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Abstract

The differences of assessment between musical instruments of the same kind (e.g classical guitars)
covers aspects linked to sounds, expressibility, or even manufacturing process. How to extract rele-
vant information related to these aspects by measuring well chosen physical (acoustical, vibratory)
parameters ? The aim of the proposed study is to identify criteria enabling the clustering of string
instruments in different classes. The plucked instruments will be our application. The knowledge
of these parameters would then allow to give an help to the instrument maker in the adjustments
and settings likely to be made on an instrument. The modal parameters (frequency, and damping
coefficient) can be estimated accurately on a large frequency range from impulse responses by using
the high-resolution ESPRIT method, associated with the ESTER criterion to enumerate the signal
components. Global parameters, such as the modal density, loss factors and modal overlap factor can
be determined and used to estimate average mobility, derived from Skudrzyk’s mean-value theorem.
The application on guitars and ukulele shows a common behavior of their average mobility: it re-
mains constant in the mid and high frequency domains. The corresponding value is used as one of
the parameters enabling the characterization.
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times difficult to be transferable to the instrument
makers. The aim of our study is to propose a mechani-

1. Introduction

The differences of assessment between musical in-
struments of a same kind covers aspects linked to
the resulting sound, expressibility, or even quality of
the manufacturing process. The measurement of some
physical parameters, acoustical or vibratory could de-
brief, in a way, these properties. The knowledge of
relevant parameters eventually could give an help to
the instrument maker in the adjustments and settings
likely to be made on an instrument.

String instruments are complex assemblies and the
sound produced is the result of several coupled inter-
acting parts. It is therefore delicate to characterize
string instruments. Furthermore, scientific studies en-
able a better understanding of the physics of string
instruments, but they are mostly published for scien-
tists, so the knowledges and the technologies are some-
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cal characterization of string instruments using meth-
ods which requires tools affordable, easily manipula-
ble by the instrument maker, and also transferable to
their workshop. Among all the different ways of inves-
tigation available for the study of string instruments,
we chose to focus on the coupling between the string
and the soundboard of plucked string instruments
(guitars and ukulele in this case). When the string
is excited (plucked) by the musician, the vibration of
the string is transmitted to the soundboard via the
bridge. The measurement of the mobility (or mechan-
ical admittance) gives information about the coupling
between the string and the soundboard. The level of
that coupling on plucked instruments acts on both the
sound level and the sound duration: when it is strong
(i.e. large mobility), the energy of the string is trans-
fered more suddenly to the soundboard. It results
in a more powerful sound, but with a faster decay.
The trade-off between sound level and sound duration
is frequently encountered by instrument makers. We
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propose in this study global parameters, deduced from
bridge mobility measurements, which could quantify
this trade-off. The method is based on an estimation
of modal parameters to estimate average mobility, de-
rived from Skudrzyk’s mean-value theorem.

After a short definition of mobility, the section 2
introduces the global descriptors used to characterize
the bridge mobility of plucked instruments, as well as
the modal identification techniques used to compute
them. Then, a few examples of experimental applica-
tions are presented in section 3. In that section, we
apply the method of modal identification to guitars.
Then, an example of application to the lutherie assis-
tance is presented. It consists in comparing the aver-
age mobility of the same ukulele, first without bridge
and then with bridges of different weights.

2. Bridge mobility measurements

2.1. Bridge mobility of guitars : definition

The mobility of a structure (or mechanical admit-
tance, usually denoted Y (w)) is defined as the ratio,
in the frequency domain, of the velocity V(w) at a
point of the structure to the applied excitation force
F(w). It can be written as a superimposition of modal
contributions. When the observation point and the ex-
citation point coincide, Y (w) is written as follows:
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where A denotes the point of observation, wg, ng, M
and @y are respectively the pulsation, the loss factor,
the modal mass and the mode shape associated to the
mode k, k being the order of the mode.

The frequency response of a structure is commonly
divided into three main frequency ranges: the low,
middle and high frequency domains The boundaries
of these domains are defined with the value of the
modal overlap factor (or MOF). It is denoted by the
symbol u, and represents the ratio of the half power
bandwidth to the difference of the eigenfrequencies
of two successive modes. In the low frequency range,
peaks are well-separated, therefore the modal over-
lap is small. The MOF tends to increase in higher
frequency ranges. The boundaries of the frequency
ranges are defined as follows [1]:

e low frequency range : u < 30%
e mid frequency range : 30% < u < 100%
e high frequency range : p > 100%

The figure 1 shows the frequency response, as well
as the modal overlap factor of a synthetic plate.
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Figure 1. Modal overlap factor (M OF') and mobility of a
synthetic plate. The plate is a thin rectangular isotropic
plate, having the following dimensions: L; = 0.3 m, L, =
0.4 m, and h = 2.5 mm. The Young modulus is 15 GPa.
The value of the modal loss factor n is 2% and is the
same for all modes. The limits of the three main frequency
domains are defined with the values of the modal overlap
factor.

2.2. Global descriptors
2.2.1. Mean value of mobility

In the low frequency domain, the mobility is stud-
ied through the parameters of each individual mode,
since they are well-separated and easily identifiable. In
higher frequency ranges, we will consider that study-
ing each individual mode is no longer relevant, since
they are very fluctuating. A way to analyze mobility
curves in the high frequency range could be to high-
light their underlying tendency, without the disturb-
ing individual modal contributions. This synthetic de-
scriptor is called the mean-value.

Skudrzyk [2] presented a method to compute the
mean-value of mobility. In a physical sense, it cor-
responds to the mobility of the structure if this lat-
ter had infinite dimensions, and so without any reso-
nances. The main idea of Skudrzyk is to change the
expression of the mechanical admittance from a dis-
crete sum to an integral. However, the calculation of
this integral is based on several assumptions:

e the structure is supposed to be homogeneous (the
surface density pg is constant over the whole struc-
ture),

e the local mean value of mode shapes over the whole
structure is supposed to be barely dependent on the
mode order,

e the structure is supposed to verify the Basile hy-
pothesis,

then, the characteristic admittance, as defined by Sku-

drzyk [2], writes:

Yo = Ge + jBc, (2)

with
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where n(f) denotes the local modal density, i.e. the
invert of the local average frequency difference be-
tween two successive modes, and Mg, is a quantity
with the same dimension as a mass, so it is called the
equivalent mass of the system.

The imaginary part B¢o vanishes when the modal
density is constant [3] (e. g. for plates), therefore it is
of less interest.

2.2.2. Plate elastic constant

The modal density profile of instruments gives infor-
mation about its global behavior in a given frequency
range. We propose a method to characterize the modal
density profile of instruments through one parameter,
called the plate elastic constant. The method is based
on the assumption that the modal density profile of
the instrument is similar to the one of a rectangular
thin plate.

The expression giving the modal density of thin
rectangular plates has been estimated by Courant [4].
It is given by:

S [ph

n(f) fjoo N = S\ D (4)

where S is the area of the plate, p and h denote re-
spectively the density and the thickness of the plate,
and D is the flexural rigidity modulus of the mate-
rial. Basically, it is an asymptotic value toward which
the modal density tends, independently of the bound-
ary conditions. The boundary conditions changes the
eigenfrquencies in the low frequency domains. The in-
fluence of boundary conditions on the modal density
has been studied by Xie et al. [5] and are given by the
following expressions:

o free:

n(f) = neo + h>4 (Lo + Ly) f72,(5)

1 < p
Vvor \ D
e simply supported :

L (1Y =
n(f) = neo \/877T<D> (Lz+Ly) f77,(6)

The term n., is the asymptotic value of the modal
density, independent of the boundary conditions, and
L, and L, are the dimensions of the plate. When
the plate has free vibrations, the modal density tends
towards n., by upper values, while it tends by lower
values when its four edges are simply supported.

Expressions 5 and 6 can be written n(f) = pg +
g/ B/ f, where p = S/2, ¢ is a constant coefficient de-
pending on boundary conditions and on the geometry
of the plate, and § = \/% is the so-called plate elas-
tic constant, depending on the mechanical properties
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of the material. The plate elastic constant is deter-
mined by searching the value of § which minimizes

the euclidean norm of n(f) — pS + g\/5/f. Hence:

n(f) —pB+ q\/g

where n(f) is the vector containing the experimental
modal density, namely the invert of the difference of
eigenfrequencies.

The parameter 3 gives an indication of the effective
mass to stiffness ratio.

2

, (7)

2
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2.3. Experimental modal identification

In practice, the computation of these global descrip-
tors requires an estimation of modal parameters. In
the low-frequency range, Fourier based modal identi-
fication techniques [6] are sufficient to estimate modal
parameters. However, in the mid and high frequency
ranges, the modal identification is much more diffi-
cult, since the modal overlap becomes large [3, 1].
Nevertheless, the subspace methods [7, 8, 9] enable
to extend the limits of performance of modal estima-
tion, due to the large modal overlap in mid and high
frequency ranges. We propose to apply the subspace
method ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Techniques) [9], since it has
been shown to be efficient in mid and high frequency
ranges to estimate modal parameters of mechanical
structures [10].

To apply ESPRIT, the impulse response signal
s(A,t) must be modeled as a sum of a finite number
of exponentially damped sinusoids disturbed by an
additive white Gaussian noise. Each sinusoidal com-
ponent corresponding to the temporal response of a
single mode.

K
S(At) = ap(A)e wtel Aritteon) (8)
k=1

where k, K, and A are respectively the mode order,
the signal modeling order and the observation point,
ak, o, fr and @i denote respectively, the modal am-
plitude, the modal damping, the modal frequency and
the modal phase of the mode k.

The ESPRIT algorithm will estimate the signal pa-
rameters corresponding to modal parameters of the K
sinusoidal components residing in the signal.

An important issue when applying subspace meth-
ods to composite signals is the tuning of the modeling
order. The number of single components is indeed a
priori unknown. A wrong signal modeling order can
bias the estimation [11]. The ESTER (ESTimation of
ERror) criterion, based on the assessment of the rota-
tional invariance property that characterizes the sig-
nal subspace, has been designed by Badeau et al. [11]
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and used by Ege [10] in the context of mechanical ex-
periments. We thus chose to apply this technique of
signal enumeration since it proves reliable and also for
its compatibility with the ESPRIT algorithm which
relies on the rotational invariance property.

3. Experimental applications

3.1. Analysis process

The figure 2 represents in a bloc-diagram the analysis
process applied in this study to compute the global
parameters defined in the section 2.

ja(t) iz

I(t) s(t) O Ok Gg. B
—>| Data acq. HR smoothing HF Param. [ ——>

Figure 2. Bloc diagram of the process .

The signal s(t) of the impulse response is obtained
by a simultaneous measurement of the excitation
signal, by means of a small impact hammer (PCB
086E80), and the acceleration signal, by means of a
small accelerometer (PCB 352C23). The instruments
are hanged by their headstock and the strings are
damped. The accelerometer is put on the bridge, in
the vicinity of the base of the lowest string. The force
is applied just next to the observation point, as shown
in figure 3.

Then s(t) is analyzed with the subspace technique
ESPRIT . This allows us to estimate the signal pa-
rameters O, corresponding to the modal parameters
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in output. A smoothing, which consists in averag-
ing each modal parameters with the values of its 2
[ closest neighbors, is applied to the modal parame-
ters ©. This step aims to reduce the important local
variations that might occur in the values of modal
parameters. For instance, since the study focuses on
two-dimensional structures, double modes might oc-
cur and locally increase the modal density. One get
thus the local averaged modal parameters ©,. Finally,
the values of modal parameters are used to compute
the global descriptors defined in section 2.

3.2. Analysis of guitar frequency responses

Mobility, modal density and averaged mobility are
presented in figure 4 for two classical guitars. The
modal density is growing in the low-frequency do-
main, then it becomes constant in the mid frequency
domain. In the high-frequency domain, it slightly de-
creases. The behavior of the estimated modal den-
sity in the mid and high frequency ranges is proper
to rectangular plates with four free edges. This re-
sult suggests that the guitar can be assimilated to an
equivalent rectangular thin plate in these frequency
domains. Since the dimensions of every classical gui-
tar are very similar, the dimensions of the equivalent
plate are set to the same value for every guitar. The
equivalent plate is thus a square plate (0.3 x 0.3 m?),
since it roughly corresponds to the dimensions of the
lower bout of the soundboard, which is the most mo-
bile part. The values of parameters p and ¢ in expres-
sion 7 are p = 9.0 x 1072 m? and ¢ = 0.24 m. The
theoretical modal density of the equivalent plate is
plotted in figure 4 (a).

The interest of such a result for the characterization
of guitars is to reduce their characteristics to those of
a rectangular thin plate which would be equivalent to
the guitar. These parameters define the character of
the instrument. It is helpful for the luthier, notably
to objectively quantify the performance of the instru-
ment wished by the musician.

3.3. Influence of the bridge on the ukulele
frequency response

This section gives an example of application of this
study to problematics encountered by luthiers. The
bridge of guitars, or ukulele in this case, is known to
have a large influence on the frequency response, in
particular because of its mass which is in the same
range than the one of the soundboard. The choice of
the material used to make the bridge is one of the
problematics encountered by the luthier. This part
of the study aims to compare the parameters defined
in section 2.2 for different configurations of the same
ukulele. First, the admittance without the bridge is
measured, then it is measured with bridges, made
with different woods (mahogany and rosewood). The
configuration with the rosewood bridge is first ana-
lyzed in its normal configuration, then the rosewood
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Figure 4. Bridge mobility measurements of two differ-
ent classical guitars. The guitar represented by the black
line is a basic industrial guitar. The red line represents
an high quality guitar from a luthier. (a) Bridge mobil-
ity without processing. (b) Modal density estimation and
modal density of the equivalent plate. L, = L, = 0.3 m,
p=9.0x10"? m? and ¢ = 0.24 m. (c) mean-value of the
mobilty in the mid and high frequency ranges computed
for both guitars.

is sawn-off in order to make the bridge less rigid. The
masses of the bridges and the soundboard are pre-
sented in table I

The modal density profile is similar to the one of
the plate, but in this case, the equivalent plate has
its four edges simply-supported. The equivalent plate
is a square plate (0.135 x 0.135 m?), corresponding
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Elements Mass (g) Picture
Soundboard 42
bridge !
Rosewood 7 -
MOdlﬁed —
rosewood 6 '
bridge

Saddle 1

Table I. Masses and pictures of the different elements of
the ukulele

roughly to the dimensions of the lower bout of the
soundboard. The values of parameters p and ¢ in ex-
pression 7 are p = 9.1 x 1072 m? and ¢ = —0.054 m.
The figure 5 shows the modal density of the equivalent
plates, and the mean-value of mobility of the ukulele
for the different configurations.

Since the bridge adds effective mass to the system,
the mobility of the instrument with bridge should
be less than the mobility of the instrument without
bridge. The figure 5 confirms such a tendency. One
can notice that the heavier the bridge, the less the mo-
bility. However, the modal density profiles are similar
and do not change a lot. It means that the added mass,
due to the bridge, is compensated by the added stiff-
ness, the mass to stiffness ratio for the different con-
figurations remaining in the same range. The choice of
the wood used for the bridge is therefore more influent
on the average mobility.

4. Conclusions

The developed approach for this study enables the
global description of the mechanical behavior, in the
middle and high frequency domains, of guitar and
ukulele soundboards. The ESPRIT method, when as-
sociated with the signal enumeration technique ES-
TER enables the estimation of modal parameters with
good precision in the mid and high frequency ranges.

Applications on guitars showed a common feature
of their average mobility, this latter presenting a plate-
like behavior in the mid and high frequency domains.
Thus, the guitar soundboard can be considered as a
plate. From the values of modal parameters estimated
by ESPRIT and some geometrical assumptions, it is
possible to determine the mechanical properties of an
equivalent plate (rigidity, surface density, ...), allow-
ing a simple characterization of guitars through these
parameters.
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Figure 5. (a) Modal density of the equivalent plate. Ly =
L, =0135m, p = 9.1 x 107 m? and ¢ = —0.054 m.
(b) Mean-value of mobility in the mid and high frequency
ranges and (c) comparison of the values of plate elastic
constant and average mobility for the different configura-
tions of the ukulele.

Applications on ukulele highlighted the same be-
havior, except the fact that the plate has now its four
edges simply supported. However, the parameters are
still relevant to characterize the instrument. A study
via these parameters on different configurations of an
ukulele permitted to show the influence of the bridge
on the frequency response of the instrument.

Thus, the luthier has the possibility to objectively
check the adjustments and the settings made on his
instrument. These parameters are, in fine, intended
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to be determined from a large corpus of instruments
to allow a clustering of instruments.
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