
Course notes about RNN

On parameter sharing

Basic approach: the feed-forward net

• Requires lots of parameters: Ex: input image 100x100 = 10000 input
neurons if 100 hidden neurons = 1M parameters

Is it a problem ? Yes and no

Theoretical results

• overparameterized networks have all their local optima close to global
optima

• more parameters => more overfitting => less generalization

Practical rules of thumbs

• #parms may be greater or smaller than #ex, but they should be in the
same order of magnitude !! Ex: 10k vs. 10 is bad

So for images, this may quickly become a problem: camera have 10M pixels =>
with 100 hidden neurons => 1G parameters, requires lots of examples !

Another issue: exploit the intrinsic structure of the input: Ex: for image,
invariance by translation and rotation

ConvNet

Better solution = convnets = share parameters across segments of the input

ConvNet capture info from local contexts They can be stacked to increase the
size of the local context from which thye capture info => receptive field But
they are inherently local

1



Recurrence

Another type of data, another structure: time series

• Strong dependence to the previous samples: Ex: meteo temp
• dependence decrease over time

Classical models: autoregressive models, Markov models ==> Markov assump-
tion

DL: RNN

Principle:

• Use the same parameters at every timestep => small model
• transmits a memory (vector) from previous sample => recurrence

It exploits a global context => stronger than Markov models

Basic RNN

st = f(Uxt +Wst−1)

Training: BPTT

Difference with standard BP = gradients at every timestep are summed

2



∂E3

∂W
=

3∑
k=0

∂E3

∂ŷ3

∂ŷ3

∂s3

 3∏
j=k+1

∂sj

∂sj−1

 ∂sk

∂W

Vanishing gradient

MLP case

l1 = U ·X
h1 = tanh(l1)
l2 = V · h1

y = tanh(l2)
∂Ey

∂l1
= ∂Ey

∂y

∂y

∂l2

∂l2
∂h1

∂h1

∂l1

Derivative of the tanh:

Multiplying by numbers < 1 decreases the magnitude, layer after layer.

Solutions to vanishing gradient

• Careful init of parameters

• Careful tuning of regularization

• Use ReLU activations

• Use GRU or LSTM recurrent cells

• Practical consequences:

– 20 steps maximum for basic RNN, 100 steps maximum for LSTM
– Truncated BP at 100 steps

3



LSTM

st+1 = f(st, xt)

with 3 gates in f to let some information pass through without activation.

Video: vanishing gradient in LSTM

RNN common extensions

• Stacked RNNs
• Bi-directional
• Attention (see next)

Models that use RNNs

• NN-LM
• Seq2Seq
• Key-Value Memory Networks
• Neural Turing Machine
• Transformer-XL
• . . .

Exercice RNN

• See https://members.loria.fr/CCerisara/exosols/rnnexo/

Other tutorials

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-
introduction-to-rnns/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Seq2seq

• The RNN generates 1 output for a given history
• We may want to generate a (varying-length) sequence of outputs for a

given history:
– Chatbot: User turn -> System turn
– Question-Answering: question -> answer

4

../coursML2018/gradient.mp4
https://members.loria.fr/CCerisara/exosols/rnnexo/


– Translation: English sentence -> French sentence
– . . .

• It is a kind of “Encoder-Decoder” architecture
• Trick in the decoder RNN:

– reinject the output at time t into the input at time t+ 1
– when the symbol </s> is generated, stop.

• Training:
– The Seq2seq is trained end-to-end
– Teacher forcing: use the gold output at every timestep in the decoder
– But this creates a mismatch between training and testing
– Professor forcing:

5



Attention

• Issue in RNN = hidden vector gives more importance to the most recent
timestep

• We may prefer content- vs. recency-based importance
– “The ball flew quickly as everyone was looking at it”: topic ?

• Let q contains partial interesting information
• Let be given a “bank of vectors zi”: one of them is related to q
• Compute the distance between q and every zi: q · zi

• Normalize with softmax: αi = Softmax(q · zi)
• Compute a new summary vector: z =

∑
i αizi

Ex with Seq2seq:

• q = current decoder hidden state

• zi = encoder hidden states

• z is used to compute the next decoder step

• Everything is as always trained end-to-end

• Attention is very useful to show which parts of the input is the most
relevant at a given timestep

Transformer

• Attention: Query-key-values
– Bank may contain pairs of vectors (key, value)
– The query q is compared to every key; the corresponding value is

returned

6



– Basis of Key-value memory networks
• Multi-head attention:

• Self-attention: Q=K=V=words X
• Transformer:

• No recurrence !
• Used in all recent deep learning models

7


	On parameter sharing
	Basic approach: the feed-forward net
	Theoretical results
	Practical rules of thumbs

	ConvNet
	Recurrence
	Basic RNN
	Vanishing gradient
	MLP case
	Solutions to vanishing gradient
	LSTM
	RNN common extensions
	Models that use RNNs


	Exercice RNN
	Other tutorials
	Seq2seq
	Attention
	Transformer

