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Introduction Speech synthesis Production of fricatives General conclusion
Principle of articulatory synthesis

Speech synthesis (utterances), complete and realistic, based on purely
acoustical model

Example of an articulatory synthesizer
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Applications: Medicine, audiovisual, language learning, text-to-speech...
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Tongue modes

J
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Self-oscillating model of the vocal folds

Lous et al. (1998)

Mÿ+Rẏ+Ky = f (Psup,Psub, θgeom)
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Modified glottis model

Partial glottal closure

Psub − P1 = ∆Pclose+
∂

∂t
(L1Uch + R1Uch)

cf. Birkholz et al., Interspeech 2011 or Elie and Laprie, ICASSP 2016
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Waveguide network paradigm for speech synthesis
Modeling the vocal tract as a waveguide network1


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f(N )
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Frication noise generation

Pressure source is activated when the Reynolds number Re is above the threshold Rec :

Pni = max

{
0, ξw

(
Re2 − Re2

c
) U3
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a3/2
i−1

}
, Re ∝ UDC

ac

1Elie and Laprie, Speech Comm., 2016 7/30
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Other oscillator: the alveolar trill

Self-oscillation model of the tongue tip2

Alveolar trills

Two-mass model, similar to the VF

Included in the waveguide network, can be used with realistic VT geometries

Possibility to consider the incomplete occlusion during contacts

2Elie and Laprie, JASA, nov. 2017
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A few examples

Reproduction of acoustic features
Access to quantities not accessible experimentally
Control of the input articulatory/phonatory parameters
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Different sources
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Condition of noise source generation

Psub ' ∆Pg + ∆Pc

Po ' Psub −∆Pg

At the glottal level
sufficiently high airflow → the glottis should
be open
if voiced fricatives, glottis not totally
abducted

At the supraglottal level
narrow constriction
high ∆Pc → high Po → open glottis
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Continuous coordination

Glottal opening in a VFV sequence

a low-frequency component (partial abduction of the glottis)
a high-frequency component (oscillation of the vocal folds)

→ What is the acoustic impact of the partial abduction of the vocal folds ?
13/30
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Acoustic model of fricative production

Incomplete closure of the glottis

Psub − P1 = ∆Pclose+
∂

∂t
(L1Uch + R1Uch)

cf. Birkholz et al., Interspeech 2011 or Elie and Laprie, ICASSP 2016

A set of area functions extracted from static MRI

→ Simulation of fricatives for different degrees of glottal abduction Dab 14/30
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Acoustic features

Voicing quotient (VQ)

Quantify the amount of voicing

VQ =
Energy of the periodic component

Energy of the mix signal

VQ = 0→ voiceless signal, VQ = 100%→ purely voiced signal

Spectral centroid (S1)

Balance between low and high frequency components
low S1 → mainly low frequency, high S2 → mainly high frequency

Spectral spread (S2)

Variance of the spectral distribution
low S2 → narrow band spectrum, high S2 → broad band spectrum
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Typical examples

3 regimes of production:

A (Dab < D1): low frication noise

B (D1 < Dab < D2): frication noise and voice have similar energy

C (Dab > D2): voiceless signal

16/30



Introduction Speech synthesis Production of fricatives General conclusion

Acoustic features as a function of Psub (vowel context: /a/)
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Minimal lengths as a function of Psub

Psub modifies D1 and D2: D ↘ when Psub ↗
Psub modifies ∆D: ∆D ↗ when Psub ↗
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Acoustic features as a function of ac (vowel context: /a/)
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Minimal lengths as a function of ac
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Experiments confirm the observations
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Possible strategies for fricative production: hypothesis

Voiceless fricatives
A → B → sustained C → B → A: easy (C is stable)

→ voiceless fricatives are longer to maximize the ratio C/B

Voiced fricatives
A → sustained B → A: risky (B too unstable)
A → A/B boundary → A: favors voicing
Very short A → B → A or A → B → C → B → A sequence:
maximize proportion of B over the fricative segment

→ voiced fricatives are shorter to avoid instability
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What if voiced fricatives are exaggeratedly longer ?

Speakers usually prefer sustaining regime A for longer fricatives (Ex. 1)

23/30
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What if voiced fricatives are exaggeratedly longer ?

There may be some "devoicing" incidents (Ex. 2)
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What if voiced fricatives are exaggeratedly longer ?

But a (very) few speakers sustains B ! (Ex. 3, study in progress)

25/30
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First results

Corpus of 15 speakers (/VFV/ pseudowords)

Short fricatives vs. long fricatives
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Another investigation in progress: Influence of language

German speakers devoice their fricatives more than French speakers

Learners of both German and French include these differences in the
learning process

IFCASL Database: Fauth et al. Designing a bilingual speech corpus for French and
German language learners: a two-step process. In LREC-9th Language Resources and
Evaluation Conference, 2014
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Some conclusions on the production of fricatives

Simulations have evidenced the role of the glottal opening in fricatives
It controls regimes of production
The simultaneous presence of noise and voicing is unstable

→ Several articulatory strategies for producing voiced fricatives

Possible reasons for using different strategies
Only physiological
Phonological context
Contextual (sociolinguistic, prosodic. . . )

Future investigations
Check speaker variability
Influence of language
Role in prosody

→ Integration into running speech synthesis

29/30
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Example of French native speakers uttering final voiced
fricatives

Voiceless Voiced
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Example of French native speakers uttering final voiced
fricatives

Voiceless Voiced
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What if voiced fricatives are exaggeratedly longer ?

Cumulative histograms
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Occurrence of LP contacts: some answers

Data from Recasens and Pallarès

Variability across speakers: some almost never
make LP contacts

Variability intra-speaker

4/14



Air flow measurements

Data from Solé and McGowan

DC component of the airflow: incomplete
closure of the vocal tract ?

are there LP contacts ?

From McGowan, on voiceless trills:

→ Needs more data
5/14



Modeling with a two-mass model

Comparison single mass and two-mass models

6/14



Effect on perception

Example of natural utterance
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Effect on perception

Virtual modification of VQ
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Example of alveolar trill

Questions:

Can we model LP contacts and incomplete closure of the VT ?

What are the articulatory/phonatory conditions that favor the self-oscillation
of the tongue tip ?

9/14




Data taken from cineMRI acquisitions

Investigation of the impact of various model parameters
Mass of the tongue tip m1

Equilibrium position h0

Lateral ratio rl (=
open area during contact

initial area at rest )

Glottal abduction degree Dab

10/14



Studied features

Investigation of the impact of various model parameters

Trill frequency ft = 1
T̂

Trill amplitude ĥt = Â

Contact ratio Cr = 100× 1
Nper

∑Nper
n=1 Cn

11/14



Effect of the equilibrium position
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Effect of the lateral ratio
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Effect of the glottal abduction degree
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