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Drinfeld Modules in One Frame

Core Philosophy

Drinfeld modules are to function fields what elliptic curves are to
number fields.

Z Fq [T]
Q Fq(T)

Number fields Function fields
R R∞
C C∞

Characteristic p Fq [T]-characteristic p
Elliptic curves Drinfeld modules
Abelian groups Fq [T]-modules

Isogenies of elliptic curves Isogenies of Drinfeld modules
End(E) End(ϕ)
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Why Algorithms for Drinfeld Modules?

Algorithmic problems tend to be easier for function fields than for number
fields (e.g. factorization).

End Goal

Adapt methods from Drinfeld modules to elliptic curves.
Build a bridge from characteristic p to characteristic 0.

Targeted applications:

1. Computer algebra

2. Cryptography
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State of the Art

Algorithmics of Drinfeld modules:

◦ Kuhn-Pink, 2016

◦ Musleh-Schost, 2019

◦ Caranay-Greenberg-Scheidler, 2020

◦ Garai-Papikian, 2020

◦ Musleh-Schost, 2023

◦ Caruso-L., 2023

Applications to computer algebra:

◦ Doliskani-Narayanan-Schost, 2021

Implementation:

◦ Ayotte-Caruso-L.-Musleh, 2023

Drinfeld modules for cryptography:

◦ Scanlon, 2001,

◦ Gillard-Leprévost-Panchishkin-Roblot, 2003

◦ Joux-Narayanan, 2019.

◦ L.-Spaenlehauer, 2022.

PhD theses:

◦ Caranay, 2018

◦ Musleh, 2023

◦ Ayotte, 2023

◦ L., 2024 (in preparation)

Antoine Leudière Drinfeld Modules: an Overview 6/36—§ 1/6



Outline

Drinfeld Modules: an Overview

Formal Definition

Similarities with Elliptic Curves

Deuring Correspondence

Differences with Elliptic Curves

Perspectives

Antoine Leudière Formal Definition 7/36—§ 2/6



Ore Polynomials
Let K/Fq be a field, fix

τ : K → K
x ↦→ xq

and

K{τ} =
{
n∑
i=0

fiτ
i : n ∈ Z¾0, fi ∈ K

}
.

Proposition

K{τ} is
1. a ring (addition and composition of endomorphisms),

2. noncommutative (if K ≠ Fq): for all x ∈ K, τx = xqτ.

Definition

K{τ} is the ring of Ore polynomials.
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Ore Polynomials are almost Polynomials

Let

f =
n∑
i=0

fiτ
i ∈ K{τ}, fn ≠ 0.

Definition

We call n the τ-degree of f , and write n = degτ (f).

Proposition

The ring K{τ} is:
1. left-euclidean for the τ-degree,

2. left-principal.

Consequence: one can compute right-gcd’s.
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Defining Drinfeld Modules

Definition

A Drinfeld module over K is a morphism of Fq-algebras

ϕ : Fq [T] → K{τ}
a ↦→ ϕa

such that degτ (ϕT) > 0.

A Drinfeld module is not a module!
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Rank of a Drinfeld Module

Important invariant that does not exist for elliptic curves: the rank.
Let

ϕ : Fq [T] → K{τ}
a ↦→ ϕa

be a Drinfeld module.

Definition

The rank of ϕ is degτ (ϕT).

From now on, all Drinfeld modules have rank 2.

Then, a Drinfeld module is given by ϕT ∈ K{τ} given by

ϕT = ω + gτ + Δτ2, ω, g,Δ ∈ K, Δ ≠ 0.
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Morphisms and Isogenies of Drinfeld Modules

Definition

A morphism of Drinfeld modules ϕ → ψ is an u ∈ K{τ} s.t.

uϕT = ψTu.

Definition

An isogeny is a nonzero morphism.
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An Example

Example

Pick Fq = F2 and K = F4 = {0, 1, i, i + 1}.
Pick {

ϕT = i + iτ + τ2,
ψT = i + (i + 1)τ + τ2.

Then u = (i + 1)τ2 is an isogeny ϕ → ψ :{
uϕT = ((i + 1)τ2) · (i + iτ + τ2) = · · · = τ2 + τ3 + (i + 1)τ4,
ψTu = (i + (i + 1)τ + τ2) · ((i + 1)τ2) = · · · = τ2 + τ3 + (i + 1)τ4.
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Fq[T]-Module

An elliptic curve is an abelian group, i.e. a Z-module.
For Drinfeld modules, we replace Z by Fq [T].

Definition

The Fq [T]-module associated to ϕ, denoted by Kϕ, is

Fq [T] × K → K
(a, x) ↦→ ϕa (x).

The notion of point is ambiguous.
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Fq[T]-Characteristic

Define the morphism of Fq-algebras

γ : Fq [T] → K
a ↦→ constant coefficient of ϕa.

Definition

The Fq [T]-characteristic is monic generator of the kernel of γ.

Two situations:

1. γ is injective (analogous to elliptic curves over fields of characteristic 0),

2. γ has nonzero kernel p (analogous to elliptic curves over fields of
characteristic p).
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Torsion

Definition

Let a ∈ Fq [T]. The a-torsion of ϕ, denoted by ϕ[a], is

ϕ[a] = a-torsion of the module Kϕ = Ker(ϕa).

Proposition

There exists h ∈ {1, 2} such that, for all a, b ∈ Fq [T]:

if a is coprime to p, then ϕ[a] ' (Fq [T]/(a))2,
if a is a power of p, then ϕ[a] ' (Fq [T]/(a))2−h,
if a and b are coprime, then ϕ[ab] ' ϕ[a] × ϕ[b].
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Ring of Endomorphisms

Endomorphisms of ϕ form a ring denoted End(ϕ).

There are special endomorphisms:

◦ For any a ∈ Fq [T], ϕa is an endomorphism.
◦ If K is finite, then τ [K:Fq ] is central in K{τ}, and defines the Frobenius
endomorphism of ϕ.

Remark

ϕa is the analogue of the multiplication by an integer.
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Implementation

Most objects in this talk can be explicitly computed.
SageMath implementation of Drinfeld modules.
(ISSAC software presentation: Ayotte-Caruso-L.-Musleh, 2023.)

sage: Fq = GF(2)
sage: K.<i> = Fq.extension(2)
sage: A.<T> = Fq[]
sage: phi = DrinfeldModule(A, [i, i, 1])
sage: psi = DrinfeldModule(A, [i, i + 1, 1])
sage: t = phi.ore_variable()
sage: (i + 1) * t^2 in Hom(phi, psi)
True
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Algebra of Endomorphisms

Consider
End◦(ϕ) = End(ϕ) ⊗Fq [T] Fq(T).

Theorem

◦ End◦(ϕ) is a division algebra;
◦ End(ϕ) is free over Fq [T] with rank 1, 2 or 4;
◦ End(ϕ) is an order in End◦(ϕ).
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Ordinarity and Supersingularity

Assume K is a finite field. Recall we have defined:

◦ the function field characteristic p,
◦ the p-torsion ϕp.

Definition

ϕ is:

◦ supersingular if the p-torsion is trivial;
◦ ordinary if ϕ is not supersingular;
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Ordinary Drinfeld Modules

Assume ϕ is ordinary.

Theorem

End(ϕ) is an order in an imaginary quadratic function field.

(Meaning End◦(ϕ) = End(ϕ) ⊗Fq [T] Fq(T) is a quadratic extension of Fq(T) in
which the place at infinity of Fq(T) has two extensions.)

Antoine Leudière Deuring Correspondence 23/36—§ 4/6



Ordinary Drinfeld Modules

Assume ϕ is ordinary.

Theorem

End(ϕ) is an order in an imaginary quadratic function field.

(Meaning End◦(ϕ) = End(ϕ) ⊗Fq [T] Fq(T) is a quadratic extension of Fq(T) in
which the place at infinity of Fq(T) has two extensions.)

Antoine Leudière Deuring Correspondence 23/36—§ 4/6



The CRS Group Action

There is a CRS (Couveignes, 1997; Rostovtsev-Stolbunov, 2006) group action:

Theorem

Cl(End(ϕ)) acts freely and transitively on the set Sϕ of isomorphism classes of
Drinfeld modules isogenous to ϕ.

The action is described as for elliptic curves: if a ⊂ End(ϕ) is an ideal, then

Va =
⋂
u∈a

Ker(u)

is the kernel of an isogeny ua from ϕ to some other Drinfeld module ψ . We
define

a ∗ ϕ = ψ,

and extend to Cl(End(ϕ)) and Sϕ.
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Supersingular Drinfeld Modules
Assume ϕ is supersingular.

Theorem

End(ϕ) is either:
◦ a maximal order in the quaternion algebra ramified at p and the ∞ place,

◦ an order in a quadratic imaginary function field.

Different than for elliptic curves! Classification related toWeil polynomials
andWeil numbers (Caranay, 2018).

Theorem (Deuring correspondence)

Correspondence between:

◦ left-ideal classes of End(ϕ),
◦ isomorphism classes of supersingular rank two Drinfeld modules over Fq.
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Computing Isogenies (1/2)

Let ϕ, ψ be two Drinfeld modules.

As Hom(ϕ, ψ) is an Fq [T]-module, it is a Fq-vector space.

Contrast with elliptic curves!

Let n ∈ Z¾0. Fix the sub-Fq-vector space

Homn (ϕ, ψ) = {u ∈ Hom(ϕ, ψ) : degτ (u) ¶ n}.

Theorem (Wesolowski, 2022)

We can compute an Fq-basis of Homn (ϕ, ψ) in polynomial time.
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Computing isogenies (2/2)

Fix 
ϕT =

∑2
i=0 giτ

i,

ψT =
∑2
i=0 g

′
i
τi,

u =
∑n
i=0 uiτ

i.

Then u is an isogeny iff
uϕT = ψTu

iff
min(k,n)∑
i=0

uig
qi

k−i − g
′
k−iu

qk−i

i
= 0, ∀0 ¶ k ¶ n + 2.

We have obtained a finite system of Fq-linear equations.
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Computing endomorphisms

Variations:

Theorem (Wesolowski, 2022; Musleh, 2023)

Let π be the Frobenius endomorphism of ϕ. One computes:

◦ an Fq-basis of Homn (ϕ, ψ) with (nωdω log q + nd2 log q + d log2 q)1+o(1) ,
◦ an Fq [π]-basis of Hom(ϕ, ψ) using (d2ω log q + d log2 q)1+o(1) ,
◦ an Fq [T]-basis of Hom(ϕ, ψ) using (d3f2 log q + d log2 q)1+o(1) ,

bit operations.

The previous applies to End(ϕ) = Hom(ϕ, ϕ).
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Computing the CRS Group Action: Definition from Elliptic Curves

Let ϕ be an ordinary Drinfeld module. Let

Sϕ = {isomorphism classes of Drinfeld modules isogenous to ϕ}.

Recall we have a free and transitive group action

∗ : Cl(End(ϕ)) × Sϕ → Sϕ.

We have defined ∗ with kernels.

Jump to the definition.
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Computing the CRS Group Action: Alternative Definition

Two things:

1. Va is the kernel of the Ore polynomial ua = rgcd({a : a ∈ a}).
2. In some instances, we can describe Cl(End(ϕ)) as the Picard group of an
imaginary hyperelliptic curve.

Assume the Frobenius characteristic polynomial

χπ = X2 + t(T)X + n(T) ∈ Fq [T] [X]

defines an imaginary hyperelliptic curveH .
Then:

◦ End(ϕ) is the coordinate ring Fq [H ] ofH .

◦ Cl(End(ϕ)) is the Picard group Pic0(H ) ofH .
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Computing the CRS Group Action: Mumford Coordinates

Elements of Pic0(H ) can be represented byMumford coordinates: pairs
(u, v) ∈ Fq [T]2 such that:{

deg(u) < deg(v) ¶ d
(u, v) represents the ideal class of 〈ϕu, π − ϕv〉.

Then
ua = rgcd(ϕu, π − ϕv).

Theorem (L.-Spaenlehauer, 2023)

The group action can be computed with O(d2) operations in Fq and O(d2)
applications of the Frobenius endomorphism x ↦→ xq of K.
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Computing the CRS Group Action: For Crypto?

We implemented the action (C++/NTL).
Following the Hard Homogeneous Space philosophy of Couveignes (1997),
Rostovtsev-Stolbunov (2006), we tried to derive a Key Exchange Protocol with
this group action.

Pros

It’s faster (∼ 24 ms) than traditional CRS

Cons

It’s insecure
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Lessons

Most famous problems that are difficult for elliptic curves are easy for Drinfeld
modules. Because:

1. Fq acts on most objects,

2. we benefit from the tools of algebraic geometry,

3. (barely mentioned before) we can use Anderson motives to represent
isogenies as polynomial matrices.

Algorithmically, supersingularity does not seem as crucial for Drinfeld
modules as it is for elliptic curves.
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For the Future

Drinfeld Modules are very general objects, and can be computed in a general
context (Musleh-Schost, 2023; Caruso-L., 2023).
Let C be a smooth geometrically connected curve over Fq.

Z Fq [T] A
Q Fq (T) Fq (C)

Number fields Function fields Finite extensions of Fq (C)
R R∞ Rx, x ∈ C
C C∞ Cx, x ∈ C

Characteristic p Fq [T]-characteristic p A-characteristic p
Elliptic curves Drinfeld Fq [T]-modules Drinfeld A-modules
Abelian groups Fq [T]-modules A-modules

Isogenies of elliptic curves Isogenies of Dr. Fq [T]-modules Isogenies of Dr. A-modules
End(E) End(ϕ) End(ϕ)

Relying less on elliptic curves and find original problems for Drinfeld modules.
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