
Macro parameters describing the mechanical behavior of classical
guitars

Benjamin Eliea) and François Gautier
LAUM, UMR CNRS 6613, Avenue Olivier Messiaen F-72085 Le Mans Cedex 9, France

Bertrand David
Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI 46 rue Barrault F-75634 Paris Cedex 13, France

(Dated: September 30, 2012)

In reference papers dating back to the 60’s and 70’s, different authors proposed simplified models
for the vibro-acoustical behavior of string instruments in the low-frequency range, using a few pa-
rameters. In this paper, a method is described which allows to derive and estimate a few salient
parameters (or features) describing the mechanical behavior of classical guitars in a broader fre-
quency range. These features are selected under the constraint that the measurements are easily
realizable at the instrument maker workshop. The computations of these features rely on the esti-
mation of the modal parameters over a large frequency range, thanks to the high-resolution subspace
ESPRIT method, associated with the signal enumeration technique ESTER. The methods are here
applied to numerical simulations and experiments on real metallic and wood plates. The results
on guitars show a constant modal density in the mid and high-frequency domains as it would be
for a flat panel. Finally, 4 features are chosen as characteristic parameters of this equivalent plate,
namely the mass, rigidity, characteristic admittance and the mobility deviation. Applications on
a population of guitars indicate that these features are good candidates to discriminate different
classes of classical guitars.

PACS numbers: 43.75.Gh, 43.75.Yy

I. INTRODUCTION

In the 60’s and 70’s, Schelleng1, Caldersmith2, and
Christensen3, proposed simple models for the low-
frequency mechanical behavior of string instruments.
These studies, while giving a better understanding of the
role of important elements such as the rose for the guitar,
also reduce the complexity of a whole system to a few sim-
ple substructures (2 coupled mass-string systems2,3 for
the guitar soundboard-soundbox interaction, or an elec-
tric circuit1 for the violin). This reduction mainly relies
on a low-frequency assumption, which enables the mod-
eling of mechanical and acoustical elements with the help
of lumped equivalent circuits. For extending the study
of complex vibrators to broader frequency ranges, where
the concept of lumped circuits does not apply, statisti-
cal4 or finite elements methods5,6 have been thoroughly
exploited. In this paper, we follow another approach,
which consists to address the issue of designing and esti-
mating a few parameters able to characterize an instru-
ment in the mid and high-frequency ranges as well as in
the low-frequency register. We particularly focus for the
application of this approach to classical guitars.

In the low-frequency range, the mechanical behavior of
weakly damped vibrating structures is usually described
using eigenmodes. For higher frequency ranges, the spec-
tral overlap of modes increases, often due to higher damp-
ing and sometimes higher modal density and the modal
theory becomes ineffective4,7. This is likely a ratio for
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which authors have tried alternative approaches to cap-
ture the important and salient properties of a whole in-
strument: there is a need for summarizing its behavior
along the whole frequency range with a few parameters
(or features) and we expect them to discriminate instru-
ments of the same kind.

For instance, a number of authors have investigated
the vibro-acoustical properties by considering the radia-
tion efficiency8,9. Hill et al.10 designed a profile analysis
of classical guitars with a method based on low-frequency
input admittance and sound-pressure response. Earlier,
Meyer and Janson11 proposed a small set of selected fea-
tures to be related to the quality of the guitar. Recently,
Ege12 has suggested describing globally the piano sound-
board with a method based on modal density estima-
tion. More generally, the salience of such features or
macro-parameters is sometimes assessed with the help of
subjective evaluation8,13–15.

Hence, there are a number of solutions to deal with
the issue of summarizing the vibro-acoustical behavior
of a guitar in a few features. Since our work has been
initiated from a collaboration with instrument makers
and will be developed in the future in this framework, we
only have considered the features which are computable
from mechanical measurements made within a workshop
context.

When a guitar string is plucked by the musician, its vi-
bration is transmitted to the soundboard via the bridge.
This makes the study of the string-soundboard coupling
a good candidate for our purposes while the measure-
ment of the mechanical admittance, also called mobility,
is realizable in the workshop for interested makers. On
plucked instruments, the level of that coupling acts on
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both the sound level and the sound duration16: when it
is strong (i.e. large mobility), the energy of the string is
more suddenly transferred to the soundboard, resulting
in a more powerful sound, but with faster decay. The
trade-off between sound level and sound duration is a
frequent issue to be tackled by instrument makers.
The main aspects of our approach are outlined by the

organization of the paper. In Section II, we follow Lang-
ley17, Skudrzyk18, and Ege12 to design useful and salient
features from the measurement of bridge mobility. In or-
der to estimate robustly these features, an original signal
processing method, extending the modal identification
to higher frequency ranges is presented in Section III.
The performance of the method is studied in Section IV,
using a test framework combining a controlled dataset
with realistic noisy environment. The method is then
used in experiments with real wood and metallic thin
plates. These experiments lead us to apply confidently
the method to guitar mobility measurements (Section V),
making it possible to visualize guitars as points in a well
chosen feature space.

II. DESCRIPTION OF BRIDGE MOBILITY USING A
FEW PARAMETERS

In this paper, the experimental framework is restricted
to that suitable from a daily instrument maker practice.
Thus, the normal mobility is the only one considered for
this study. This approximation restricts the possible de-
grees of freedom to the unique transverse motion, that is
the translation perpendicular to the soundboard. When
in the general case, the mobility would have been a ma-
trix19, expressed in the frequency domain, here it be-
comes a simple scalar Y (ω) which amounts to the ratio
between the transverse velocity in the Fourier domain
V (ω) and the excitation force F (ω) in the same direction
and at the same location. This mobility is usually mea-
sured at one of the points of the bridge where strings are
attached.
Figure 1 shows typical mobility curves, measured at

the bridge of two different guitars at the point where the
E2 string is attached. Both plots of |Y | as function of
the frequency include numerous modal contributions and
overall tendencies which results in different but rather
complicated patterns and makes the comparison between
the instruments not straightforward. In this section, we
propose to consider a small set of quantities able to high-
light the meaningful information comprised in Y (ω).
To this aim, the work of Skudrzyk on what he has

called the characteristic admittance18 and that of Lang-
ley on the envelope curves of mobility17 have particularly
been found useful. Both approaches allow a description of
vibratory responses in the mid and high-frequency ranges
and are adapted for the case of stringed instruments.

A. Modal Overlap Factor (MOF) and frequency ranges

It is usual to split the frequency response of mechan-
ical systems into three domains: the low, mid and high-

Figure 1. Modulus of the mobility plotted versus frequency,
measured at the bridge of two different guitars.

frequency ranges. In the low-frequency range, the mobil-
ity shows resonances as well separated peaks, easy to seg-
regate and identify. When higher frequencies are consid-
ered, the modal peaks tend to overlap largely because of
higher damping in addition or not of greater modal den-
sity. The boundaries of these domains have been specified
using the value of the Modal Overlap Factor or MOF5,
defined as µ, the ratio of the half-power bandwidth to
the frequency difference of two successive eigenmodes.
More precisely, let ωk be the center angular frequency of
a resonance peak, ωk+1 the next modal center angular
frequency and ∆ωk the half-power bandwidth, the MOF
µk writes:

µk =
∆ωk

ωk+1 − ωk
, (1)

The boundaries of the frequency ranges are commonly
defined as follows5:

• low-frequency range : µ < 30%,

• mid-frequency range : 30% < µ < 100%,

• high-frequency range : µ > 100%.

From a practical point of view, µ is obtained as a func-
tion of frequency by averaging the µk’s over a sliding win-
dow containing a predefined number of modes (typically
11 modes).

B. Characteristic admittance

The so-called characteristic admittance YC of a finite
structure is defined by Skudrzyk18 as the mobility of
the equivalent structure with infinite dimensions. Sku-
drzyk18 derives a closed-form expression to estimate the
real part of the characteristic admittance, GC = ℜ (YC),
of the finite structure from its properties:

GC(ω) =
πn(ω)

2MTot
, (2)
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where n(ω) denotes the local modal density and MTot is
the total mass of the system.
To obtain Equation (2), Skudrzyk’s technique consists

in changing the expression of the mechanical admittance
from a discrete sum to an integral. However, the calcu-
lation of this integral is based upon several assumptions:

• the modal overlap is supposed to be large enough,
so that the modal contributions are no longer indi-
vidually observable,

• the structure is supposed to be homogeneous (the
surface density is constant over the whole struc-
ture),

• the generalized damping matrix is supposed to be
diagonal (Basile hypothesis),

• the modal loss factor is assumed to be constant over
the whole frequency range.

The above hypotheses are in particular valid for plate-
like systems, for which analytical expressions of modal
density have been previously proposed20–23. The modal
density of rectangular plates is known to tend asymptot-
ically toward a constant, which has been estimated by
Courant20:

n∞(ω) =
S

4π

√
ρh

D
, (3)

where S, h, and ρ denote respectively the surface, the
thickness and the surface density of the plate, D being
the flexural rigidity.
The substitution of Equation (3) in (2) leads to the

expression of the asymptotic value of the characteristic
admittance of rectangular flat panels:

GC∞ =
1

8
√
ρhD

. (4)

The value of GC∞ can be used as an indicator to quan-
tify the ability of the structure to vibrate, a structure
with large characteristic admittance being globally more
mobile, therefore more efficient to vibrate. The value will
be expressed in dB, where the reference at 0 dB is the
characteristic admittance of a 2-mm thick infinite plate
having the typical mechanical properties of the spruce.
Thus:

GCdB
= 20 log10

(
GC∞

GRef

)
, (5)

where GRef is the characteristic admittance computed
from Equation 4, with ρ = 420 kg.m-3, h = 2 mm, and
D = 2.1 N.m. Therefore, GRef = 0.094 m.s-1.N-1.
In the case of conservative thin plates, the imaginary

part of the mobility of an infinite plate is zero (cf. Ref.4,
pages 34-39), therefore the imaginary part of the charac-
teristic admittance is null.

C. Envelope curves of the mobility

The characteristic admittance is a relevant descriptor
as it gives information about the mean-value of mobil-
ity. The scattering of the mobility around its mean-value
can be described by the envelope curves, which represent
the upper and lower bounds of the admittance modu-
lus as a function of the frequency. For two structures
having the same characteristic admittance, and the same
modal density, their envelope curves will differ according
to their loss factor. Langley17 gives an expression of en-
velope curves of mobility. Considering first the difference
in frequencies between two successive resonances ωk and
ωk+1 evenly distributed and equal to the inverse of the
local modal density n(ω), then considering that antireso-
nance frequencies between two successive resonances are
ω = ωk+ωk+1

2 , the expression for the real part part of the
mobility at resonances and antiresonances is written:

GRes = GC coth
[
πµ
ζ

]
GAres = GC tanh

[
πµ
ζ

] , (6)

where ζ = 2 for one-dimensional structures, and ζ = 4
for two-dimensional structures (cf. Ref17).

The coupling between a string and the soundboard is
strongly related to the value of the soundboard mobility
at frequencies corresponding to the eigenfrequencies of
the string16. Basically, a large value of the real part of the
soundboard mobility, at the point coupling between the
soundboard and the string, leads to a strongly damped
string mode. Consequently, if the deviation of the sound-
board mobility is large, the damping coefficients of string
modes of successive notes also vary a lot. Therefore, if a
guitar presents a large deviation of its frequency response
curve around its mean value, one can think that its be-
havior is less homogeneous than another guitar having
a small deviation of its frequency response. In order to
quantify this deviation with simple quantities, the area
between the upper and lower envelope curves, normalized
by the mean value of the mobility is estimated. This
parameter, called the mobility deviation, is denoted by
⟨σY ⟩ω30 , and can be written:

⟨σY ⟩ω30
=

1

ωmax − ω30

∫ ωmax

ω30

GRes −GAres

GC
dω, (7)

where ωmax is the upper bound of the frequency band
used for the analysis of the mobility. The angular fre-
quency ω30 corresponds to the lower bound of the mid-
frequency range and is defined as the angular frequency
for which the modal overlap factor is greater than 30%.

III. MODAL IDENTIFICATION USING
HIGH-RESOLUTION TECHNIQUES

In practice, the computation of the characteristic ad-
mittance and envelope curves requires an estimation of
modal parameters. In the low-frequency range, several
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Fourier based modal identification techniques24,25 have
been developed. In the mid and the high-frequency
ranges, the modal overlap increases4,5 and these methods
are no longer robust. Subspace methods like MUSIC26

(MUltiple SIgnal Classification), Matrix Pencil27, or ES-
PRIT28 (Estimation of Signal Parameters via Rotational
Invariance Techniques) are then interesting to consider
and have already been successfully applied to vibration
signals (cf. Le Carrou29 for the harp, David30, Badeau31,
and Ege32 for thin plates and piano, and Laroche33 for
guitars). Indeed, these methods overcome the Fourier
resolution limit and are then useful when modes are over-
lapping (because of this property they are often called
high-resolution). In our work, ESPRIT is used since it is
known to be one of the more robust.

A. Modal description of the mobility

The eigenmodes of a dissipative system are the solu-
tions of the homogeneous equation:

Mẍ+Cẋ+ Sx = 0, (8)

where M, C, and S are respectively the mass, the dam-
ping, and the stiffness matrices, of size N ×N , where N
is the number of modes, and x is the generalized coordi-
nates vector of the displacement.
The eigenmodes (λk, Φk) of the dissipative systems

are known to be complex34. The mobility can then be
developed on the basis of the complex modes as:

YA(ω) = jω
N∑

k=1

{
u2
k(A)

αk + j(ω + ωk)
+

ū2
k(A)

αk + j(ω − ωk)

}
,

(9)

u2
k(A) =

Φ2
k(A)

2jωkmk
,

where A denotes the point of observation, ωk, αk, mk

and Φk are respectively the modal angular frequency, the
modal damping factor, the modal mass and the modal
shape associated to the kth mode. ūk denotes the com-
plex conjugate of uk, the complex modal amplitude of
the kth mode.
If the damping matrix is such that the mode shapes

Φk are reals, then Equation (9) can be rewritten in the
form:

YA(ω) = jω

N∑
k=1

Φ2
k(A)

mk(ω2
k + jηkωkω − ω2)

, (10)

where ηk denotes the modal loss factor of kth mode.
The computation of the parameters described in the

previous section requires the knowledge of the modal pa-
rameters ωk, αk, Φk, and mk. The measurement and the
analysis of the mobility using suitable techniques enable
the modal parameter estimation in a broad frequency
range.

B. Modal identification technique

From Equation (9), it comes that the velocity response
s(A, t) to an impulse force is the inverse Fourier trans-
form of YA(ω). To emphasize that s(A, t) is real, it is
written as a real part of a sum of complex damped sinu-
soids:

s(A, t) = ℜ

[
K∑

k=1

bk(A)z
t
k

]
, (11)

where bk(A) = ak(A)e
jφk(A) is the complex amplitude

of the k-th mode, and zk = e−αk+jωk denotes the cor-
responding pole with angular frequency ωk and damp-
ing factor αk. K is the number of modes between
ω = −πFs and ω = πFs, where Fs is the sampling fre-
quency (K = 2N), the poles with negative frequency be-
ing the conjugate of those with positive frequency. These
parameters are related to that of Equation (9) by:

bk(A) =
Φ2

k(A)

2mk
[1 + jηk/2] and αk =

1

2
ηkωk. (12)

The ESPRIT28 algorithm estimates the signal param-
eters corresponding to the modal parameters of the K
sinusoidal components embedded in the signal. As the
other subspace high resolution methods (such as Matrix
Pencil or MUSIC), it is based on the decomposition of the
data vector space onto two orthogonal subspaces, the so-
called signal and noise subspaces. The signal subspace
S is that spanned by the sinusoidal components, i.e.,
the family of the Vandermonde vectors vkk=1...K

, with
vk = ejωkt−αkt. The noise signal N is the orthogonal
complement of S, such as S

⊕
N = E where E is the

vector space spanned by the data vector. A basis W(K)
of S is obtained by computing the Singular Value De-
composition (SVD) of the Hankel data matrix computed
from the measured signal samples. The signal subspace
verifies the so-called rotational invariance property: it re-
mains invariant from a sample to the next. This remark
leads to the following property:

W↑(K) = W↓(K)R(K), (13)

where R(K) is a K ×K matrix the eigenvalues of which
are the poles zk. W↓(K) is the matrix W(K) where
the last row has been deleted and W↑(K) is the matrix
W(K) where the first row has been deleted. The estima-
tion of the poles zk is done by an Eigen Value Decompo-
sition of R(K). The reader can refer to Appendix A for
a detailed description of the ESPRIT algorithm.

C. Signal enumeration

An important issue when applying subspace meth-
ods to composite signals is the tuning of the model-
ing order K, which is usually unknown. Several meth-
ods have been proposed to estimate K: the maximum
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likelihood35 method and Information Theoretic Crite-
ria (ITC)36, which include the Akaike Information Cri-
teria (AIC)37, and the Maximum Description Length
(MDL)38. More recently, the ESTER (ESTimation of
ERror) criterion, based upon the assessment of the ro-
tational invariance property that characterizes the signal
subspace, has been designed by Badeau et al.31 and used
by Ege32 in the context of real world mechanical exper-
iments. We thus chose to apply this technique since it
proves reliable and also for its straightforward implemen-
tation with the ESPRIT algorithm.
This criterion consists in appraising the rotational in-

variance property of the signal sub-space with the error
function

E(p) = W↑(p)−W↓(p)R(p). (14)

The authors then introduce the function J:

J(p) =
1

∥E(p)∥22
. (15)

J(p) is computed for p = 1, 2, ..., pmax, where pmax >
K, K being the right number of components residing in
the signal. When the order p equals to the right number
of poles (p = K), the matrixW(K) verifies the rotational
invariance property, and consequently ∥E(p)∥22 becomes
null. E(p) can also be zero for p < K since the subspace
is then spanned by p sinusoids. Practically, we will ob-
tain large values of J for p ≤ K and smaller ones for
p > K, when the subspace spanned by W(p) includes
noise components. Note that for impulse responses sig-
nal, which is real, the number of components K is twice
the number of physical eigenmodes.

IV. ROBUSTNESS OF THE METHOD

This section proposes numerical and experimental test-
ings of the ESPRIT method, in order to assess the per-
formance and the robustness of the method.

A. Test on realistic numerical simulations

In this section, the method is applied to synthetic test
signals, designed to simulate accurately real measure-
ment conditions while providing a ground truth for the
modal parameters. It then allows to control precisely
the macro-parameters as the noise level, the distribu-
tion of the modal component along the frequency axis
and the modal overlap on purpose to assess the perfor-
mance of the method for different values of these macro-
parameters. The design of the synthetic signal is first
described, followed by the main step of the whole, prac-
tical, signal processing method.

1. Hybrid synthesis of the acceleration and the force signals

The synthetic signals are designed by mixing a thin
plate modal superimposition and measured noise out-

comes obtained from typical vibro-acoustic sensor; hence
the denomination ”Hybrid”. Simulated impulse re-
sponses of rectangular, simply supported thin plates are
then computed by following the steps below:

Step 1: synthesis of the noiseless impulse response. The
modal parameters of a simply-supported rectangular
plate, obeying the Kirchhoff-Love34 model, are given by
:

ωn,m =
π2

√
ρh

√
D1

n4

L4
x

+D3
m4

L4
y

+ (D2 +D4)
n2

L2
x

m2

L2
y

,

(16)

Φn,m(x, y) = sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
, (17)

mn,m = ΦT
n,mMΦn,m =

∫
S

ρSΦ
2
n,m(x, y)dS, (18)

where n and m are positive integers, Lx and Ly are re-
spectively the dimensions of the plate along x and y. The
terms Di, with i = 1, ..., 4, denote the flexural rigidity of
the material, ρS is the surface density, and S is the sur-
face.

The noiseless impulse response signal s(t) is computed
as a sum of the modal responses, by substituting the
Equations (16)-(18) in Equations (11) and (12).

Step 2 : synthesis of the force signal f(t). To resemble a
force signal as produced by a real hammer impact, a typi-
cal waveform is proposed. It is a composite time-function
built on two half-gaussians leading to an asymmetrical
bell-shape which rises faster than it decays. The syn-
thetic waveform has been chosen in agreement with the
observation of a large set of different measured signals.

Step 3 : synthesis of the noiseless acceleration signal γ(t).

The noiseless acceleration signal γ(t) is computed by con-
volving the signal force by the impulse response of the
synthetic plate, e. g. γ = f ∗ s.

Step 4 : noisy synthetic signal. Numerous noise signals
have been recorded from the sensors used for our experi-
ments attached to non excited plates. A segment of these
measurements is randomly extracted and added both on
the synthetic force and acceleration signals.

2. Impulse response estimation

Step 1: prewhitening ESPRIT is based on the assump-
tion of an additive white noise, hence the necessity of
a signal prewhitening before applying the estimation al-
gorithm. In practice, it is often not difficult to obtain
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Table I. Mechanical parameters of the aluminum plate

Parameter Units Values Parameter Units Values
Lx mm 280.0 ρ kg.m−1 2700.0
Ly mm 350.0 E GPa 69
h mm 2.5 ν 0.3

Table II. Mechanical parameters of the spruce plate.

Parameter Units Values Parameter Units Values
Ly mm 500 D1 N.m 17.2
Lx mm 190 D2 N.m 1.0
h mm 2.5 D3 N.m 1.3
ρ kg.m−1 433 D4 N.m 3.6

a measured noise alone, e.g. the mechanical system be-
ing not excited, either from the acceleration or the force
sensor. This noise is then modeled as an autoregressive
process of order 10. The corresponding transfer function
is denoted by H = 1/A and the noise whitening step then
consists in filtering the signals (acceleration or force) by
the inverse filter A31.

Step 2: deconvolution The impulse response is estimated
following a deconvolution technique. Assuming the me-
chanical system to be linear, the problem writes:

f ∗ s = γ (19)

The technique consists in estimating an approximate,
finite impulse response, inverse filter ĝ for f . The ap-
proximation is defined in the mean least square sense as:

ĝ = argmin
ĝ

||ĝ ∗ f − δ||22 (20)

we then obtain an estimate ŝ of s as :

ŝ = ĝ ∗ γ, (21)

3. Application of the method to simulated plates

Impulse responses of 9 simulated plates are computed,
with intermediate parameters of modal density and loss
factors. This leads to 9 data set, corresponding to 9
plates that are represented in a loss factor-modal density
plane in Figure 2. For additional information, the con-
tour lines of equal MOF -or isoMOF- are drawn (dashed
lines). Two of these 9 simulated plates are a simula-
tion of panels that are used for the experimental valida-
tion, which is presented in Section IV.B: an aluminum
plate, with a low modal density and low damping, and
a spruce plate, with a higher modal density and higher
damping. The geometrical and mechanical parameters of
both plates are summarized in Tables I and II.

Figure 2. Modal density and loss factors of the 9 synthetic
plates. The value of the modal density is computed from
Equation (3). The ”isoMOF” (dashed line) is the product of
the modal density and loss factor values.

Following Section III.C, the modeling order (number
of components of the impulse response) is selected as the
integer K for which the ESTER criteria J(p) remains
below a certain threshold for p > K. Usually, J(p) shows
higher values in average for p < K than for p > K where
it is often evenly lower. The threshold is set to a fraction
of the global maximum, typically chosen as 1/10 or 2/5.
Figure 3 shows the ESTER criterion applied to the plate
#1 and the plate #6 .

In practice, an overestimation of the number of modes
often leads to unrealistic modal parameters (for instance
a very high or negative damping). These aberrant values
are easily discarded by a simple thresholding, consisting
in rejecting modes estimated with negative damping or
loss factors greater than an arbitrary threshold (set to
5% in our case).

In order to statistically assess the performance of the
order estimation, 100 outcomes of simulated plate signals
are computed. Each outcome uses a different noise seg-
ment following the scheme presented in Section IV.A.1.
The performance of the method for the 9 synthetic plates
is plotted in Figure 4, where error bars have been drawn,
corresponding to the median absolute deviation.

For all plates, the number of components is accurately
estimated. However, the estimation is rather dependent
on the excitation and observation point. Indeed, if the
excitation and observation points are in the vicinity of
nodal lines, the corresponding modes are not detected by
the method. This is especially the case when damping is
large (e.g. plates #7 to 9), because the sinusoidal com-
ponent is quickly drawn into noise, due to its large damp-
ing. Figure 4 confirms this tendency, since the number
of components is rather underestimated, and the varia-
tion of estimation is higher when damping and/or modal
density is large (i.e. the modal overlap is larger). How-
ever, the study focuses on the modal density of the guitar
soundboard seen by the string. Thus, if the string applies
a force in the vicinity of a mode node, it is not of great
interest to detect it since that mode won’t be excited.
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(a)

(b)

Figure 3. (a) ESTER criterion, given by Equation (15), for
the plate #1 versus the modeling order. The estimated mod-
eling order in that case is 54, which matches the right number
of components (54). (b) Results of the method applied to the
plate #6. The estimated modeling order in that case is 114,
which is slightly under the right number of components (116).

Figure 4. Comparison between the estimated number of com-
ponents Kest and the real number of components Kreal in
the synthetic impulse response of the 9 plates. The values are
the median and the median absolute deviation of a set of 100
realizations.

Besides, the study focuses on global parameters, a lo-
cal error in the modal estimation is unlikely to be really
influent on the final estimation of the global features.

B. Application to real plates

This section reports an experimental study using a
rectangular aluminum plate and a rectangular spruce
plate. The mechanical parameters of the tested plates
are those given in Tables I and II.

1. Measurement set-up

The plates are hung with wires, fixed to its upper
corners. This experimental set-up is intended to ap-
proach free-edge boundary conditions, while minimiz-
ing the added dissipation due to suspensions. The im-
pulse response s(t) is obtained by a synchronous and co-
localized measurement of the excitation signal, using a
small impact hammer (PCB 086E80), and the acceler-
ation signal, by means of a small accelerometer (PCB
352C23, 0.2g). The plate is impacted at the same point
than the measurement and the signal s(t) is analyzed
with the help of the ESPRIT method as described in
Section III.B. The algorithm gives in output the esti-
mated signal parameters Θk (the modal parameters, fre-
quency, damping, amplitude, and phase). As discussed
in Section II.A, the modal overlap factor, as well as the
modal density, and the modal damping are averaged by
means of a sliding window (in this study 11 consecutive
modes are averaged). Finally, the global parameters de-
fined in Section II (namely GC , and the envelope curves)
are computed from the values of the modal parameters.

2. Analysis of plate measurements

Figure 5 represents the ESTER criterion applied on
the measured impulse response of both plates.

The overall spread of the ESTER criterion from mea-
sured data resembles those obtained in Section IV.A.3
with simulated data. This leads to apply confidently the
method to estimate the number of components. Fig-
ure 6 shows the modal density, estimated by ESPRIT
for the aluminum and spruce plates, computed from the
ESPRIT-estimated modal frequencies and using Equa-
tion (22).

For both plates, the estimated modal density is found
roughly constant, amounting to a value of 0.015 Hz-1 for
the aluminum plate, and 0.0255 Hz-1 for the spruce plate.
This results is in good agreement with the theoretical
modal density of thin plates, known to be asymptotically
constant. A close form of the asymptotic modal density,
independently of the boundary conditions, has been de-
rived by Courant20 for isotropic plates. Recently, Xie et
al.21 have proposed to add a corrective term, depending
on the boundary conditions (cf. section V.B for details).
The analytical modal density of free plates, after Xie21,
is given by:
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(a)

(b)

Figure 5. ESTER criterion for (a) the aluminum plate, and
(b) the spruce plate.

n(ω) = n∞ +
Lx + Ly

2π

(
ρh

D

) 1
4

ω− 1
2 , (22)

where n∞ is the asymptotic modal density given by
Equation (3). The dashed line in Figure 5 represents the
analytical modal density, after Equation (22). For the
spruce plate, the analytical modal density is computed
with the typical mechanical parameters of the spruce.
The modal density estimated by ESPRIT from experi-
mental data is in good agreement with that computed
from Equation (22), showing that the number of modes
estimated by ESTER is accurate.

V. APPLICATION TO GUITARS

A. Analysis of measured bridge mobility

For experimental testing, guitars are hanged by their
headstock. The bridge mobility is measured using an
accelerometer placed on the bridge, at the base of the
E2 string, and a force hammer impacting at the same
point. The present study focuses on the mechanical re-
sponse of the guitar’s soundboard at one string attach-
ment point. The mean mobility level varies along the
bridge: the bridge at the central strings (D3 and G3)
attachment point is globally less mobile than at other
string’s attachment points.

(a)

(b)

Figure 6. Modal density estimated by ESPRIT of (a) the alu-
minum plate, and (b) the spruce plate. The dashed line repre-
sents the analytical modal density after Equation 22 and Ta-
ble III, when the boundary conditions are free. For the spruce
plate, the analytical modal density is computed according to
the typical values of the spruce, displayed in Table II.

Figure 7 is an overall description of the mobility mea-
sured at the bridge of a guitar. The behavior of GC , com-
puted from Equation (2), in the mid and high-frequency
ranges is typical of thin plates. This result suggests that
guitars can be assimilated to an equivalent flat panel in
these frequency domains. Furthermore, the computation
of GC highlights the global differences between instru-
ments. This is one of the main results of this paper. The
interest of such a result for the characterization of guitars
is to reduce their characteristics to those of a rectangular
thin plate that is equivalent to the guitar. The dashed
line is the analytical modal density of the so-called equiv-
alent plate. The modal damping is represented in Fig-
ure 7 (c). The modal loss factor is set between 1 and
2%, which is a typical value for wood materials, such as
spruce39,40.

B. Parameters of characterization: bending stiffness and
mass

The analysis of the modal density of several guitars
shows that it is roughly constant in the mid and the
high-frequency ranges, which is a common feature of flat
panels. We propose to determine the bending stiffness
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(a)

(b)

(c)

Figure 7. (a) Overall representation of the mobility mea-
sured at the bridge of a guitar. (b) modal density and (c)
modal damping factor estimated by ESPRIT and correspond-
ing modal loss factors (dashed lines).

and the mass of the plate having the same modal den-
sity, i.e. the equivalent plate. This equivalent plate con-
tains the contribution of every subsystem composing the
whole instrument, namely the soundboard, the bridge,
the bars, the back plate, the soundbox and so on. The
method does not require prior information about the in-
strument. Although the materials used in instrument
making are mainly orthotropic, the chosen model is an
isotropic plate. The knowledge of the different rigidity
moduli Di is not necessary, and it is more convenient to
estimate a global bending stiffness corresponding to the
rigidity of the equivalent isotropic plate.
The modal density of plates writes:

n(ω) = pβ + q
√
β/ω, (23)

where p = S
4π , q is a constant coefficient depending on the

boundary conditions and on the perimeter of the plate,

Table III. Parameter q for different boundary conditions

Boundary conditions q

free Lx + Ly

simply supported −Lx+Ly

2

clamped − (Lx + Ly)

and β =
√

ρh
D is called the plate elastic constant, de-

pending on the mechanical properties of the material.
Table III gives the parameter q for different boundary
conditions, according to Xie et al.21.

The plate elastic constant is determined by searching
the value of β which minimizes the quadratic difference
between the measured modal density and the model given
by Equation (23). Hence:

β = argmin
β

∣∣∣∣∣∣n30 − pβ + q
√

βg30

∣∣∣∣∣∣2
2
, (24)

where n30 ∈ R∗Ñ
+ is a vector containing the Ñ measured

values of the modal density at angular frequencies larger
than ω30, i.e. n30 = [nj nj+1 . . . nN ]T , where j is
the first mode order for which the modal overlap is higher
than 30%, N being the number of modes estimated in the

impulse response. The vector g30 ∈ R∗Ñ
+ is the vector

containing the Ñ square root of the inverse measured
modal angular frequencies in the mid-frequency range,

i.e. g30 = [ω
−1/2
j ω

−1/2
j+1 . . . ω

−1/2
N ]T . Considering

β ∈ R∗
+, Equation (24) has only one solution.

The estimation of the modal density for every guitar
shows a slightly decreasing modal density in the mid-
frequency range, which is proper to a freely vibrating
plate. Consequently, the parameter q used for the study
is the one corresponding to a plate with free boundary
conditions.

Since the dimensions of classical guitars are very sim-
ilar from a guitar to the next, those of the equivalent
plate are set to the same value for each of them. The
choice of the dimensions Lx and Ly is arbitrary. We chose
to set these dimensions to those of a square plate with
Lx = Ly = 0.3 m, since it roughly corresponds to the
dimensions of the lower bout of the soundboard, which
is the most mobile part. The values of parameters p and
q in Equation (24) are p = 7.2× 10−3 m2 and q = 0.6 m.

The equivalent mass should be estimated by computing
the spatial average of the modal amplitudes. In practice,
this spatial average is delicate to achieve, because of the
high number of required measurements.

We propose to estimate the equivalent mass from
Equation (2). According to Skudrzyk, the characteristic
admittance is the mean-line of the logarithmically plot-
ted mobility curve; it is the geometrical mean between
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a resonance ant its successive antiresonance. It can be
estimated by computing the moving average of the mo-
bility curve, in dB. It consists in computing the mean
value of the mobility, in dB, included in a sliding window
of a certain span, this latter moving from a sample to
the next. The obtained smoothened mobility GsmoothdB

writes:

GsmoothdB
(ωc) =

1

∆ω

∫ ω2

ω1

YdBdω, (25)

where ∆ω = ω2 − ω1, ωc = ω1+ω2

2 , ω1 and ω2 being
respectively the lower and upper frequency bounds of the
sliding window.
The equivalent mass is estimated from Equation (2),

by means of the mean least squares method.

M =
π

2
nfit.G

†
smoothdB

, (26)

where † denotes the Moore-Penrose psuedo-inverse, nfit

is the analytical modal density of the equivalent plate,
computed from Equation (23), and GsmoothdB

is the es-
timation of characteristic admittance GC computed from
Equation (25).
Tests on synthetic plates showed that the frequency

span of the sliding window should be large (around 2000
Hz) in order to minimize the error of estimation on the
equivalent mass.
Dividing the equivalent mass MEq by S gives the sur-

face density ρh. Then, the equivalent bending stiffness is
given by:

DEq =
ρh

β2
. (27)

This method of characterization is not only dedicated
to musical applications, but it applies to any plate-like
structures and is relevant for estimating their character-
istic parameters.

C. Results

Two groups of guitars have been studied. The first
group is composed by 9 recent guitars made by instru-
ment makers, considered as high quality instruments.
They come from several different manufacturers and were
lent by the store La Guitarreria, located in Paris. The
second group is composed by industrial guitars of lower
quality. The limits of the low-frequency domain, given
by f30, corresponding to the frequency from which the
modal overlap factor is greater than 30% is given in Ta-
ble IV.

1. Characteristic admittance vs. mobility deviation

A classification of the studied instruments is proposed
by comparing the values of their characteristic admit-
tance, denoted by GC∞ , and their mobility deviation,

Table IV. Values of f30 for different studied guitars

1 2 3 4 5 6 7 8 9

Group 1 f30 (Hz) 772 910 834 465 767 835 754 603 850

Group 2 f30 (Hz) 506 602 635

Figure 8. Classification of 2 groups of classical guitars by
the values of their characteristic admittance GC∞ and their
deviation of mobility

denoted by ⟨σY ⟩. The instruments can be represented in
a plane defined by the values of GC∞ and ⟨σY ⟩, as shown
in Figure 8.

Except in a few cases, the characteristic admittance
of industrial guitars (group 2) is smaller than the one of
hand-made guitars (group 1). Typically, the difference is
from 1 up to 4 dB. Guitars from group 1 are therefore
generally more efficient to vibrate.

The mobility deviation alone, however, is unlikely to
discriminate the two groups: a large part of guitars from
group 1 presents a mobility deviation in the same range
than guitars from group 2, between 2.8 and 2.9. Never-
theless, some guitars from group 1 have a smaller mobil-
ity deviation, around 1.8 and 2.8.

2. Bending stiffness vs. equivalent mass

A classification of instruments is proposed by compar-
ing the values of the mechanical properties of their equiv-
alent plate, namely the bending stiffness DEq and the
mass MEq. Figure 9 represents the position of the gui-
tars in the plane defined by these two macro-parameters.
The isomobility contour lines in Figure 9 represent the
values of GC∞ corresponding to the values of DEq and
MEq, after Equation (4).

The pair of parameters, equivalent mass and bending
stiffness, when associated, is discriminant: the separa-
tion between the industrial guitars and the guitars from
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Figure 9. Classification of instruments by the values of the
mechanical parameters of their equivalent plate (bending stiff-
ness and mass). The isomobility contour lines (–) are given
by dashed lines.

luthiers is straightforward. The industrial guitars present
a high equivalent bending stiffness in comparison with
those of guitars from group 1. However, the equiva-
lent mass of industrial guitars is rather similar to those
made by luthiers. The stiffness disparities between gui-
tar groups can be explained by the nature of materials
used for manufacturing. Indeed, industrial guitars are
usually made with plywood, which is stiffer than solid
woods (spruce or red cedar) used for soundboard manu-
facturing of high quality guitars.
It is worth noting that industrial guitars present simi-

lar properties, they tend to group together in the planes
of both Figure 8 and Figure 9. This is certainly a conse-
quence of the reproducible aspect of the industrial man-
ufacturing process.

VI. CONCLUSIONS

The developed approach for this study enables the
identification of modal density of structures. In spite
of the fact that frequency responses of mechanical struc-
tures show high modal overlap, so that the modal pa-
rameters are difficult to identify by classical methods, the
modeling of the impulse response of a structure as a sum
of complex damped sinusoids, made up of the temporal
responses of the mechanical modes, enables the ESPRIT
method to estimate them with good precision, when as-
sociated with the signal enumeration technique ESTER.
Numerical and experimental validations on metallic

and wood plates confirmed the accuracy of the method.
Then, applications on guitars showed a common feature
of their average mobility, this latter presenting a plate-
like behavior in the mid-frequency domain. Thus, the
guitar soundboard can be considered as a plate for fre-
quencies higher than 800 Hz. From the values of modal
parameters estimated by ESPRIT and some geometrical
assumptions, it is possible to determine the mechanical
properties of an equivalent plate (bending stiffness and

equivalent mass), allowing a simple characterization of
guitars using only 4 scalar features, which are the equiva-
lent mass and equivalent bending stiffness, the character-
istic admittance of the equivalent plate, and the mobility
deviation.

Applications on different populations of guitars high-
light differences between instruments, especially in terms
of average mobility, where the industrial guitars tend to
have an average mobility smaller than guitars made by
luthiers.

The difference in average mobility is attributed to the
fact that industrial guitars, made with plywood, are
stiffer than hand-made guitars, that present solid top of
spruce or red cedar. The equivalent masses of all guitars
are rather similar. It seems that one part of the luthier’s
savoir-faire consists in adjusting the global flexibility of
the soundboard, so that they can control the mobility
level. However, a high mobility is not necessarily a desir-
able quantity, as it can induce damped notes if this latter
is very large at a particular frequency. The trade-off be-
tween powerful sound and sound duration is another role
of the luthier. The homogeneity of mobility level with the
frequency is assessed by the mobility deviation feature.

The mobility deviation feature, quantifying the scat-
tering of the mobility around its mean-value, shows that,
except in a few cases, all guitars present similar deviation
of mobility around its mean-value.

Finally, the studied features seem to be good candi-
dates to discriminate objectively instruments of the same
kind, enabling eventually an instrument clustering. The
application of the method shall be helpful for the instru-
ment makers regarding the problematics encountered.
They will dispose measurement tools enabling them to
characterize objectively the mechanical behavior of their
instrument with a set of few features.

Appendix A: ESPRIT ALGORITHM

Let s ∈ CN be the column vector of the measured
signal, s is a sum of K exponentially damped complex
sinusoids corrupted by an additive white noise ε which
the variance is σ2, hence:

s[n] =
K∑

k=1

bkz
n
k + ε[n], (A1)

where bk are the complex amplitudes of the sinusoids, and
zk = ejω

′
k−α′

k are the complex poles, ω′
k ∈ [−π, π] being

the normalized angular frequency and α′
k ∈ R+ being the

normalized damping factor. The autocovariance matrix
X writes:

X = E
[
ssH

]
(A2)

= VBVH + σ2I, (A3)

where E and .H denote respectively the statistical
expectance and the conjugate transpose of the ma-
trix/vector, I is the identity matrix, and B = bbH , b
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being the vector containing the complex amplitudes bk:

b = [b1 b2 . . . bK ]
T
. (A4)

The matrix V ∈ CN×K is a base of the signal subspace
S spanned by the K complex sinusoids. It is a Van-
dermonde matrix containing the Vandermonde vectors

vk ∈ CN =
[
1 z1k z2k . . . zNk

]T
of each individual

sinusoid. The matrix V writes:

V =


1 1 · · · 1
z1 z2 · · · zK
z21 z22 · · · z2K
...

...
...

...

zN−1
1 zN−1

2 · · · zN−1
K

 . (A5)

The noise subspace N is then the orthogonal comple-
ment of the signal subspace S such as S⊕N = EN , where
EN is the vector space spanned by the N-dimensional data
vector s.
The signal subspace S is characterized by the so-called

rotational invariance (its base remains invariant from a
sample to the next), which can be written into a matricial
form:

V↑ = V↓D, (A6)

where V↑ is the matrix V to which the first line has
been withdrawn, and V↓ is the matrix V to which the
last line has been withdrawn. The matrix D ∈ CK×K is
a diagonal matrix, where the diagonal elements are the
K poles of the signal :

D = diag (z1, . . . , zK) .

In practice, V cannot be estimated, but a base of the
signal subspace S can be approached from a singular
value decomposition (SVD) of the autocavariance ma-

trix X = 1
rHHH , where H is a l× r Hankel matrix, with

r > K and l = N + 1− r > K is the sum of the dimen-
sions of the signal and noise subspaces, composed by the
measured signal samples:

X = UΣZ, (A7)

where U ∈ Cl×l is a l × l matrix containing the l singu-
lar vectors {u1, . . . ,ul} associated to the l singular vec-
tors sorted in decreasing order. The matrix Σ ∈ Cl×l

is a diagonal matrix containing the l singular vectors
{λ1 ≥ λ2 ≥ . . . ≥ λl} sorted in decreasing order. A base
W of S can be approached by the concatenation of the
K first singular vectors associated to the K larger sin-
gular values. The singular values from λK+1 to λl are
associated to the noise subspace N . The base W verifies
the rotational invariance, hence:

W↑(K) = W↓(K)R(K), (A8)

where R ∈ CK×K is a K × K matrix which the eigen-
values are the poles of the signal. The poles zk are then
obtained by means of an eigenvalue decomposition of the
matrix R.

Finally, the steps for finding the complex poles are the
following ones:

• compute the autocovariance matrix X = 1
rHHH

whereH is the l×r Hankel matrix with the samples
of the measured signal. The dimension l should be
chosen such that l > K,

• compute W(K) by a concatenation of the K sin-
gular vectors associated to the K largest singular
values from the SVD of X,

• compute R(K) = W↓(K)†W↑(K), where the sym-
bol † denotes the Moore-Penrose pseudo-inverse,

• extract the poles zk as the eigenvalues of R(K).
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la Musique) for the loan of instruments.

1 J. C. Schelleng, “The violin as a circuit”, J. Acoust. Soc.
Am. 35(3), 326–338 (1963).

2 G. W. Caldersmith, “Guitar as a reflex enclosure”, J.
Acoust. Soc. Am. 63(5), 1566–1575 (1978).

3 O. Christensen and B. B. Vistisen, “Simple model for low-
frequency guitar function”, J. Acoust. Soc. Am. 68(3),
758–766 (1980).

4 R. H. Lyon, R. D. Dejong, Theory and Application of
Statistical Energy Analysis, second edition (Butterworth
Heinemann, Boston, 1995), Chap. 6.

5 J. Berthaut, M. N. Ichchou, and L. Jézéquel, “Piano sound-
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plication à la dynamique des structures (Theory of vibra-
tions. Application to structural dynamics) (Editions Mas-
son, Paris, 1992), pp. 119-123.

35 G. Bienvenu and L. Kopp, “Optimality of high-resolution
array processing using the eigensystem method”, IEEE
Trans. Acoust. Speech Sig. Process. 31(5), 1235–1245
(1983).

36 M. Wax and T. Kailath, “Detection of signals by informa-
tion theoretic criteria”, IEEE Trans. Acoust. Speech Sig.
Process. 33(2), 387–392 (1985).

37 H. Akaike, “Information theory and an extension of the
maximum likelihood principle”, in Proceedings of the 2nd
International Symposium on Information Theory, Bu-
dapest, Romania, 267–281 (1973).

38 G. Schwarz, “Estimating the dimensions of a model”, Ann.
Stat. 6(2), 461–464 (1978).

39 M. E. McIntyre and J. Woodhouse, “On measuring the
elastic and damping constants of orthotropic sheet mate-
rials”, Acta Metall. 36(6), 1397–1416 (1988).

40 T. Ono, S. Miyakoshi, and U. Watanabe, “Acoustic char-
acteristics of unidirectionally fiber-reinforced polyurethane
foam composites for musical instrument soundboards”,
Acoust. Sci. Technol. 23(3), 135–142 (2002).

The guitar in 4 features 13


