1. Making Drinfeld modules Parents without Elements. In fact this solution has a strong mathematical soundness. Drawbacks: Parents are supposed to have elements; their category must be a subcategory of the category of sets.

2. Making Drinfeld modules a CategoryObject. Drawbacks: this class is barely used in the codebase.

3. Making Drinfeld modules elements and their category a Parent without a category. Drawbacks: no mathematical satisfaction, and this prevents from having a standard implementation for morphisms.

After a passionate debate with the community, we chose to make Drinfeld modules Parents without Elements.
Conclusion

- Drinfeld modules are in SageMath! Generalist implementation with comprehensive documentation.
- We received lots of positive feedback and new features are being actively implemented and reviewed.
- We got a software presentation accepted at ISSAC ’23: arXiv:2305.00422.
Conclusion

- Drinfeld modules are in SageMath! Generalist implementation with comprehensive documentation.
- We received lots of positive feedback and new features are being actively implemented and reviewed.
- We got a software presentation accepted at ISSAC ’23: arXiv:2305.00422.
Drinfeld modules are in SageMath! Generalist implementation with comprehensive documentation.

We received lots of positive feedback and new features are being actively implemented and reviewed.

We got a software presentation accepted at ISSAC ’23: arXiv:2305.00422.