
INTERNSHIP REPORT

Supporting additional
equational theories in

Tamarin

Written by Charles Duménil

Supervised by Jannik Dreier and Steve Kremer

Acknowledgements

Remerciements
J’adresse mes remerciements les plus sincères à ceux sans qui ce stage n’aurait

pas était possible.

Premiers d’entre eux, Steve Kremer, qui m’a accepté au sein de son équipe.
Steve m’a fait confiance malgré mon manque d’expérience dans le domaine des
méthodes formelles. De par la clarté de ses explications, il a efficacement accéléré
ma compréhension des notions mises en jeu dans le sujet. Il m’a fait part de ses
connaissances, m’a intelligemment guidé dans les phases de recherche et surtout,
m’a permis de réaliser un stage qui, de part les compétences qu’il requérait, m’a
comblé.

Enfin, en me faisant entrer au Loria, Steve m’a ouvert les portes de la
recherche, et si aujourd’hui j’ai obtenu un contrat doctoral, c’est en majeur
partie grâce à lui.

Mes remerciements s’adressent aussi tout particulièrement à Jannik Dreier qui
m’a co-encadré avec Steve. Jannik m’a chaleureusement accompagné tout au
long du stage. Par sa patience et sa bienveillance, il m’a permis de surmonter les
nombreuses difficultés auxquelles j’ai fait face, que ce soit dans l’apprentissage
des méthodes formelles ou dans la compréhension de Tamarin dont il est l’un
des développeurs.

Jannik et Steve ont tous deux pris beaucoup de leur du temps pour m’aider
à rédiger ce rapport. Pour cela, je les remercie expressément.

Mes remerciements s’adressent également à mes tuteurs pédagogiques. Anne
Gégout-Petit, responsable du Master que j’ai suivi, pour avoir compris ma
volonté d’intégrer la recherche et donné son accord pour que je réalise ce stage
bien qu’il ne fût pas dans la continuation logique du Master. Et Pierre-Jean
Spaenlehauer, qui m’a enseigné les bases de la cryptologie, et qui, par sa sym-
pathie, m’a donné envie d’approfondir mes connaissances dans la discipline.

Mes derniers remerciements s’adressent aux membres de l’équipe PESTO, qui
m’ont accompagné pendant cinq mois et demi.

Charles Duménil, le 15 Septembre 2016.

CONTENTS CONTENTS

Contents

1 Introduction 2
1.1 Internship context . 2
1.2 Research problem . 3

2 Background 4
2.1 Cryptographic protocol . 4
2.2 Formal verification of security protocols 5
2.3 Modelling messages . 6

2.3.1 Term algebra . 6
2.3.2 Rewriting theory . 9

2.4 Modelling protocols . 12
2.4.1 Cryptographic messages 12
2.4.2 Labeled Multiset Rewriting 12
2.4.3 Protocol/Adversary rules 14

2.5 Modelling properties . 19
2.6 Example: NSPK . 20
2.7 Dependency graphs modulo AX 22

3 Resolution 25
3.1 Prior works . 25

3.1.1 Construction and deconstruction rules 25
3.1.2 Normal Dependency graphs 29

3.2 Proof of Lemma 3.1 for context subterm rules 31
3.3 Implementation of context subterm rules in Tamarin 38

3.3.1 Haskell . 38
3.3.2 Implementation . 39

4 Cases Studies 44
4.1 Chaum’s Online protocol . 44

4.1.1 Modelisation . 44
4.1.2 Unforgeability . 47
4.1.3 Anonymity . 47

4.2 The FOO protocol . 50
4.2.1 Modelisation . 51
4.2.2 Eligibility . 52
4.2.3 Vote privacy . 52

4.3 The Okamoto protocol . 55
4.3.1 Modelisation . 55
4.3.2 Eligibility and Vote Privacy 56
4.3.3 Receipt-freeness . 57

5 Conclusion 58

1

1 INTRODUCTION

1 Introduction

My internship took place in the Inria Nancy-Grand Est centre where I worked
in the Pesto team and was supervised by Steve Kremer and Jannik Dreier.

1.1 Internship context

INRIA
The National Institute for Research in Computer Science and Control (Inria) is
a public science and technology institution placed under the supervision of the
ministries of research and industry. The institute consists in 8 research centres
in France (Paris, Rennes, Sophia Antipolis, Grenoble, Nancy, Bordeaux, Lille
and Saclay) and a head office in Rocquencourt. About 2600 people including
1800 scientists work at Inria.

The Inria Nancy-Grand Est centre was created in 1986. Divided into 25
project-teams, it welcomes around 170 scientists under the direction of Sylvain
Petitjean. Its research is built around three fields: ”Cognition: perception,
language and knowledge”, ”Simulation, optimisation and control of complex
systems” and ”Safety and security of computer systems” [2].

The centre shares its premises with the Loria.

LORIA
The Lorraine Research Laboratory in Computer Science and its Applications
(Loria) is a research unit, common to CNRS, the University of Lorraine and
Inria. It was created in 1997 with the mission to conduct fundamental and ap-
plied research in computer science. About 500 people work at LORIA under the
direction of Jean-Yves Marion. Loria contains 30 research teams divided into 5
departments named ”Algorithms, Computation, Image and Geometry”, ”For-
mal methods”, ”Networks, Systems and Services”, ”Knowledge and Language
Management” and ”Complex Systems, Artificial Intelligence and Robotics” [4].

Project-team PESTO (Proof techniques for security protocols)
Pesto team is both part of Loria and Inria. As a team of the formal methods
department, its aim is to build formal models and techniques for computer-aided
analysis and design of security protocols. With the omnipresence of Internet
and the development of new technologies, new protocols are created, designed
to ensure new security properties like privacy for E-voting, anonymity for E-
cash or again untracability for RFID. The team has the goal of developing tools
that can prove that those protocols are secure [1].

It is composed of 10 permanent members, including Steve Kremer, the team
leader and Jannik Dreier, inter alia, co-developer of the Tamarin prover.

The Tamarin Prover
Tamarin is a software initially developed by Simon Meier and Benedikt Schmidt
at the Swiss Federal Institute of Technology in Zurich. It aims at automatically
proving security properties of cryptographic protocols.

2

1.2 Research problem 1 INTRODUCTION

1.2 Research problem

Nowadays, security protocols can be complex and, even if the cryptographic
primitives, like encryption, are supposed perfect, a protocol can contain flaws,
logical mistakes can remain in the structure of a protocol. To verify if such a
mistake exists, we perform a formal analysis of the protocol; because it can be
long, the analysis is automated by computer-based tools. Tamarin is one these
tools able to automatically verify security properties, like secrecy, on protocols.

In Tamarin, we model protocol messages by terms and algebraic properties
of cryptographic primitives by rewriting rules. For example, if enc(m, k) repre-
sents the symmetric encryption of the message m with the key k and dec(c, k),
the symmetric decryption of the cyphertext c, then we have the rewriting rule
dec(enc(m, k), k) → m. It means that the decryption with the key k of the
encryption with the k of the message m can be rewritten as m itself. This rule
is an example of an important class of rules called subterm rewriting rules where
the right-hand side term, m in the example, is a subterm of the left-hand side
term. This class is already treated by Tamarin.

Consider FOO protocol which is used for E-voting. Cryptographic primi-
tives for FOO are blinding and signing functions. They lead to this kind of
rewriting rule: unblind(sign(blind(v, r), k), r) → sign(v, k) which models the
act of signing a blinded vote, and then, unblinding it to get only the signed
vote. This rewriting rule is not a subterm rewriting rule, the message sign(v, k)
of the right-hand side is not contained in unblind(sign(blind(v, r), k), r). It is
part of more general class of rewriting rules, that we will call context subterm
rules.

The objectives of my internship is to describe how we can model this class
of rules in Tamarin and to implement it.

3

2 BACKGROUND

2 Background

Tamarin is a software developed to automatically analyse cryptographic pro-
tocols. The analysis is symbolic, which means that Tamarin considers that
cryptographic primitives, like hashing or encryption functions, are perfect. But
flaws can exist at the specification level of the protocol. One of the most
known examples is the ”man-in-the-middle” attack that can be executed on
the Needham-Schroeder Public Key protocol (NSPK) by an active attacker [7].

2.1 Cryptographic protocol

As defined in [17], a protocol is a series of steps, involving two or more parties,
designed to accomplish a task. Exchanging messages with somebody is one
of these possible tasks. Nowadays a large part of exchanges are made via the
Internet. This network is considered as public, which means anybody can,
at least, read messages transiting on the Internet. We use cryptography to
establish some security properties on the messages that are sent. Cryptographic
protocols are protocols that use cryptography. They are designed to ensure
security properties when parties exchange messages.

Example 1. Transport Layer Security (TLS) is a cryptographic protocol de-
signed to secure web transactions over the Internet.

Cryptographic protocols are based on functions called cryptographic primi-
tives. Three of the most usual primitives are encryption, decryption and hash-
ing. Encryption is an operation that transforms a message said ”plaintext”, in
another message, unintelligible, said ”cyphertext”, in order to ensure secrecy [3].
Decryption is the inverse operation that transforms back the cyphertext into the
plaintext. A hash function maps a variable-length message into a fixed-length
value called a hash code, designed in such a way that it provides a digest of the
message.[18]

There exists two ways to encrypt, that are described in [18] as follows:

• Symmetric encryption is a cryptographic system in which encryption and
decryption are performed using the same secret key, a value only known
by the participants. We note senc(m, k) and sdec(m, k) for symmetric
encryption and decryption of a message m with the key k.

• Asymmetric encryption is a cryptographic system in which encryption
and decryption are performed using different keys, respectively a public
key and a private (secret) key. It is also known as public-key encryption.
We note pk(k) for the public key associated to k, and aenc(m, pk(k))
and adec(m, k) for asymmetric encryption and decryption of a message
m with the keys pk(k) and k. One of the most widely used public-key
cryptographic system is RSA. It is based on the difficulty of finding the
prime factors of a composite number.

In these two cryptographic systems, it must be assumed that the only secret
lies in the secret key. For example, RSA is a public algorithm: confidentiality is
ensured as long as the private key of the agent receiving the message is unknown
by others.

4

2.2 Formal verification of security protocols 2 BACKGROUND

In order to model cryptographic protocols, it is common to use the
Alice&Bob notation. For instance, we write:

A→ B : m

to express that Alice, represented by A sends the message m to Bob as B.
Supposing that agents A and B share a symmetric key, A sending a sym-

metrically encrypted message m to B will be denoted this way:

A→ B : {m}A,B

An agent A sending an asymmetrically encrypted message m to an agent B will
be denoted this way:

A→ B : {m}pk(B)

Example 2. NSPK protocol (Needham–Schroeder Public Key) is designed for
two agents A and B to ensure their authentication through a public channel. It
can be represented as follow:

A→ B : {A,Na}pk(B)

B → A : {Na,Nb}pk(A)

A→ B : {Nb}pk(B)

where Na and Nb are nonces randomly generated (number only used once).

• First, agent A sends its identity with a nonce Na. The message is asym-
metrically encrypted with the public key of agent B. The only person able
to decrypt is therefore B.

• Second, B decrypts the received message with its private key. It sees that
the communication is initiated by A. At this stage, Na is supposed to be
known only by A and B. Agent B generates a new nonce Nb and sends
to A the nonces Na and Nb encrypted with the public key of A.

• At last, A decrypts the message, reads the nonce Na which convinces him
that the communication is indeed established with B, and, the same way
as B, uses Nb paired with each message sent to ensure the authentication
[7].

2.2 Formal verification of security protocols

Security protocols are designed to ensure security properties in a hostile en-
vironment [13]. Such a hostile environment is represented by the presence on
the network of a dishonest third party that we call adversary. We can consider
two kinds of adversaries. A passive adversary is a dishonest agent that can
only tap the communication line and tries to decrypt the intercepted messages.
Conversely, an active adversary can, in addition, impersonate another agent’s
identity and may alter or replay messages [8]. Since we consider cryptographic
primitives as perfect, the possibilities of the adversary are formalized using a
formal model based on a term algebra.

5

2.3 Modelling messages 2 BACKGROUND

One particularly influential formal model for an active attacker is called the
Dolev-Yao model. In this model, the protocol security problem is transformed
into a search based on a term rewriting system [6]. Given a security protocol and
a security property, Tamarin verifies if there exists an execution of this protocol
that does not satisfy the property. To do so, it performs an exhaustive search
under the form of graphs for such an execution, and consider the property as
valid if no counter-example has been found. However, if it finds an attack, it
shows it.

Example 3. Consider an active adversary I over a public network where an
agent A starts a communication with B using NSPK to authenticate one an-
other. Then, by impersonation of B, I is able to learn the shared nonce Nb
used for authentication:

A→ I : {A,Na}pk(I)

I → B : {A,Na}pk(B)

A ←− B : {Na,Nb}pk(A)

A→ I : {Nb}pk(I)

I → B : {Nb}pk(B)

This is called the ”man-in-the-middle” attack. It has been discovered by G.
Lowe in 1995 and is fixed by adding the identity B in the message sent by B
resulting in the NSLPK protocol.

Even when considering a Dolev-Yao model with perfect cryptography, auto-
matic verification is not always feasible. For example, the intruder can build an
infinite number of messages, there may be an unbounded number of sessions,
the equational theories manipulated by the adversary may add complications.
In general, verification of security protocols is thus an undecidable problem.

Tamarin disposes of two methods of automatic verification. In the first one,
it consider a security property as a trace property on a protocol, this will be
defined later, and tests if this property is verified by all the possible executions
of a protocol. It can be used to prove properties like secrecy, unforgeability
or eligibility. In the second, Tamarin considers two different execution of a
protocol and tries to distinguish them. If not, we say that the two executions are
observationally equivalent. It can be used to prove properties like untracability,
anonymity or privacy [9].

To model protocols and security properties we use notions from formal lan-
guage theory. They are drawn from [11], [15] and [16].

2.3 Modelling messages

2.3.1 Term algebra

Definition 2.1. A signature Σ0 is a set of function symbols, each having an
arity (number of parameters) n ≥ 0. We call function symbols of arity 0 con-
stants.

Example 4. (Math) As a mathematical example, we can formalise natural
numbers as defined by Peano. Consider the signature Σ0

P = {0, s,+}, where

6

2.3 Modelling messages 2 BACKGROUND

the constant 0 represents the first number, s of arity 1 represents the successor
function and + of arity 2 represents addition.

Example 5. (Crypto) As a cryptographic example, the NSPK protocol uses
asymmetric encryption. We need a signature with functions to encrypt, decrypt
and to associate a public key to a private key. Encryption and decryption
functions will be of arity 2 because they have as parameters a message and a
key, the public key function will be of arity 1. Additionally, to send multiple
messages, we consider the pair function of arity 2, noted 〈 , 〉 and the first and
second functions of arity 1, noted fst and snd, to extract messages from the
pair. For instance, we take:

Σ0
NSPK = {〈 , 〉, fst , snd, aenc, adec, pk}.

Definition 2.2. An order-sorted signature Σ = (S,≤,Σ0) is a set of sorts S, a
partial order ≤ and a signature Σ0 associated with sorts with the following two
properties. First, for every s ∈ S, the connected component C of s in (S,≤) has
a top sort denoted top(s) such that c ≤ top(s) for all c ∈ C. Second, for every
f : s1×· · ·× sk → s in Σ0 with k ≥ 1, there is an f : top(s1)×· · ·× top(sk)→ s
in Σ0 called the top sort overloading of f .

Definition 2.3. Let Σ be a signature, we assume that, for each sort s ∈ S there
is Vs be a countably infinite set of variables with sorts s and define V =]s∈SVs.
Let V ′ ⊂ V a term algebra TΣ(V ′) over Σ is the least set recursively defined by:

• V ′ ⊆ TΣ(V ′),

• if t1, . . . , tn ∈ TΣ(V) and f ∈ Σ of arity n, then f(t1, . . . , tn) ∈ TΣ(V ′)

TΣ(V ′)s denote the terms of TΣ(V ′) with sort s. The set of ground terms TΣ

consists of terms built without variable (TΣ = TΣ(∅))

Example 6. (Math) Consider the order-sorted signature
ΣP = ({N,EN,ON}, {EN ≤ N,ON ≤ N},Σ0

P) where:

• every n ∈ TΣP
is with sort N ,

• 0 is with sort EN as well as every n = s(s(n′)) where n′ is with sort EN ,

• s(0) is with sort ON as well as every n = s(s(n′)) where n′ is with sort
ON .

This describes natural numbers, even numbers and odd numbers. The top sort
is N . For instance, an element of TΣP

(V) is s(s(0)) + s(x) where x ∈ V. Notice
we use s(s(0)) + s(x) for +(s(s(0)), s(x)). This is syntactic sugar called infix
notation.

Example 7. (Crypto) Consider the order-sorted signature
ΣNSPK = (S,≤,Σ0

NSPK) where S describes sorts of messages. Let m, k ∈ V,
two elements of TΣNSPK(V) are aenc(m, pk(k)) and adec(aenc(m, pk(k)), k).

These two terms correspond respectively to the asymmetric encryption of
a message m with the public key associated to k and asymmetric decryption
of the precedent term with the secret key k. We can notice that, to make
sense, adec(aenc(m, pk(k)), k) ∈ TΣNSPK(V) should equal m, but since they are
syntactically different, we need to introduce an equational theory to enforce the
equality.

7

2.3 Modelling messages 2 BACKGROUND

Definition 2.4. An equation over Σ is a pair of terms l, r ∈ TΣ(V), written
l ' r. Let E be a set of equations. The couple ε = (Σ, E) defines an equa-
tional presentation that is identified to the equational theory =ε, the smallest
congruence over Σ containing all instances of equations of E.

Example 8. (Math) Equations over ΣP are:

EP =
{
x+ 0 ' x x+ s(y) ' s(x+ y)

}
Example 9. (Crypto) Equations over ΣNSPK are:

ENSPK =

{
fst(〈x, y〉) ' x snd(〈x, y〉) ' y
adec(aenc(m, pk(k)), k) ' m

}
The first two equations describe the extraction of message from a pair while

the third one means that decrypting a message cyphered with the public key,
using the associated private key, gives back the initial message.

We define the equational theory used to model the NSPK protocol as

NSPK = (ΣNSPK, ENSPK)

Remark. By convention, we write 〈 , , . . . , 〉 for 〈 , 〈 , . . . 〈 , 〉〉〉. This leads for
instance to the equation y =ε snd(fst(〈x, y, z〉)).

Finally we want Tamarin to retain m instead of adec(aenc(m, pk(k)), k), to
achieve this, we give an orientation to equations.

Definition 2.5. A rewriting rule over Σ is an oriented pair of terms l, r ∈ TΣ(V),
written l→ r. A rewriting system R is a set of rewriting rules.

Example 10. (Math) Rewriting system over ΣP :

RP =
{
x+ 0→ x x+ s(y)→ s(x+ y)

}
We can now rewrite s(s(0) + s(0):

s(s(0)) + s(0)→ s(s(s(0) + 0))→ s(s(s(0)))

Example 11. (Crypto) Rewriting system over ΣNSPK :

RNSPK =

{
fst(〈x, y〉)→ x snd(〈x, y〉)→ y
adec(aenc(m, pk(k)), k)→ m

}
Since the right-hand side termm of the rewriting rule adec(aenc(m, pk(k)), k)→
m, is a subterm of its left-hand side term, we say the rewriting rule is a subterm
rewriting rule. Every rule of this rewriting system is a subterm rule.

Definition 2.6. A position p is a sequence of positive integers. The subterm
t|p of a term t at position p is obtained inductively as follows:

• if p = [], the empty sequence, then t|p = t.

• if p = [i] · p′, the concatenation of [i] and p′, for a positive integer i and a
sequence p′, and t = f(t1, . . . , tn) for f ∈ Σ and 1 ≤ i ≤ n then t|p = ti|p′ .

• otherwise t|p is not defined and p is not a valid position.

8

2.3 Modelling messages 2 BACKGROUND

We use t[s]p to denote the term t where the occurrence of the subterm t|p
at position p has been replaced by s. The set St(t) of syntactic subterms of
a term t is defined as {t|p | p valid position in t}. For a term t, we define
vars(t) = St(t) ∩ V . We use root(t) to denote f if t = f(t1, . . . , tk) for some
f ∈ Σ0 and t itself otherwise. A function symbol f is irreducible with respect
to a rewriting system R if there is no l→ r ∈ R with root(l) = f .

Example 12. (Crypto) The term t = adec(aenc(m, pk(k)), k) has six subterms:
t|[] = adec(aenc(m, pk(k)), k)
t|[1] = aenc(m, pk(k))
t|[1,1] = m
t|[1,2] = pk(k)
t|[1,2,1] = k
t|[2] = k.
The set of variables of t is vars(t) = {m, k}, root(t) = adec and adec is not
irreducible in RNSPK because of the rule adec(aenc(m, pk(k)), k)→ m.

We can represent a term and its positions as a tree:

adec(aenc(m,pk(k)),k) []

aenc(m,pk(k))[1]

m[1,1] pk(k) [1,2]

k [1,2,1]

k [2]

Definition 2.7. A substitution σ is a function from V to TΣ(V) that corresponds
to the identity function except on a finite set of variables which we denote with
dom(σ). We use range(σ) to denote the image of dom(σ) under σ and define
vrange(σ) = vars(range(σ)).

Example 13. (Crypto) Consider the substitution
σ = {x 7→ aenc(m, pk(k)), y 7→ k} and the term t = adec(x, y), we have that
tσ = adec(aenc(m, pk(k)), k). Notice that the application of a substitution is
written in postfix notation, and the application is homomorphically lifted from
variables to terms.

Definition 2.8. An equation t ' u is regular if vars(t) = vars(u) and sort-
preserving if for all substitutions σ. It holds that tσ ∈ TΣ(V)s if and only if uσ ∈
TΣ(V)s. An equational presentation is regular (respectively sort-preserving) if
all its equations are.

2.3.2 Rewriting theory

Not all rewriting systems are allowed in Tamarin, they have to respect some
properties: for instance if we take the rules a→ b and b→ a, the system will turn
forever from a to b then back to a etc... To illustrate another property, consider
three functions a, b and c of arity 2, the rewriting rules: c(y, b(x, y)) → x and
b(x, a(x, y)) → a(y, x) and the term c(a(x, y), b(x, a(x, y))). Applying the first
rewriting rule on this term gives a(x, y) while applying the second one gives

9

2.3 Modelling messages 2 BACKGROUND

c(a(x, y), a(y, x)) but nothing said that c(a(x, y), a(y, x)) → a(x, y). The first
problem is about termination, the second one is about confluence. They can be
represented the following way:

Non termination

a

b

Non confluence

c(a(x,y),b(x,a(x,y)))

a(x,y) c(a(x,y),a(y,x))

?

For the following definitions, we use→+ to denote the transitive closure and
→∗ to denote the transitive-reflexive closure of a relation →.

Definition 2.9. A rewriting system R defines a rewriting relation →R with
s→R t if there is a position p in s, a rule l→ r ∈ R, and a substitution σ such
that s|p = lσ and s[rσ]p = t.

A rewriting system R is terminating if there is no infinite sequence (ti)i∈N
of terms with ti →R ti+1.

A rewriting system R is confluent if for all terms t1, s1, s2 with t1 →∗R s1

and t1 →∗R s2, there is a term t2 such that s1 →∗R t2 and s2 →∗R t2.
A rewriting system R is convergent if it is terminating and confluent. In

this case, we use t ↓R to denote the unique normal form of t.
A rewriting system R is subterm-convergent if it is convergent and for each

rule l → r ∈ R, r is either a proper subterm of l or r is ground and in normal
form.

A rewriting rule l → r is sort-decreasing if for all substitutions σ, rσ ∈
TΣ(V)s implies lσ ∈ TΣ(V)s. A rewriting system is sort-decreasing if all its rules
are.

We use R' to denote the set of equations obtained from a rewriting system
by replacing → by ' in the rewriting rules.

Example 14. RP and RNSPK are subterm-convergent.

Definition 2.10. An ε-unifier of two terms s and t is a substitution σ such that
sσ =ε tσ. For W ⊆ V , we use unifWε (s, t) to denote an ε-unification algorithm
that returns a set of unifiers of s and t such that for all σ ∈ unifWε (s, t),
vrange(σ) ∩W = ∅. The unification algorithm is complete if for all ε-unifier
σ of s and t, there is τ ∈ unifWε (s, t) and a substitution θ such that for all
x ∈ vars(s, t), (xτ)θ =ε xσ. The unification algorithm is finitary if for all s and
t, it terminates and returns a finite set of unifiers.

Analogously, an ε-matcher of two terms t and p is a substitution σ such that
t =ε pσ .

Example 15. (Crypto)
Two ε-unifiers (and also ε-matchers) of adec(c, k) and m are:

• σ1 = {m 7→ adec(c, k)}, trivially, and

• σ2 = {c 7→ aenc(m, pk(k))} because
adec(c, k)σ2 = adec(aenc(m, pk(k)), k) =ε mσ2 = m.

10

2.3 Modelling messages 2 BACKGROUND

Proposition 2.1. If the equations in ε can be oriented to obtain a convergent
rewriting system R, then t =ε s if and only if t ↓R= s ↓R

A problem arises when we have an equational theory AX that is not ori-
entable such as associative and commutative theories. We then use the notion
of R,AX -rewriting for a rewriting system R and a not orientable equational
theory AX .

Definition 2.11. The rewriting relation →R,AX is defined as s →R,AX t if
there is a position p in s, a rewriting rule l→ r ∈ R, and a substitution σ such
that s|p =AX lσ and s[rσ]p = t. If AX -matching is decidable, then the relation
→R,AX is also decidable.

Definition 2.12. We say R,AX is convergent if the relation →R,AX is con-
vergent. In this case, we denote the unique normal form of t with respect to
R,AX -rewriting by t ↓R,AX . We say that R,AX is coherent if for all t1, t2
and t3, it holds that t1 →R,AX t2 and t1 =AX t3 implies that there are t4 and
t5 such that t2 →∗R,AX t4, t3 →+

R,AX t5, and t4 =AX t5. If (Σ,R∪AX) is
an equational presentation of =ε and R,AX is convergent and coherent, then
t = εs if and only if t ↓R,AX= s ↓R,AX . We call (Σ,R,AX) a decomposition of
ε if the following holds:

• (Σ,R' ∪ AX) is an equational presentation of = ε,

• AX is regular, sort-preserving and all equations contain only variables of
top-sort,

• R is sort-decreasing and R,AX is convergent and coherent and

• There is a complete and finitary AX -unification algorithm.

Example 16. Consider the equational theory εXor defined by ΣXor = {0,⊕}
and E = AC ∪R'Xor where AC = {x⊕ y ' y⊕ x, x⊕ (y⊕ z) ' (x⊕ y)⊕ z} and
RXor = {x⊕ 0→ x, x⊕ x→ 0}. We have that x⊕ (x⊕ y) =εXor

y but also:

x⊕ (x⊕ y)

x⊕ (x⊕ y)

(x⊕ x)⊕ y

y

=AC

6=AC
showing that RXor ,AC is not coherent.

Definition 2.13. For an equational theory ε, we define the ε-instances of a
term t as instsε(t) = {t′| ∃σ, tσ =ε t

′}. We use ginstsε(t) to denote the set
of ground ε-instances of t. To reason about ε-instances using a decomposition
(Σ,R,AX) of ε, the finite variant property is often useful. A decomposition
(Σ,R,AX) of an equational theory ε has the finite variant property if for all
terms t, there is a finite set of substitutions{τ1, . . . , τk} with dom(τi) ⊆ vars(t)
such that for all substitutions σ, there is a substitution θ and i ∈ {1, . . . , k}
with:

• (tσ) ↓R,AX=AX (tτi) ↓R,AX θ and,

• xσ ↓R,AX=AX (xτi) ↓R,AX θ for all x ∈ vars(t).

We call such a set of substitutions a complete set of R,AX -variants of t. For a
decomposition with the finite variant property, we can use folding variant nar-
rowing to compute a complete and minimal set of R,AX -variants of a term[11].

11

2.4 Modelling protocols 2 BACKGROUND

2.4 Modelling protocols

2.4.1 Cryptographic messages

Cryptographic messages are modelled under three ordered sorts of messages:
msg, the top-sort of messages, and two incomparable subsorts fr and pub for
fresh messages and public names. Their order can be represented as in the
following graph:

Message sorts:

msg (top-sort)

fr pub

Fresh names are used in particular to model keys, nonces or other messages
that supposed to be unique. Public names are suitable for messages that are
not supposed to be secret, for instance an identity or a possible vote. fr and
pub messages are supposed to be elements of the infinite sets FN and PN .

As a basis to model cryptographic primitives, we use an unsorted signature
ΣST associated with a subterm-convergent rewriting system RST and define the
equational theory ST = (ΣST ,R'ST). It depends on the protocol that will be
analysed. We note T for TΣST ∪FN∪PN (V) and M for ground terms in T .

Example 17. We resume this using the NSPK example

NSPK = (ΣNSPK,R'NSPK)

ΣNSPK =

{
〈 , 〉 fst() snd()

aenc(,) adec(,) pk()

}

RNSPK =

{
fst(〈x, y〉)→ x snd(〈x, y〉 → y
adec(aenc(m, pk(k)), k)→ m

}
2.4.2 Labeled Multiset Rewriting

In Tamarin, the execution of a security protocol in the context of an adversary
is modeled as an infinite labeled transition system, whose states consist of the
adversary’s knowledge, the messages on the network, freshly generated values,
and the protocol’s states. Those states are modelled as finite multisets of facts.

Definition 2.14. Consider a signature ΣFacts, we define the set F of facts
as F = {F (t1, . . . , tn)| F ∈ ΣFacts, F is of arity n|}. The set F of facts is
partitioned into linear and persistent facts. Derived from linear logic, linear facts
model resources that can only be consumed once, whereas persistent facts model
inexhaustible resources that can be consumed arbitrarily often, in particular, the
knowledge of the adversary. Persistent symbols are prefixed with ! .

Example 18. The following facts are predefined in Tamarin with the following
meaning:

• Fr(x : fr) to generate of fresh messages x.

• Out(m : msg) to send a message m.

• In(m : msg) to receive a message m.

12

2.4 Modelling protocols 2 BACKGROUND

• !K(m : msg) when a message m is known by the adversary.

Note that we can write t : type to emphasize that t is of sort type. For simplicity,
Tamarin also uses the notations ∼ x and $A to denote that x is fresh and A is
public.

Each role of the protocol uses its set of facts, called state facts. They are
usually of the form St R s(x1, x2, . . . , xn) to denote that, at step s, an agent
with the role R has the knowledge of x1, x2, . . . , xn.

Example 19. Consider a step where:

• agent A in the role I knows its identity A, the one of its correspondent B
a symmetric key k, a nonce Na and sends senc(Na, k),

• agent B in the role R knows identities B and A and the key k

• and the adversary knows k

Then we should have the state:

{St I 1(A,B, k,Na), St R 1(B,A, k}, Out(senc(Na, k)), !K(k)}

We model possible transitions of our system as labeled multiset rewriting
rules.

Definition 2.15. A labeled multiset rewriting rule is a triple (l, a, r) where l, a
and r are sequences over F and is denoted by l −[a]→ r or with the inference
rule notation:

l1 . . . lk
r1 . . . rn

[a1 . . . am]

For ru = l −[a]→ r, we define the premises as prems(ru) = l , the actions
as acts(ru) = a , the conclusions as concs(ru) = r, and the sequence of fact
symbols occurring in ru with fsyms(ru).

Example 20. For fresh name generation, we define the rule: Fresh = −[]→
[Fr(x : fr)]

For an adversary who knows senc(Na, k) and k, we have the multiset rewrit-
ing rule:

sdec = [!K(senc(Na, k)), !K(k)]−[]→ [!K(Na)]

which is derived from the rewriting rule: sdec(senc(Na, k), k)→ Na.
For an agent A in the role of an initiator I that knows a symmetric key k

and receives the cyphertext senc(m, k) which A can decrypt and then send m
on the network, a protocol rule can be:

[St I 1(A, k), In(senc(m, k))]−[Dec()]→ [St I 2(A, k,m), Out(m)]

Definition 2.16. The labeled transition relation step steps(R) of the rewriting
multiset system R is the set of triples (S, l −[a]→ r, S′) where

• S and S′ are multisets of ground facts,

• l −[a]→ r is a ground instance of a rule from R or of the Fresh rule,

• the multiset of linear facts in l is included in S,

13

2.4 Modelling protocols 2 BACKGROUND

• the set of persistent facts in l is included in S,

• the successor state S′ is obtained from S by removing the linear facts in
l and adding the facts in r.

Finally we can model an execution of a protocol under the control of an
adversary:

Definition 2.17. An execution of R is an alternating sequence

e = [S0, (l1 −[a1]→ r1), S1, . . . , Sk−1, (lk −[ak]→ rk), Sk]

of states and multiset rewriting rule instances such that the following conditions
hold:

E1 . S0 = ∅ (in the sense of multisets),

E2 . For all i ∈ 1, . . . , k, (Si−1, (li −[ai]→ ri), Si) ∈ steps(R),

E3 . For all i, j ∈ 1, . . . , k and n ∈ FN where (li −[ai]→ ri) = (lj −[aj]→ rj) =
([]−[]→ Fr(n)), it holds that i = j.

We denote the set of executions of R with execs(R). We define the trace of
such an execution e as trace(e) = [set(a1), . . . , set(ak)], i.e., the trace is the
sequence of sets of actions of the multiset rewriting rule instances. We define
the observable trace tr of a trace tr as the subsequence of all actions in tr that
are not equal to ∅.

E1 and E2 ensure that an execution starts with the empty multiset and each
step is valid. E3 ensures that the same fresh name is never generated twice.

2.4.3 Protocol/Adversary rules

We divide the multiset rewriting system R into two disjoint multisets, the first
one P which contains rules from the protocol, the second one MD for message
deduction which contains the possibilities of the adversary.

Definition 2.18. A protocol rule is a multiset rewriting rule l −[a]→ r such
that:

P1 . l, a, and r do not contain fresh names,

P2 . l does not contain K and Out facts,

P3 . r does not contain K, In, and Fr facts,

P4 . the argument of a Fr fact is always of sort fr,

P5 . l −[a]→ r satisfies (a) vars(r) ⊆ vars(l) ∪ Vpub and (b) l only contains
irreducible function symbols from ΣST or it is an instance of a rule that
satisfies (a) and (b).

A protocol is a finite set of protocol rules.

Conditions P1 to P4 ensure the smooth functioning of transitions while P5
ensures that (a) no free variable appears in a conclusion rule except for public
one and (b) that no variable disappears by rewriting.

14

2.4 Modelling protocols 2 BACKGROUND

Example 21. Two examples of rules contradicting P5: [In(x)] −[]→ [Out(y)]
because of (a) and [In(fst(〈x, y〉))] −[]→ [Out(y)], which is in fact the same,
because of (b) since fst() is reducible in RST .

Definition 2.19. The set of message deduction rules is defined in inference
notations as follows:

MD =


Out(x)

K(x)

K(x)

In(x)
[K(x)]

Fr(x : fr)

K(x : fr) K(x : pub)
K(x1) . . .K(xk)

K(f(x1, . . . , xk))
for all f ∈ ΣST


They describe from left to right then down that an adversary can

• learn every sent message,

• send every message it knows,

• generate fresh names,

• know every public name, and

• construct messages based on the signature functions and messages it al-
ready knows.

We can notice that the position of Out and In facts in protocol rules and
in message deduction rules enforces that every message sent or received via the
public network used, goes through the knowledge of the adversary.

Example 22. As a basic example, consider a protocol where agent A sends a
freshly generated nonce m on the network and gets it back. We have

Pbasic =

{
Fr(m : fr)

St(A : pub,m) Out(m : fr)
[Start()],

St(A,m) In(m)
[End()]

}
We have the following execution:

We can see that, first, the fresh name m is created, then it is consumed by
the rule ri.2 that generates the trace fact Start(), the state fact St A(A,m)
and the Out(m) fact to denote that agent A knowns m, and publishes it on the
network. The rule ri.3 consumes the Out(m) fact and generates the persistent
fact !K(m). It is then used, but not consumed, by ri.4 that creates both of
the action fact K(m) and the In(m) fact. At this stage, we have the state
S4 = {St A(A,m), In(m), !K(m)}, so the rule at ri.5 can consume the two
first steps of the multiset to lead to the action fact End() and to the last state
S5 = {!K(m)}. The trace tr of this execution is tr = {Start(), K(m), End()}.
Remark. Notice that Figure 2 is an execution of the same multiset rewriting
system. The fact that it is incomplete does not exclude it from the set of
executions.

15

2.4 Modelling protocols 2 BACKGROUND

Rule instances

Fr(m)
ri.1:

Fr(m)

St A(A,m) Out(m)
ri.2: [Start()]

Out(m)

!K(m)
ri.3:

!K(m)

In(m)
ri.4: [K(m)]

St A(A,m) In(m)
ri.5: [End()]

Trace States

S0 = ∅

S1 = {Fr(m)}

S2 = {St A(A,m), Out(m)}

S3 = {St A(A,m), !K(m)}

S4 = {St A(A,m), In(m), !K(m)}

S5 = {!K(m)}

Figure 1: Example of execution of (Pbasic ∪MD) (arrows denote causal depen-
dencies)

Rule instances

Fr(m)
ri:1:

Fr(m)

St A(A,m) Out(m)
ri:2: [Start()]

Trace States

S0 = ∅

S1 = {Fr(m)}

S2 = {St A(A,m), Out(m)}

Figure 2: Other execution of (Pbasic ∪MD)

Dependency graph
As we can see, the sequence of states can be deduced from the rule instances.

To simplify the representation of a protocol execution, we only keep a graph
over rule instances subject to some conditions that make the graph equivalent
to an execution in a sense that will be defined later. To define those conditions,
we first give the structure of such a graph.

Definition 2.20. From the sequence I of rule instances, consider the rule Ii,
its sequence of conclusions concs(Ii) and its sequence of premises prems(Ii).
For the graph over I, i is a node, (i, u), where concs(Ii)u is a conclusion fact,
denotes a conclusion of the graph, and (i, v), where prems(Ii)v is a premise fact,
denotes a premise of the graph. For a conclusion (i, u) and a premise (j, v), we
denote the edge from (i, u) to (j, v) by (i, u) � (j, v)

16

2.4 Modelling protocols 2 BACKGROUND

Example 23. In Figure 1 we have, among others, (2, 1) � (5, 1) and (4, 1) �
(5, 2).

Definition 2.21. We say that the pair dg = (I,D) is a dependency graph
modulo ε for R if I is a sequence of ε-ground instances of rules from R∪Fresh,
D ∈ N2 × N2, and dg satisfies the conditions:

DG1 . For every edge (i, u) � (j, v) ∈ D it holds that i ≤ j and the conclusion
fact of (i, u) is syntactically equal to the premise fact of (j, v).

DG2 . Every premise of dg has exactly one incoming edge.

DG3 . Every linear conclusion of dg has at most one outgoing edge.

DG4 . The Fresh instances are unique.

We denote the set of all dependency graphs modulo ε for R by dgraphsε(R)

We say that the executions in the labeled transition system and the depen-
dency graph are equivalent (or more precisely trace equivalent).

Lemma 2.1. For all sets P of protocol rules,

trace(execs(P ∪MD)) = trace(dgraphsε(P ∪MD))

.

Proof. We prove by induction that the sequences of rule instances of executions
in labeled transition system and of dependency graphs coincide.

Registering keys
If we want to approach cryptographic protocols with asymmetric primitives,

we have to consider a protocol rule that generates and distributes keys to par-
ticipants.

Consider ΣmathcalNSPK that contains a function symbol pk of arity 1
whose goal is to associate a secret key k with its public key pk(k). In order
to a associate private key and an identity, we use the persistent facts !Ltk(A :
pub, k : fr) and !Pk(A : pub, x : msg). !Ltk(A, k) denotes that agent A has k
as its private key (Ltk stands for Long term key) and !Pk(A, x) models that
agent A has x as its public key. !Pk(A, x) is used as !Pk(A, pk(k)) to link !Ltk
and !Pk facts. They are used as persistent facts because a same agent can reuse
its keys multiple times.

We can now consider the following protocol rule:

register Pk =
Fr(k : fr)

!Pk(A : pub, pk(k : fr)) !Ltk(A : pub, k : fr) Out(pk(k : fr))

The secret key k is modelled by a fresh name in order to be unknown and
unique. Persistent facts !Ltk and !Pk ensure the relation with identity, public
key and private key. The Out fact permits the adversary to know the public
key.

From there, we can consider the NSPK protocol built on the above public
key infrastructure. As a first step, we take the following multiset rewriting rule:

17

2.4 Modelling protocols 2 BACKGROUND

Fr(Na) !Pk(B, pkB)

St A(A,B,Na) Out(aenc(〈′1′, A,Na〉, pkB))

It means that agent A gets a fresh nonce and the public key of agent B and
send to B the cyphertext of 〈′1′, A,Na〉 encrypted with pkB. ’1’ is a tag added
at the beginning of the message in order, for the recipient B to interpret the
message as the first message.

For the second rule, we have:

Fr(Nb) In(aenc(〈′1′, A,Na〉, pk(ltkB)) !Pk(A, pkA) !Ltk(B, ltkB)

St B(B,A,Na,Nb) Out(aenc(〈′2′, A,Na,Nb〉, pkA)〉)
Here we can better understand the need for a register key rule : we use

pk(ltkB) in the In fact to denote that B can open a message addressed to him,
and the link is done through the fact !Ltk(B, ltkB). Let PNSPK be the set of
multiset rewriting rules used for the NSPK protocol, including the previous one.
A dependency graph dg0 from dgraphsNSPK(PNSPK ∪MD) is represented in
Figure 3.

Fr(ltkB)

!Pk(B, pk(ltkB)) Out(pk(ltkB)) !Ltk(B, ltkB)
1:

!Pk(B, pkB) Fr(Na)

St A(A,B,Na) Out(aenc(〈′1′, A,Na〉, pkB))
2:

Out(aenc(〈′1′, A,Na〉, pkB))

!K(aenc(〈′1′, A,Na〉, pkB))
3:

!K(aenc(〈′1′, A,Na〉, pkB))

In(aenc(〈′1′, A,Na〉, pkB))
4:

Fr(ltkA)

!Ltk(A, ltkA) !Pk(A, pk(ltkA)) Out(pk(ltkA))
5:

Fr(Nb) !Pk(A, pkA) In(aenc(〈′1′, A,Na〉, pk(ltkB)) !Ltk(B, ltkB)

St B(B,A,Na,Nb) Out(aenc(〈′2′, A,Na,Nb〉, pkA))
6:

Figure 3: Representation of an element of dgraphsNSPK(PNSPK ∪MD)

As we have seen before, at this step of NSPK protocol, it is possible for an
adversary to impersonate B and to have knowledge of Na, but this does not
deal with any rule of MD. In order to complete the adversary abilities, we add
the key reveal rule:

key reveal =
!Ltk(A, k)

Out(k)
[Rvl(A)]

It can both be used to corrupt an agent by making use of its private key or to
impersonate an agent’s identity.

18

2.5 Modelling properties 2 BACKGROUND

If, for example, we want Tamarin to find an execution as described above,
we have to consider a property that translates this condition and try to see if
the property is true with respect to the protocol.

2.5 Modelling properties

A property is true with respect to the protocol if the trace of every execution
of this protocol satisfies the property.

To identify the nonce Na contained in the cyphertext sent by A, we need
to put trace facts in which Na appears. They are placed on the rule where A
sends the cyphertext and on the rule where B receives it. We obtain these rules:

Fr(Na) !Pk(B, pkB)

St A(A,B,Na) Out(aenc(〈′1′, A,Na〉, pkB))
[Send I(Na)]

and

Fr(Nb) In(aenc(〈′1′, A,Na〉, pk(ltkB)) !Pk(A, pkA) !Ltk(B, ltkB)

St B(B,A,Na,Nb) Out(aenc(〈′2′, A,Na,Nb〉, pkA))
[Recv R(Na)]

We want to check whether if an adversary can know Na, which is represented
by the event fact K(Na). To do so, we specify a property φ0 that states that
for all executions where A sends Na to B, the event fact K(Na) does not hold.

A execution where A sends Na is specified by the existence of a time point
i where the event Send I(Na) occurs. To take into account the time points in
an execution, we introduce the sort temp. Informally, φ0 say: For all executions
where Send I(Na) occurs at a time point i and Recv R(Na) occurs at a time
point j, there is no time point k where K(U) occurs.

We can now rewrite φ0 in first-order logic language (where we write f@i to
denote that the event f occurs at the time point i):

∀ i, j, Na, (Send I(Na)@i ∧ Recv R(Na)@j ⇒ ¬(∃k,K(Na)@k))

To prove that the property φ0 is true in the context of the multiset rewriting
P , Tamarin will construct every execution of the protocol and verify if one of
them has a trace in contradiction with φ0. If Tamarin doesn’t find any counter-
example, we say that P satisfies φ0, written P |= φ0.

To formulate a counter-example, we use the equivalence between ∀x, φ(x)
and ¬(∃x,¬ φ(x))

Thus Tamarin will search for an execution where:

∃ i, j, k, Na, (Send I(Na)@i ∧ Recv R(Na)@j ∧ K(Na)@k)

Since we add the key reveal rule, it easily finds the attack represented in
Figure 4

This execution is a counter-example of the property. Indeed, it is an execu-
tion where we have all three facts Send I(Na), Recv R(Na) and K(NA). This
attack represents the corruption of agent B whose secret key has be revealed.
It is not the ”man-in-the-middle” attack we have seen before. To prevent from
corruption of agent A or B, we can both add the properties that there are no
key reveal of those agents, or claim them as ”honest” by an action fact and
forbid corruption of honest agents.

19

2.6 Example: NSPK 2 BACKGROUND

Fr(ltkB)

!Ltk(B, ltkB) Out(pk(ltkB)) !Pk(B, pk(ltkB))
1:

!Ltk(B, ltkB)

Out(ltkB)
2: [Rvl(B)]

Fr(Na) !Pk(B, pk(ltkB))

Out(aenc(〈′1′, A,Na〉, pk(ltkB))) St A(A,B,Na)
3: [Send I(Na)]

Out(aenc(〈′1′, A,Na〉, pk(ltkB)))

!K(aenc(〈′1′, A,Na〉, pk(ltkB)))
5:

Out(ltkB)

!K(ltkB)
4:

!K(aenc(〈′1′, A,Na〉, pk(ltkB)))

In(aenc(〈A,Na〉, pk(ltkB)))
8:

!K(ltkB) !K(aenc(〈′1′, A,Na〉, pk(ltkB))

!K(〈′1′, A,Na〉)
7:

!K(Na)

!In(Na)
9: [K(Na)]

In(aenc(〈′1′, A,Na〉, pk(ltkB)) . . .

St B(B,A,Na,Nb) . . .
10: [Recv R(Na)]

Figure 4: Dependency graph from dgraphsNSPK(PNSPK ∪MD) not satisfying
φ0 (dotted arrows denote hidden obvious rules)

We take the first method as example. To take into account their identities,
we adapt the Send I and Recv R facts and make use of the Rvl fact:

We obtain the new φ0:

∀ A, B, i, j, Na, Send I(A,Na)@i ∧ Recv R(B,Na)@j

⇒ (¬(∃ k,K(Na)@k) ∨ (∃ l1, Rvl(A)@l1) ∨ (∃ l2, Rvl(B)@l2))

We get the expected attack represented in Figure 5
This graph represents the first step of the ”man-in-the-middle” attack. At

this step, neither A nor B can know that their communication is totally con-
trolled by the adversary M which has given its public key instead of B’s. If the
conversation is continued this way, the authentication won’t be satisfied.

In what follows, we show all the rules used to model NSPK, a complete
trace formula for secrecy property and a first view of the representation of the
attack in Tamarin.

2.6 Example: NSPK

We model NSPK protocol:

A→ B : {′1′, A,Na}pk(B)

B → A : {′2′, Na,Nb}pk(A)

A→ B : {′3′, Nb}pk(B)

designed, in theory, to ensure authentication between A and B.

20

2.6 Example: NSPK 2 BACKGROUND

Fr(ltkM)

!Ltk(M, ltkM) !Pk(M, pk(ltkM)) Out(pk(ltkM))
1:

!Ltk(M, ltkM)

Out(ltkM)
2: [Rvl(M)]

!Pk(M, pk(ltkM)) Fr(Na)

St A(A,M,Na) Out(aenc(〈′1′, A,Na〉, pk(ltkM)))
3: [Send I(A,Na)]

Out(ltkM)

!K(ltkM)
4:

Out(aenc(〈′1′, A,Na〉, pk(ltkM)))

!K(aenc(〈′1′, A,Na〉, pk(ltkM)))
5:

!K(ltkM) !K(aenc(〈′1′, A,Na〉, pk(ltkM))

!K(〈′1′, A,Na〉)
6:

Fr(ltkB)

. . . !Ltk(B, ltkB) Out(pk(ltkB))
8:

!K(Na)

!In(Na)
7: [K(Na)]

!K(pk(ltkB)) !K(〈′1′, A,Na〉)
!K(aenc(〈′1′, A,Na〉, pk(ltkB)))

9:

!Ltk(B, ltkB) In(aenc(〈′1′, A,Na〉, pk(ltkB))

St B(B,A,Na,Nb) . . .
10: [Recv R(B,Na)]

Figure 5: Dependency graph from dgraphsNSPK(PNSPK ∪MD) not satisfying
φ0

The adversary is given the set MDNSPK of message deduction rules:

MDNSPK =



Out(x)

K(x)

K(x)

In(x)
[K(x)]

Fr(x : fr)

K(x : fr) K(x : pub)

K(x) K(y)

K(〈x, y〉)
K(p)

K(fst(p))

K(p)

K(snd(p))

K(m) K(k)

K(aenc(m, k))

K(c) K(k)

K(adec(c, k))

K(k)

K(pk(k))


The protocol is described by the set PNSPK of protocol rules:

Fr(Na) !Pk(B, pkB)

St A(A,B,Na) Out(aenc(〈′1′, A,Na〉, pkB))

Fr(Nb) In(aenc(〈′1′, A,Na〉, pk(ltkB)) !Pk(A, pkA) !Ltk(B, ltkB)

St B(B,A,Na,Nb) Out(aenc(〈′2′, Na,Nb〉, pkA))

21

2.7 Dependency graphs modulo AX 2 BACKGROUND

St A(A,B,Na) In(aenc(〈′2′, Na,Nb〉, pk(ltkA)) !Pk(B, pkB) !Ltk(A, ltkA)

Secret(A,B,Na) Secret(A,B,Nb) Out(aenc(〈′3′, Nb〉, pkB))

St B(B,A,Na,Nb) In(aenc(〈′3′, Nb〉, pkB)) !Pk(A, pkA) !Ltk(B, ltkB)

Secret(B,A,Na) Secret(B,A,Nb)

States of the form Secret(A,B,m) are placed at the end of each role to
denote that, A claims to share the message m with B and considers it as secret.
We use the labeled multiset rewriting rule:

Secret(A,B,m)
[Secret(A,B,m)]

to use it in the property specification.
The previously defined register key and key reveal rules are added in the

set of protocol rules.
Authentication is ensured by the fact that the nonces Na and Nb are sup-

posed secret. Thus, we want to prove that nobody claims to have set up a shared
secret, but the adversary knows it without having performed a long-term key
reveal. In first-order logic, we can write it this way:

¬ (∃ A B s i. secret(A,B, s)@i

& (∃j. K(s)@j)

& ¬(∃r. RevLtk(A)@r)

& ¬(∃r. RevLtk(B)@r))

Tamarin will now try to find a trace where A and B think they share a secret
but the adversary managed to knows it without corrupting neither A nor B.

Such a trace exists, it is represented by Tamarin as in Figure 6 and called
the ”man-in-the-middle” attack.

2.7 Dependency graphs modulo AX
In order to generalise our results to equational theories with, among others,
non-orientable equations like associativity or commutativity, we consider an
equational theory NO such that (ΣNO,RNO,AX) is a decomposition of NO
with the finite variant property.

Example 24. NO can stand for the equational theory DH used for Diffie-
Hellman cryptographic primitives. A decomposition of DH with the finite vari-
ant property is (ΣDH,RDH,AC) where:

ΣDH = { ˆ , ∗ , 1, −1}

AC = {x ∗ (y ∗ z) ' (x ∗ y) ∗ z, x ∗ y ' y ∗ x}

22

2.7 Dependency graphs modulo AX 2 BACKGROUND

Figure 6: Man-in-the-middle attack on NSPK

23

2.7 Dependency graphs modulo AX 2 BACKGROUND

RDH =



(x ŷ)̂ z → x (̂y ∗ z) (x−1 ∗ y)−1 → x ∗ y−1

x−1 ∗ (x ∗ y)−1 → y−1 x−1 ∗ (y−1 ∗ z)→ (x ∗ y)−1 ∗ z

(x ∗ y)−1 ∗ (y ∗ z)→ (x−1 ∗ y) x−1 ∗ y−1 → (x ∗ y)−1

1−1 → 1 x ∗ 1→ x (x−1)−1 → x

x ∗ (x−1 ∗ y)→ y x 1̂→ x x ∗ x−1 → 1


To simplify reasoning about products and ensure that multiplication is not

directly used, we add condition P6 to protocol rules, namely:

P6. a conclusion does not contain the function symbol ∗.

Thus, we consider ΣNOe
= ΣNO ∪ ΣST , RNOe

= R'NO ∪ R'ST and the
equational theory NOe = (ΣNOe

,R'NOe
∪ AX) for which (ΣNOe

,RNOe
,AX)

is a decomposition with the finite variant property. Thanks to this property, we

can compute, for a given term t, the set dteRNOe

substs of RNOe
,AX -variants using

a folding variant narrowing algorithm. Then we denote by dteRNOe
insts , the set

{(tσ) ↓RNOe
| σ ∈ dteRNOe

substs} of normalized instances corresponding to the vari-
ants. We say that t is ↓RNOe

-normal if t =AX t ↓RNOe
. We say a dependency

graph dg = (I,D) is ↓RNOe
-normal if all rule instances in I are.

Tamarin uses a folding variant narrowing algorithm on multiset rewriting
rules to calculate their variants.

Example 25. [K(x), K(y)] −[]→ [K(x ŷ)] has 47 RDHe ,AC-variants. For
example we have{

[K(x), K(y)]−[]→ [K(x ŷ)],
[K(u v̂), K(v−1)]−[]→ [K(u)]

}
⊂ d [K(x), K(y)]−[]→ [K(x ŷ)] eRDHe

insts

The following lemma shows that we can use dependency graphs modulo AX .

Lemma 2.2. For all sets R of multiset rewriting rules,

dgraphsNOe
(R) ↓RNOe

=AX

{dg| dg ∈ dgraphsAX (dReRNOe
insts) ∧ dg ↓RNOe

-normal}.

24

3 RESOLUTION

3 Resolution

In this section we introduce normal dependency graphs and explain what has
already been proved for a subterm convergent theory ST . Then we adapt the
proof for context subterm rules and implement them for Tamarin.

3.1 Prior works

3.1.1 Construction and deconstruction rules

We can see, with simple examples, that dependency graphs are not sufficient to
automatise the search for traces.

For instance, consider the case where the adversary deduces the first element
a of a pair 〈a, b〉, then pairs it with an element c, then deduces a from the new
pair to finally build the pair 〈a, d〉. It is a possible, but redundant subgraph of
a dependency graph. Moreover, this could continue indefinably, but could be
resumed in one step.

To gain in efficiency and avoid redundancy, we divide the adversary rules
into two categories, deconstruction rules and construction rules. Deconstruction
rules are used by the adversary just after protocol rules and made to deduce
messages from what has been sent on the network. Construction rules are,
conversely, used to build messages from the knowledge of the adversary and
then send to them on the network. To achieve this, we provide K facts with
an orientation ”Up and Down” denoted K⇑ and K⇓. Deconstruction rules have
premises with both K⇓ and K⇑ facts and conclusion with a K⇓ fact, while
construction rules have premises with only K⇑ facts and conclusion with a K⇑

fact. This enforces deconstruction rules to be locally before construction rules.
The transition from K⇓ to K⇑ is achieved by a special rule called ”Coerce”.

In the context of a subterm convergent theory ST , the idea is to consider a
construction rule for every function in ΣST , and deconstruction rules for each
rewriting rule. The process for deconstruction rules is not trivial and will be
explained later. Additionally we consider construction rules for fresh and public
name generation, and, to be coherent with the purpose of construction and
deconstruction rules, we state that the Out() rule has a K⇓ fact as conclusion
while the In() rule has a K⇑ facts as premise.

Example 26. If we consider theory from NSPK, as defined previously, for
subterm convergent theory, we get the following set of rules NDNSPK (for
normal message deduction):

25

3.1 Prior works 3 RESOLUTION

NDNSPK =



Out(x)

K⇓(x)

K⇓(〈x, y〉)
K⇓(x)

K⇓(〈x, y〉)
K⇓(y)

K⇓(aenc(m, pk(k))) K⇑(k)

K⇓(m)

K⇓(x)

K⇑(x)

Fr(x : fr)

K⇑(x : fr) K⇑(x : pub)

K⇑(x) K⇑(y)

K⇑(〈x, y〉)
K⇑(p)

K⇑(fst(p))

K⇑(p)

K⇑(snd(p))

K⇑(m) K⇑(k)

K⇑(aenc(m, k))

K⇑(c) K⇑(k)

K⇑(adec(c, k))

K⇑(k)

K⇑(pk(k))

K⇑(x)

In(x)
[K(x)]


The rules are arranged more or less following the way they can be used between
protocol rules. We can notice that the deconstruction rule for decryption has
K⇑ and K⇓ facts in premises.

With such rules, the adversary avoids cases of redundancy as shown in Figure
7

K(〈a, b〉)
K(a)

1:

K(a) K(c)

K(〈a, c〉)
2:

K(〈a, c〉)
K(a)

3:

K(a) K(d)

K(〈a, d〉)
4:

K⇑(a) K⇑(c)

K⇑(〈a, c〉)
1:

K⇓(〈a, c〉)
K⇓(a)

2:

K⇓(〈a, b〉)
K⇓(a)

1:

K⇓(a)

K⇑(a)
2:

K⇑(a) K⇑(d)

K⇑(〈a, d〉)
3:

Figure 7: Message deduction subgraphs for pairing. The first one represents a
redundant dependency subgraph, the second one an impossible deduction with
Up and Down K-facts and the last one, a correct deduction and construction
from pairing

Consider now that we have a subterm convergent rewriting system ST 0 =
({1, a(,), b(,), c(,)}, {a(b(c(x, y), 1), y) → x}). We can notice first that,
given b(c(x, y), 1) and y we can deduce x by applying the function a(,), but,
given c(x, y), 1 which is ground, and y, we can also deduce x by applying
successively functions b and a. We can deduce there should be at least two

26

3.1 Prior works 3 RESOLUTION

deconstruction rules for the rewriting rule. A second problem is to know where
to place the K⇓ and K⇑ facts in the premises.

For a subterm convergent rewriting system, a method to compute decon-
struction rules is the following. Consider a subterm rewriting rule l → r where
r is not ground. Since it is a subterm rewriting rule, there is a position p in l
such that l|p = r. Then, for each position p′ 6= [] strictly above p, we compute
a deconstruction rule for which the term l|p′ is in a K⇓ fact and the terms l|p̃,
where p̃ has a sibling equal or above p′, are used in a K⇑ fact.

Example 27. Consider the rewriting rule l→ r = a(b(c(x, y), 1), y)→ x, the
only position p of l such that l|p = r is [1, 1, 1], there are two positions different
than [] and strictly above p, p′1 = [1, 1] and p′2 = [1]. For p′1, we have p̃1 = [2]
and p̃2 = [1, 2] as positions which have a sibling above or equal to p′1. For p′2,
we have only p̃1 = [2] as positions which have a sibling above or equal to p′2.
We represent this in Figure 8:

Subterm r = l|p

a(b(c(x,y),1),y) []

b(c(x,y),1)[1]

c(x,y)[1,1]

x[1,1,1] y [1,1,2]

1 [1,2]

y [2]

K⇑

K⇓ a(b(c(x,y),1),y) []

b(c(x,y),1)[1]

c(x,y)[1,1]

x[1,1,1] y [1,1,2]

1 [1,2]

y [2]

K⇑

K⇓

Figure 8: Different possible positions of K-facts for deconstruction rules associ-
ated with a(b(c(x, y), 1), y)→ x.

Thus, the two associated deconstruction rules are:

[K⇓(b(c(x, y), 1)), K⇑(y)]−[]→ [K⇓(x)]

and
[K⇓(c(x, y)), K⇑(1), K⇑(y)]−[]→ [K⇓(x)]

More formally, for each position p such that l|p = r, we use the function
ctxtdrules drawn from [16] to compute the corresponding deconstruction rules:

ctxtdrules(l, p) =

{[K⇓
d

(l|p′)] · cprems(l, p′)−[]→ [K⇓
d

(l|p)]| p′ strictly above p and p′ 6= []}

where cprems(l, p′) determines the sequence of K⇑ premises:

cprems(l, p′) = seq({K⇑(l|p̃)| p̃ 6= [] ∧ p̃ has a sibling above or equal to p′})

(We use seq to convert sets into sequences.)
We can notice that deconstruction rules from NDNSPK are coherent with

this construction.

27

3.1 Prior works 3 RESOLUTION

Normal message deduction for NO theories
In order to be more general, we extend construction and deconstruction rules

to non-orientable theories. Since such theories are not the main subject of
the report, we only apply an instance already studied in [16] of non-orientable
theory, namely, the bilinear-pairing theory BP. It is an extension of DH used
for the Joux Protocol, including in particular multisets.

To be brief:
BP = (ΣBP ,R'BP ∪ ACC)

where
ΣBP = {ê(,), [] ,] } ∪ ΣDH

ACC = {x](y]z) ' (x]y)]z, x]y ' y]x, ê(x, y) ' ê(y, x)} ∪ AC

RBP = {[z]([y]x)→ [z ∗ y]x, [1]x→ x, ê([y]x, z)→ ê(x, z)̂ y} ∪ RDH
and then, RBPe

= RDH∪RST such that (ΣBPe
,RBPe

,ACC) is a decomposition
of BPe with the finite variant property. The associated set of normal message
deduction rules NDBP is described in [16]. It introduces two new symbols: K⇓d

and K⇓e in the place of K⇓ symbol, and rules never have K⇓e-facts as premise.
This is done to avoid redundancy as in the following example:

K⇓d(â b) K⇑(b−1 ∗ c)
K⇓e(â c)

1:

K⇓d(â c) K⇑(c−1 ∗ d)

K⇓e(â d)
2:

which could have been possible without distinction between K⇓d-facts and
K⇓e-facts.

We extend this notation to NDST by substitute each occurrence of K⇓ by
K⇓d except for the coerce rule that can both take in premise K⇓d and K⇓e.

The rest of the report is done with NO = BP.

We introduce the notion of invertible function symbols and non inverse fac-
tors as:

Definition 3.1. A function symbol f ∈ ΣBP ∪ ΣST of arity n is invertible if
for arbitrary terms ti and for all 1 ≤ i ≤ n, K⇓(f(t1, . . . , tn)) −[]→ K⇓(ti) ∈
ginstsACC(ND).

For instance, the only invertible function symbol of ΣNSPK is 〈 , 〉.

Definition 3.2. The set nifactors(t) of non-inverse factors of a term t is defined
as

nifactors(t) =

 nifactors(a) ∪ nifactors(a) if t = a ∗ b
nifactors(s) if t = s−1

{t} otherwise

28

3.1 Prior works 3 RESOLUTION

3.1.2 Normal Dependency graphs

We integrate now the concept of normal message deduction, with construction
and deconstruction rules, to dependency graphs.

Definition 3.3. A normal dependency graph for a set of protocol rules P is

a dependency graph dg such that dg ∈ dgraphsACC(dP e
RBPe
insts ∪ ND) and the

following conditions are satisfied:

NDG 1 . The dependency graph dg is ↓RBPe
-normal.

NDG 2 . There is no multiplication rule that has a premise fact of the form K⇑(s∗t)
and all conclusion facts of the form Kd(s ∗ t) are conclusions of a multi-
plication rule.

NDG 3 . If there are two conclusions c and c′ with conclusion facts Kd(m) and
Kd′

(m′) such that m =AC m′ and either d=d′=⇑ or d=⇓y and d′=⇓y′
for y, y′ ∈ {d, e}, then c = c′.

NDG 4 . All conclusion facts K⇑(f(t1, . . . , tn)) where f is an invertible function
symbol are conclusions of the construction rule for f .

NDG 5 . If a node i has a conclusion K⇓y(m) for y ∈ {d, e} and a node j has a
conclusion K⇑(m′) with m =AC m′, then i < j and either root(m) is
invertible or the node j is an instance of coerce.

NDG 6 . There is no node [K⇓d(a), K⇑(b)]−[]→ K⇓e(ĉ d) where c does not contain
any fresh names and nifactors(d) ⊆AC nifactors(b).

NDG 7 . There is no construction rule for] that has a premise of the form K⇑(s]t)
and all conclusion facts of the form K⇑(s]t) are conclusions of a construc-
tion rule for].

NDG 8 . The conclusion of a deconstruction rule for] is never of the form K⇓d(s]t).

NDG 9 . There is no node [K⇓d(a),K⇑(b)] −[]→ K⇓e([d]c) such that c does not
contain any fresh names and nifactors(d) ⊆ACC nifactors(b).

NDG 10 . There is no node i labeled with [K⇓d([t1]p),K⇓d([t2]q)]−[]→ K⇓d(ê(p, q)̂ c)
such that there is a node j labeled with [K⇓d(ê(p, q)̂ c),K⇑(d)] −[]→
K⇓d(ê(p, q)̂ e), an edge (i, 1) � (j, 1), nifactors(ti) ⊆ACC nifactors(d)
for i = 1 or i = 2, and ê(p, q) does not contain any fresh names.

NDG 11 . There is no node [K⇓d([a]p),K⇓d([b]q)] −[]→ K⇓d(ê(p, q)̂ (a ∗ b)) such
that the send-nodes of the first and second premises are labeled with ru1

and ru2 and fsyms(ru2) <fs fsyms(ru1) where <fs is a total order on
sequences of fact symbols.

We denote the set of all normal dependency graphs for P with ndgraphs(P).

We do not explain those rules in detail, most of them ensure the coherence
of the graph and avoid redundancy. NDG 2 and NDG 6 are for DH theory,
NDG 7 to NDG 11 are for BP. NDG 3 avoid multiple deduction of the same
term. NDG 4 forbids deduction coerce rule on invertible function symbol like
〈 , 〉 for example. NDG 5 forces K⇓d facts to be before K⇑ facts.

29

3.1 Prior works 3 RESOLUTION

Example 28. The graph represented in 6 is a normal dependency graph. Figure
9 is a raw representation of the first interception of the adversary, on which we
can see that rules with K⇓-facts as premises are found above rules with K⇑

facts as premises.

Fr(ltkM)

!Ltk(M, ltkM) !Pk(M, pk(ltkM)) Out(pk(ltkM))
1:

!Ltk(M, ltkM)

Out(ltkM)
2: [Rvl(M)]

!Pk(M, pk(ltkM)) Fr(Na)

St A(A,M,Na) Out(aenc(〈′1′, A,Na〉, pk(ltkM)))
3:

Out(ltkM)

!K⇓(ltkM)
4:

!K⇓(ltkM)

!K⇑(ltkM)
5:

Out(aenc(〈′1′, A,Na〉, pk(ltkM)))

!K⇓(aenc(〈′1′, A,Na〉, pk(ltkM)))
6:

!K⇑(ltkM) !K⇓(aenc(〈′1′, A,Na〉, pk(ltkM))

!K⇓(〈′1′, A,Na〉)
7:

Fr(ltkB)

. . . !Ltk(B, ltkB) Out(pk(ltkB))
8:

!K⇓(〈′1′, A,Na〉)
!K⇓(Na)

9:

!K⇓(Na)

!K⇑(Na)
10:

!K⇑(pk(ltkB)) !K⇑(〈′1′, A,Na〉)
!K⇑(aenc(〈′1′, A,Na〉, pk(ltkB)))

11:

!K⇑(aenc(〈′1′, A,Na〉, pk(ltkB)))

In(aenc(〈′1′, A,Na〉, pk(ltkB))
12:

Figure 9: Subgraph of the normal dependency graph from Tamarin in Figure
6. Note that rule 9 does not exist: to get K⇓(Na) we need in fact to apply two
deconstruction rules associated with the rewriting rule snd(〈x, y〉)→ y.

Considering such conditions for normal dependency graph and such decon-
struction rules for rewriting system, we can deduce the following lemma:

Lemma 3.1. For all protocols rules system P ,

{trace(dg)|dg ∈ dgraphs(dP ∪MDeRBPe
insts) ∧ dg ↓RBP e

-normal}

= trace(ndgraphs(P)).

30

3.2 Proof of Lemma 3.1 for context subterm rules 3 RESOLUTION

where overlinetr denotes the subsequence,called observable trace, of all ac-
tions in tr that are not equal to ∅.

We can find the proof of this lemma in [16], it is significantly reused to prove
lemma 3.2.

Then, by applying successively lemmas 2.1, 2.2 and 3.1, we can prove the
following corollary:

Corollary. For all sets P of protocol rules,

trace(execs(P ∪MD)) ↓RBPe
=ACC trace(ndgraphs(P)).

This corollary says that normal dependency graphs and executions have the
same observable traces.

3.2 Proof of Lemma 3.1 for context subterm rules

Now that we know that can use normal dependency graph for protocols involving
a subterm convergent theory, we are going to adapt the proof of Lemma 3.1 for
more general theories that are not subterm convergent namely, context subterm
theories noted CST . Such theories contain rewriting rules where the right-hand
side term is not necessary a subterm of the right-hand side.

Definition 3.4. Formally a context subterm rule l → r verifies that there are
k and p1, . . . , pk such that r ∈ TΣCST (l|p1

, . . . , l|pk
)

As guideline for the following, we take the blind signature theory BS used in
both the Chaum’s online protocol for E-Cash and FOO or Okamoto protocols
for E-Voting that we will study later.

Example 29. The blind signature permits to sign a blinded message with a
secret key and then to unblind the signed blinded message to get the signed
message without blinding. Materially, it is like putting a vote in an envelope
that hides it, making somebody sign it with a pencil that write through the
envelope and then getting back the signed vote. This primitive can be modelled
this way.

ΣBS =

{
{blind(,), unblind(,), sign(,), cheksign(,),

fst(), snd(), 〈 , 〉, pk()

}
and

RBS =

 unblind(blind(m, r), r)→ m, checksign(sign(m, k), pk(k))→ m,
unblind(sign(blind(m, r), k), r)→ sign(m, k),

fst(〈x, y〉)→ x, snd(〈x, y〉)→ y


The first equation models the fact that, blinding then unblinding a message,

with the same key, gives back the initial message, similar to symmetric encryp-
tion. The second permits to know a message under a signature, as the signature
is not supposed to hide the message. The third one has already been explained,
note that it is not a subterm rule. The last rules are the same as before, used
to send multiple messages.

31

3.2 Proof of Lemma 3.1 for context subterm rules 3 RESOLUTION

To gain in generality, we consider

RCST ′ = RCST ∪RBP

and
CST ′ = (ΣCST ∪ ΣBP ,R'CST ∪R'BP ∪ ACC)

We admit that lemmas 2.1 and 2.2 are still true with respect to CST ′ since
the property of subterm convergence is not involved in their demonstration.

We define the set of message deduction rules MD as:

MD =

{
Out(x)
K(x)

K(x)
In(x) [K(x)] Fr(x:fr)

K(x:fr) K(x:pub)
K(x1)...K(xk)
K(f(x1,...,xk)) for all f ∈ ΣCST ′

}

We prove this lemma:

Lemma 3.2. For all sets P of protocol rules,

{trace(dg)|dg ∈ dgraphs(dP ∪MDeCST
′

insts) ∧ dg ↓CST ′ -normal} =

trace(ndgraphs(P)).

In order to prove this lemma, we define these sets of messages:

Definition. The known messages of a dependency graph dg:

known(dg) = {m| exists conclusion fact K(m) in dg}

The known-d messages of a normal dependency graph ndg:

knownd(ndg) = {m| exists conclusion fact Kd(m) in ndg}

for d ∈ {⇑,⇓d,⇓e}.
The known⇓ messages of normal dependency graph ndg:

known ⇓ (ndg) = known ⇓e (ndg) ∪ known ⇓d (ndg)

The known messages of normal dependency graph ndg:

known m (ndg) = known ⇓ (ndg) ∪ known ⇑ (ndg)

The available state-conclusions of a dependency graph dg:

stfacts(dg) = {f ∈ cfact(dg)|∀m, d.f 6= K(m) ∧ f 6= Kd(m)}

where cfact(dg) denotes the consumable facts in dg.
The created messages of a dependency graph dg:

created(dg) = {n| exists conclusion fact Fr(n) in dg}.

Finally we say a normal dependency graph ndg′ = (I ′, D′) is a deduction
extension ndg = (I,D) if I is a prefix of I ′, D ⊆ D′, trace(ndg) = trace(ndg′),
stfacts(ndg) = stfacts(ndg′), and created(ndg) = created(ndg′).

To prove Lemma 3.2, we use these two lemmas proved in [16]:

32

3.2 Proof of Lemma 3.1 for context subterm rules 3 RESOLUTION

Lemma 3.3. For all ndg ∈ ndgraphs(P) and conclusion facts K⇓(m),there is
a deduction extension ndg′ that contain a conclusion fact K⇑(m′) with m =ACC

m′.

This lemma describes that the adversary can always convert a K ⇓ fact into
a K ⇑ fact.

Lemma 3.4. For all ndg ∈ ndgraphs(P), t ∈ known m (ndg) and valid posi-
tions p in t such that root(t|p′) 6= ∗ for all p′ above or equal to p, either

a) there is a position p̃ strictly above p such that t|p̃ ∈ACC known ⇓ (ndg)
and t|p′ ∈ACC known m (ndg) for all valid positions p′ in t that have a
sibling above or equal to p̃, or

b) t|p ∈ACC known m (ndg) and t|p′ ∈ knownACC m (ndg) for all valid
positions p′ that have a sibling above or equal to p.

This lemmas divides terms known by the adversary into two categories il-
lustrated in the following example:

Consider a term t ∈ knownACC m (ndg) and a valid position p then t can
be in one of these situations:

case a)

t

t|[1]

t|[p̃]

t|[p]

t|[p′n]

t|[p′2]

t|[p′1]

∈ knows m

∈ knows ⇓

case b)

t

t|[1]

t|[p] t|[p′n]

t|[p′2]

t|[p′1]

∈ knows m

(Note that we can have more that two siblings and that they can stop after
more subterms.)

It shows in particular that, if, in a term t ∈ known m (ndg), there is a
valid position p where the subterm t|p /∈ known m (ndg), then there is another
position p̃, above p, where t|p̃ ∈ known ⇓ (ndg). This permits to establish
deconstruction rules based on premises with subterms that are not in known m
(ndg).

We use common subterms to build deconstruction rules for context subterm
theory.

Definition 3.5. A common subterm t of a rewriting rule l → r is a term such
that there are p and q such that t = l|p = r|q.

A common maximal subterm t of a rewriting rule l→ r is a common subterm
of l→ r such that there is no common subterm t′ such that t is a subterm of t′.

For a given rewriting rule l→ r where vars(r) 6= ∅, and for which there is a
common maximal subterm l|p, we use the function ctxtdrules to compute the
corresponding deconstruction rules.

ctxtdrules(l, p, r) =

{[K⇓
d

(l|p′)] · cprems(l, p′)−[]→ [K⇓
d

(r)]| p′ strictly above p and p′ 6= []}

33

3.2 Proof of Lemma 3.1 for context subterm rules 3 RESOLUTION

The set of deconstruction rules for a rewriting rule l→ r is given by:

Ctxtdrules(l, P, r) =
⋃
p∈P

ctxtdrules(l, p, r)

where P = {p| ∃q, l|p = r|q}, the set of positions of common maximal subterms
of l→ r.

The set DRCST of deconstruction rules for CST is given by:

DRCST =
⋃

(l, P, r)

Ctxtdrules(l, P, r)

where l → r is a rewriting rule of RCST with P for set of positions in l of
common maximal subterms.

Thus, we have

ND =



Out(x)

K⇓d(x)

K⇑(x)

In(x)
[K(x)]

K⇓
d

(x)

K⇑(x)

K⇓
e

(x)

K⇑(x)

Fr(x : fr)

K⇑(x : fr) K⇑(x : pub)

K⇑(x1) . . . K⇑(xk)

K⇑(f(x1, . . . , xk))
for all f ∈ ΣCST


∪DRCST

Example 30. Consider the following signature

Σ0 = {a(,), b(,), c(,), d(,), g(,)}

and the associated rewriting rule R0 = {a(b(c(x, y), d(z, w)), z)→ g(x, z)}.
To establish the deconstruction rules from ND, we look at the common

maximal subterms in the rewriting rule, namely x and z. We have: x = l|[1,1,1],
and z = l|[1,2,1] = l|[2] so P = {[1, 1, 1], [1, 2, 1], [2]} and

Ctxtrules(l, P, r) =

ctxtdrules(l, [1, 1, 1], r) ∪ ctxtdrules(l, [1, 2, 1], r) ∪ ctxtdrules(l, [2], r)

We have

ctxtdrules(l, [1, 1, 1], r) ={
K⇓

d

(c(x, y)) K⇑(d(z, w)) K⇑(z)

K⇓d(g(x, z))
,
K⇓

d

(b(c(x, y), d(z, w))) K⇑(z)

K⇓d(g(x, z))

}
,

ctxtdrules(l, [1, 2, 1], r) ={
K⇓

d

(d(z, w)) K⇑(c(x, y)) K⇑(z)

K⇓d(g(x, z))
,
K⇓

d

(b(c(x, y), d(z, w))) K⇑(z)

K⇓d(g(x, z))

}

and ctxtdrules(l, [2], r) = ∅.

34

3.2 Proof of Lemma 3.1 for context subterm rules 3 RESOLUTION

Then

Ctxtdrules(l, P, r) =
K⇓

d

(c(x, y)) K⇑(d(z, w)) K⇑(z)

K⇓d(g(x, z))
,
K⇓

d

(d(z, w)) K⇑(c(x, y)) K⇑(z)

K⇓d(g(x, z))
,

K⇓
d

(b(c(x, y), d(z, w))) K⇑(z)

K⇓d(g(x, z))


Since the rule K⇓d

(b(c(x,y),d(z,v))) K⇑(w)

K⇓d (g(x,z))
appears in both ctxtdrules, we ob-

tain only three deconstruction rules. Note that there is no need for a rule with
two K⇓ facts.

Example 31. We apply this to the blind signature rewriting rule

unblind(sign(blind(m, r), k), r)→ sign(m, k).

We have m and k as common maximal subterms on respective positions [1, 1, 1]
and [1, 2]. Then we consider the following deconstruction rules:

ctxtdrules(l, [1, 1, 1], r) ={
K⇓

d

(blind(m, r)) K⇑(k) K⇑(r)

K⇓d(sign(m, k))
,
K⇓

d

(sign(blind(m, r), k)) K⇑(r)

K⇓d(sign(m, k))

}

and

ctxtdrules(l, [1, 2], r) =

{
K⇓

d

(sign(blind(m, r), k)) K⇑(r)

K⇓d(sign(m, k))

}
.

Thus,

Ctxtdrules(l, {[1, 1, 1], [1, 2]}, r) ={
K⇓

d

(blind(m, r)) K⇑(k) K⇑(r)

K⇓d(sign(m, k))
,
K⇓

d

(sign(blind(m, r), k)) K⇑(r)

K⇓d(sign(m, k))

}

35

3.2 Proof of Lemma 3.1 for context subterm rules 3 RESOLUTION

Then we have set NDBS of normal deduction message rules for BS:

NDBS =



Out(x)

K⇓d(x)

K⇓
d

(blind(m, r)) K⇑(r)

K⇓d(m)

K⇓
d

(sign(m, k)) K⇑(pk(k))

K⇓d(m)

K⇓
d

(〈x, y〉)
K⇓d(x)

K⇓
d

(blind(m, r)) K⇑(k) K⇑(r)

K⇓d(sign(m, k))

K⇓
d

(〈x, y〉)
K⇓d(y)

K⇓
d

(sign(blind(m, r), k)) K⇑(r)

K⇓d(sign(m, k))

K⇓
d

(x)

K⇑(x)

K⇓
e

(x)

K⇑(x)

Fr(x : fr)

K⇑(x : fr) K⇑(x : pub)

K⇑(x) K⇑(y)

K⇑(〈x, y〉)
K⇑(p)

K⇑(fst(p))

K⇑(p)

K⇑(snd(p))

K⇑(m) K⇑(k)

K⇑(sign(m, k))

K⇑(s) K⇑(pk)

K⇑(checksign(s, pk))

K⇑(k)

K⇑(pk(k))

K⇑(m) K⇑(r)

K⇑(blind(m, r))

K⇑(b) K⇑(r)

K⇑(unblind(b, r))

K⇑(x)

In(x)
[K(x)]


We can now prove Lemma 3.2 by adapting the proof we find in [16]. The

proof considers a dependency graph on which we add a rule instance and see if it

is convertible into a possible rule instance from ginst(dP∪NDeRCST ′
insts ∪{Fresh})

to complete an equivalent normal dependency graph.

Proof of Lemma 3.2. We prove both inclusions by induction on graphs.

⊆ACC : We prove that, for all dg ∈ dgraphsACC(dP ∪ MDeRCST ′
insts) with

dg ↓RCST ′ -normal, there is ndg ∈ ndgraphs(P) such that:

known(dg) ⊆ACC known m (ndg) (1)

stfacts(dg) ⊆ACC stfacts(ndg) (2)

created(dg) =ACC created(ndg) (3)

trace(dg) =ACC trace(ndg) (4)

Notice that the inclusion of (2) applies to multisets.
The four properties hold for dg = ([], ∅). Let dg = (I,D) ∈ dgraphsACC(dP∪

MDeRCST ′
insts) with dg ↓RCST ′ -normal, and ndg = (Ĩ , D̃) ∈ ndgraphs(P) such

that (1)-(4) hold. Let ri ∈ ginstACC(dP ∪MDeRCST ′
insts ∪ {Fresh}) such that

dg′ = (I · ri,D
⊎
D′) ∈ dgraphsACC(dP ∪MDeRCST ′

insts). We must show that

36

3.2 Proof of Lemma 3.1 for context subterm rules 3 RESOLUTION

there is a deduction extension ndg′ of ndg that satisfies (1)-(4) with respect to
dg′.

We perform a case distinction on ri:

• for ri ∈ ginstACC(dP eRCST ′
insts ∪ {Fresh}), we can extend ndg to ndg′ =

(Ĩ · ri, D̃
⊎
D̃′) in accordance with conditions (2) and (3) ,

• for ri ∈ {Out(m) −[]→ K(m),K(m) −[K(m)]→ In(m), F r(n) −[]→
K(n),−[]→ K(c)} ⊂ ginstACC(dMDeRCST ′

insts , there are corresponding rules
in ND that can complete Ĩ,

• for the rules

[K(m1), . . . ,K(mn)]−[]→ [K(f(m1, . . . ,mn))] ∈ ginstACC(dMDeRCST ′
insts),

we can associate a construction rule because, according to lemma b) we
can have mi ∈ known ⇑ (ndg′),

• for the rules [K(m1), . . . ,K(mk)]−[]→ [K(m)] with
m = f(m1, . . . ,mk) ↓RCST ′ where f ∈ ΣCST ′ andm 6=ACC f(m1, · · · ,mk).
We can assume that m /∈ACC known m (ndg). Then, there is a rule
l → r in RCST ′ such that f(m1, . . . ,mk) is an instance of l and, either
m = r ∈ TΣCST ′ (∅) and in normal form, or, there are k′, j1, . . . , jk′ and
p1, . . . , pk′ such that m ∈ TΣCST ′ (mj1 |p1

, . . . ,mjk′ |pk′).

For instance, if l = unblind(m1,m2) where m1 = sign(blind(x,m2), k),
then x = m1|[1,1] and k = m1|[2], so
m = sign(x, k) ∈ TΣCST ′ (m1|[1,1],m1|[2]). If r ∈ TΣCST ′ (∅), we can use
construction rules to build m. In the other case, we can assume that there
is an mji |pi

, namely mj′ |p′ , that is not in known m (ndg) otherwise we
could use a construction rule to build m, thus mj′ |p′ satisfies the case a)
of Lemma 3.4, and there is a valid position p̃ strictly above p′ such that
mj′ |p̃ ∈ known ⇓ (ndg). Moreover mj′ |p̃ ∈ known ⇓d (ndg) because,
since we apply l → r, then mj′ |p̃, which is in a position strictly above
mj′ |p′ , verifying root(mj′ |p̃) ∈ ΣCST ′ and so mj′ |p′ can’t be in known ⇓e
(ndg). Thus we can use the corresponding rule from Ctxtdrules, namely

[K⇓
d

(l|[j′]·p̃)] · cprems(l, p̃)−[]→ [K⇓
d

(l ↓RCST ′)].

• Other rules only deal with the bilinear-paring theory, the fact that CST ′

is not necessarily subterm convergent does not interfere with the original
proof.

⊇ACC : For the other inclusion, we show, by an analogous way, that for

all ndg ∈ ndgraphs(P),there is a dg ∈ dgraphsACC(dP ∪ MDeRCST ′
insts) with

dg ↓RCST ′ -normal, such that:

known(ndg) ⊆ACC known m (dg) (1)

stfacts(ndg) ⊆ACC stfacts(dg) (2)

created(ndg) =ACC created(dg) (3)

trace(ndg) =ACC trace(dg) (4)

37

3.3 Implementation of context subterm rules in Tamarin 3 RESOLUTION

It holds for ndg = ([], ∅). Let ndg = (I,D) ∈ ndgraphs(P), and dg = (Ĩ , D̃) ∈
dgraphsACC(dP ∪MDeRCST ′

insts) with dg ↓RCST ′ -normal such that (1)-(4) hold.

Let ri ∈ ginstACC(dP eRCST ′
insts ∪ND∪{Fresh}) such that ndg′ = (I ·ri,D

⊎
D′) ∈

ndgraphsACC(P). We must show that there is a deduction extension dg′ of dg
that satisfies (1)-(4) with respect to ndg′. We still perform a case distinction
on ri

• for ri ∈ ginstACC(dP eRCST ′
insts ∪ {Fresh}): it is analogous to the other in-

clusion,

• for ri ∈ ginstACC(ND): there is a corresponding rule in dMDeRCST ′
insts for

most of rules instance ri. For the others, we consider variants of rules for

function symbols. For example, if ri =
K⇓

d

(blind(m, r)) K⇑(k) K⇑(r)

K⇓d(sign(m, k))
,

we consider the trivial variant of the signing rule:
K(blind(m, r)) K(k)

K(sign(blind(m, r), k))

followed by the variant of the unblinding rule:
K(sign(blind(m, r), k)) K(k)

K(sign(m, k))

3.3 Implementation of context subterm rules in Tamarin

Now, we are able to perform the implementation of context subterm rules
in Tamarin. Since subterm rules have already been implemented, only a few
changes will be necessary.

3.3.1 Haskell

The source code of Tamarin is written in Haskell. It is a strongly typed func-
tional programming language.

A functional language consider calculus like evaluation of mathematical func-
tions by opposition with imperative languages where operations are described
by sequences of operations like affectations or loops.

A language is strongly typed if each data is associated with a type that must
be respected without implicit conversion.

A classic example of Haskell is the quick-sort algorithm that is easily written
in such a functional language:

Example 32. The quick-sort algorithm qs rearranges a list of ordered elements
by ascending order. It is one of the fastest sort algorithm. In Haskell, it is
written:

1 qs :: Ord a ⇒ [a] → [a]
2 qs (x:xs) =
3 qs (filter (<x) xs)
4 ++ [x] ++
5 qs (filter (>=x) xs)

The first line gives and imposes informations on the function qs, Ord a
denotes that the type a is of typeclass Ord (for ordered); such a type can be
Integral for instance. [a]→ [a] denote that it takes in argument a list, denoted
by [], of elements of type a and returns a list of the same type.

38

3.3 Implementation of context subterm rules in Tamarin 3 RESOLUTION

The second line qs (x : xs) = stand for ”qs applied to (x : xs) equals” where
(x : xs) is pattern matching for a list starting with x and followed by the list
xs. Note that x is of type a but xs is of type [a].

The following three lines denote the structure of the application of qs on (x :
xs). It places x between the elements greater and lesser than it by concatenation,
denoted by ++, of three lists: qs (filter (< x) xs), the list of sorted elements
lesser than x; [x], the list containing x, and qs (filter (>= x) xs), the list of
sorted elements greater than x.

It can be useful to introduce other notions: [0..] denotes the infinite arith-
metic list starting by 0 and 1. elem is a function of arity 2, often used in infix
position., it tests the belonging. 4 ‘elem‘ [0..] returns true. Comprehension
lists are convenient to define list: [x ∗ 2| x ← [1..10], x ∗ 2 >= 12] returns
[12, 14, 16, 18, 20]. is used to denote indifferent argument, We can define func-
tion second on triplets by second(, b,) = b. The arguments are written after
a function without parenthesis if they are not necessary. map permits to apply
a function on each element of a list. And finally, here are three examples that
define factorial function:

f :: (Integral a) => a -> a
f 0 = 1 f n f n = case n of
f n = n * f (n-1) | n ==0 = 1 0 -> 1

| otherwise = n * f (n-1) -> n * f (n - 1)
Haskell runs by filtering patterns starting with the top one.

3.3.2 Implementation

Two major modifications have been done on the source code: they correspond
to the generalisation from subterm rules to context subterm rules, and to an
adaptation from drules(l, p) to Ctxtdrules(l, P, r).

In a first part we describe how the existing implementation of subterm rules
worked then we adapt it to context subterm rules in the second part.

Former implementation
First we describe the three major types used to model subterm rules:

data RRule a = RRule a a
deriving (Show, Ord, Eq)

data StRhs = RhsGround LNTerm | RhsPosition Position
deriving (Show,Ord,Eq)

data StRule = StRule LNTerm StRhs
deriving (Show,Ord,Eq)

Type RRule stands for a rewriting rule. It means that they are composed
of two elements of the same type a. This type has the properties of typeclasses
Show, Ord and Eq for elements that are displayable, ordered, and testable
with equality.

Type StRhs denotes that a right-hand side term can be either a ground
term or a position in the left-hand side term.

39

3.3 Implementation of context subterm rules in Tamarin 3 RESOLUTION

Finally, type StRule models subterm rewriting rules as the composition of
a left-hand side term, denoted by the type LNTerm, and an element of type
StRhs (ground term or a position).

Since the types used for modelling rewriting rules and subterm rules, we
explain the algorithm rRuleToStRule that converts rewriting rules to subterm
rules:

1 rRuleToStRule :: RRule LNTerm -> Maybe StRule
2 rRuleToStRule (lhs ‘RRule‘ rhs)
3 | frees rhs == [] = Just $ StRule lhs (RhsGround rhs)
4 | otherwise = case findSubterm lhs [] of
5 []: -> Nothing
6 pos: -> Just $ StRule lhs (RhsPosition (reverse pos))
7 [] -> Nothing
8 where
9 findSubterm t rpos | t == rhs = [rpos]
10 findSubterm (viewTerm -> FApp args) rpos =
11 concat $ zipWith (\ t i -> findSubterm t (i:rpos)) args [0..]
12 findSubterm (viewTerm -> Lit) = []

This algorithm takes as argument a rewriting rule defined by two terms
denoted in infix notation by (lhs ’RRule’ rhs) of type LNTerm and converts
it, if it is possible (Maybe), into a subterm rule.

In the two following lines (3 and 4), we see vertical bars |, they stand for
”if then elseif . . . until otherwise”. Line 3 tests if the set of variables of rhs is
empty: frees rhs == [] and in this case admits that rhs is ground. Line
5 is divided in three cases according to the value of findSubterm lhs []. Its
description appears after the where according to its arguments.

Line 9 denotes that, applied to a term t that is equal to the right-hand
side rhs, and, a position rpos, findSubterm returns the list containing this
position [rpos]. Line 10 considers the right-hand side terms lhs of the form
viewTerm −> FApp args, an undefined function denoted by applied on
arguments args. viewTerm permits the extraction of the term. For a function
f with arguments a1, . . . , ak, findSubterm f(a0, . . . , ak) rpos concatenates the
results of findSubterm ai (i : rpos) for each i, 0 < i < k. Notice that positions
start from 0 and not 1, and are in reverse order. Informally, for a rewriting rule
l → r, this represents the fact of running down the tree of subterms of l and
extract the positions of r in l. If it reaches a constant or variable different than
r (line 12), it sends [] that disappears with the concatenation. Notice that we
use type Lit for literals, ie, constants or variables.

Then, we can explain lines 5, 6 and 7:

• if findSubterm lhs [] returns a list starting with the empty position,
denoted by [] : , it means that the rewriting rule is of the kind r → r
and therefore not considered,

• if it returns a list starting with a different position than [], the rewriting
rule is converted into a subterm rule with the first position (reversed) of
the list as position of the subterm,

• otherwise it does not convert the rewriting rule.

40

3.3 Implementation of context subterm rules in Tamarin 3 RESOLUTION

Now, we have to convert these subterm rules into deconstruction rules. We
use the destructionRules algorithm for which we only explain the following
part:

1 destructionRules :: Bool -> StRule -> [IntrRuleAC]
2 destructionRules (StRule lhs@(viewTerm -> FApp (NoEq (f,)))

(RhsPosition pos)) =
3 go [] lhs pos
4 where
5 rhs = lhs ‘atPos‘ pos
6 go [] = []
7 go (viewTerm -> FApp) (:[]) = []
8 go uprems (viewTerm -> FApp as) (i:p) =
9 irule ++ go uprems’ t’ p
10 where
11 uprems’ = uprems ++ [t | (j, t) <- zip [0..] as, i /= j]
12 t’ = as!!i
13 irule = if (t’ /= rhs && rhs ‘notElem‘ uprems’)
14 then [Rule (DestrRule f)
15 ((kdFact t’):(map kuFact uprems’))
16 [kdFact rhs] []]
17 else []
18 go (viewTerm -> Lit) (:) =
19 error ”IntruderRules.destructionRules: impossible,

position, invalid”

This code is for subterm rules where the left-hand side term lhs has f for
root function and its right-hand term is found in lhs at position pos. The
boolean argument is not involved in our problem (it stands for private or public
functions).

This function returns the result of a function go applied on arguments [],
lhs and pos. The structure of go is described between lines 8 and 17, given a list
uprems of terms, a function applied on a list as of arguments, and a position
(i : p) starting with i, it computes:

• a new list, uprems′, that corresponds to the old one concatenated with
the list of arguments from as that are not at position i. it represents terms
in K⇑ facts,

• t′ as the i-th argument, it represents the term in K⇓ fact.

• and irule, the associated deconstruction rules while t′ has not reached the
right-hand side term rhs and if rhs is not in the list of newly computed
K⇑ facts.

Moreover, go adds irule to the result of go at the next position p. When it
reaches the last position (:[]), go returns the empty list (line 7) as well as when
go is applied on an empty position (line 6).

Informally, the algorithm runs, from root to leaves, the tree representing
lhs, on the branch where we find the subterm rhs and computes premises and
deconstruction rule at each position until it reaches rhs

Line 18 describes an error message sent when a constant or a variable dif-
ferent than rhs is found on the branch.

41

3.3 Implementation of context subterm rules in Tamarin 3 RESOLUTION

Now that we understand how the former implementation with subterm rules
worked, we adapt it to context subterm rules.

New implementation
First we modify the type for the right-hand side of a rewriting rule without

excluding subterm rules:

data StRhs = StRhs [Position] LNTerm
deriving (Show,Ord,Eq)

The term of type LNTerm contains the right-hand side of the rule, and
the list of type [Position] contains the maximal subterms common with the
left-hand side.

Example 33. As an example, for the rewriting rule
unblind(sign(blind(m, r), k), r) → sign(m, k), the right-hand side term will be
defined as StRhs sign(m, k), [[0, 0, 0], [0, 1]]. Remember that, to simplify algo-
rithms, position starts at 0.

Then we describe context subterm rules as the composition of its left-hand
side term and its right-hand side term.

data CtxtStRule = CtxtStRule LNTerm StRhs
deriving (Show,Ord,Eq)

From this, we can build an algorithm rRuleToCtxtStRule that extracts
positions of common maximal subterms. It is an extension of the previous one.
We consider the left-hand side lhs and the right-hand side rhs as trees that we
explore from root to leaves. For each subterm of rhs, we test its presence in
lhs. We still use findSubterm to find explore lhs and create findAllSubterms
to explore rhs.

1 rRuleToCtxtStRule :: RRule LNTerm -> Maybe CtxtStRule
2 rRuleToCtxtStRule (lhs ‘RRule‘ rhs)
3 | frees rhs == [] = Just $ CtxtStRule lhs (StRhs [] rhs)
4 | otherwise = case findAllSubterms lhs rhs of
5 []: -> Nothing
6 [] -> Nothing
7 pos -> Just $ CtxtStRule lhs (StRhs pos rhs)
8 where
9 findSubterm lst r rpos | lst == r = [reverse rpos]
10 findSubterm (viewTerm -> FApp args) r rpos =
11 concat $ zipWith (\ lst i -> findSubterm lst r (i:rpos)) args [0..]
12 findSubterm (viewTerm -> Lit) = []
13 findAllSubterms l r@(viewTerm -> FApp args)
14 | fSt == [] = concat $ map (\ rst -> findAllSubterms l rst) args
15 | otherwise = fSt
16 where fSt = findSubterm l r []
17 findAllSubterms l r@(viewTerm -> Lit) = findSubterm l r []

42

3.3 Implementation of context subterm rules in Tamarin 3 RESOLUTION

Example 34. We apply the function on the rewriting rule
unblind(sign(blind(m, r), k), r) → sign(m, k) as rhs ‘RRule‘ lhs. First, we
have frees rhs = [m, k] 6= [] so we look at the otherwise case. This calls
the computation of findAllSubterms lhs rhs. findAllSubterms is defined by
pattern matching in lines (13)-(17). rhs is of form (viewTerm−¿FApp args),
namely the function is sign and the list of arguments is [m, k]], thus we are
in the case of line 13. This calls the computation of findSubterm lhs rhs.
The function browses lhs to find rhs as a subterm, since sign(m, k) is not a
subterm of unblind(sign(blind(m, r), k), r), it returns the concatenation of the
application of findAllSubterms on lhs and the different arguments of rhs,
namely, m and k. Finally, findAllSubterms returns [[0,0,0],[0,1]] so:

rRuleToCtxtStRule(lhs ‘RRule‘ rhs) =

Just $ CtxtStRule lhs (StRhs [[0, 0, 0], [0, 1]] rhs)

with lhs = unblind(sign(blind(m, r), k), r) and rhs = sign(m, k)
Explicitly (but not exhaustively) we have:

findAllSubterms lhs sign(m, k)

= (findAllSubterms lhs m) + +(findAllSubterms lhs k)

= (findSubterm lhs m []) + +(findSubterm lhs k [])

= (findSubterm m m [0, 0, 0]) + +(findSubterm r m [1, 0, 0])

+ +(findSubterm k m [1, 0]) + +(findSubterm r m [1])

+ +(findSubterm m k [0, 0, 0]) + +(findSubterm r k [1, 0, 0])

+ +(findSubterm k k [1, 0]) + +(findSubterm r k [1])

= [reverse[0, 0, 0]] + +[reverse[1, 0]]

= [[0, 0, 0], [0, 1]]

Because of the efficiency of the former implementation and of the adapt-
ability of Haskell to mathematical definitions, the addition of deconstruction
rules for context subterm rules is contained in one line that takes the role of
Ctxtdrules:

1 destructionRules :: Bool -> CtxtStRule -> [IntrRuleAC]
2 destructionRules bool (CtxtStRule lhs (StRhs (pos:posit) rhs)) =
3 destructionRules bool (CtxtStRule lhs (StRhs [pos] rhs))

++ destructionRules bool (CtxtStRule lhs (StRhs posit rhs))

where the application of destructionRules for each position is done by

1 destructionRules (CtxtStRule lhs@(viewTerm -> FApp (NoEq (f,)))
(StRhs (pos:[]) rhs)) =

2 go [] lhs pos
3 where
4 go
5 . . .

This algorithm continues the same way as the old one, we just adapt types
and input (pos : []) as parameter to compute deconstruction rules for each
position. Note that we remove rhs = lhs ‘atPos‘ pos since rhs is now given
as a parameter.

43

4 CASES STUDIES

4 Cases Studies

We apply our new theory and implementation on three protocols: Chaum’s
online protocol, which is an E-cash protocol on which we prove unforgeability
and anonymity properties, the FOO protocol, which is an E-voting protocol on
which we prove eligibility and vote privacy, and finally the Okamoto protocol
which is also an E-voting protocol on which we will face a problem to prove the
receipt-freeness property.

4.1 Chaum’s Online protocol

Chaum’s Online protocol allows a client to withdraw a coin blindly from the
bank, and then spend it later in a payment without being traced even by the
bank. The protocol is “on-line” in the sense that the seller does not accept
the payment before contacting the bank to verify that the coin has not been
deposited before, to prevent double spending [10].

We consider three roles, the client C, the bank B and the seller S.
In a first phase, the withdrawal phase, the client blinds a coin x and sends

it to the bank. The bank signs blindly the coin and sends the signature to the
client. Then, in a second phase, the client unblinds the signature, and sends
the coin x and the signature of x to the seller that check if the signature is
correct. Then it sends it to the bank that sends back on a private channel the
approval of the payment if the coin hasn’t been already deposited. Then the
seller accepts the coin.

4.1.1 Modelisation

The protocol can be schematised the following way:

C −→ B : blind(x, r)

B −→ C : sign(blind(x, r), skB)

C −→ S : 〈x, sign(x, skB)〉
S −→ B : 〈x, sign(x, skB)〉
B −→ S : xprivately

Thus we use the previous equational theory BS, and NDBS as deduction
rules for the adversary.

Then we convert the exchanged message into protocol rules:

C1 =
Fr(x) Fr(r)

Out(blind(x, r)) St C 1($C, x, r)

B1 =
In(blind(x, r)) !Bank Ltk($B, ltkB)

Out(sign(blind(x, r), ltkB))
[Withdraw(x)]

C2 =
St C 1(C, x, r) In(sign(blind(x, r), ltkB)) !Bank Pk(B, pk(ltkB))

Out(〈x, sign(x, ltkB)〉)

44

4.1 Chaum’s Online protocol 4 CASES STUDIES

S1 =
In(〈x, sign(x, ltkB)〉) !Bank Pk(B, pk(ltkB))

Out(〈x, sign(x, ltkB)〉) St S 1($B, x)

B2 =
In(〈x, sign(x, ltkB)〉) !Bank Pk(B, pk(ltkB))

Private Ch(x)
[Deposited(x)]

S2 =
Private Ch(x) St S 1(B, x)

[Spend(x)]

Notice that, for rule C2 for example, we impose that the received message is of
the form sign(blind(x, r), ltkB), this is called pattern matching. We could also
have put the fact In(m) and in the action facts added an event that verifies if
m is actually the signature by the bank on the initial coin. Since the private
channel can’t be controlled by the adversary, it is modelled by the state facts
Private Ch() placed in conclusion of the sender rule and in premise of recipient
rule.

Additionally, to ensure that a bank does not accept a coin already deposited,
we imposed the event Deposited(x) to be unique. This is translated in Tamarin
by an axiom:

axiom BankOnlyAcceptsOnce :

”All x #j #k. Deposited(x)@j & Deposited(x)@k ==> #j = #k”

where All stands for ”for all”, # for position type and f@i for ”event f at
position i”

We model the public key infrastructure for the bank as:

regiser pk Bank =

Fr(ltkB)

!Bank Ltk($B, ltkB) !Bank Pk($B, pk(ltkB)) Out(pk(ltkB))
[OnlyOnce()]

We consider that there is only one bank, this is modelled by the axiom that
takes effect:

axiom OnlyOnce :

”All #j #k. OnlyOnce()@j & OnlyOnce()@k ==> #j = #k”

Now the structure of protocol is established, we verify if it is executable by
testing if it exists a trace where a coin is spent. Formally we prove the lemma:

lemma exec :

exists− trace ”Ex x #i. Spend(x)@i”

where Ex stands for ”There exists” and ”exists-trace” informs Tamarin that
the property is provable by finding an example.

There are many executions that Tamarin can find. One interesting of them
is the ”classic” one where the protocol proceed correctly without other action
from the adversary than reading public messages. Figure 10 illustrates it.

We can see on such an execution that every protocol rule is used and adver-
sary actions are limited to intercept and send public messages without modifying
them. The existence of such a trace shows that the protocol is probably cor-
rectly modelled. However, Tamarin indicates the presence of a rule for which

45

4.1 Chaum’s Online protocol 4 CASES STUDIES

Figure 10: Execution of Chaum’s Online protocol

46

4.1 Chaum’s Online protocol 4 CASES STUDIES

it does not know what can be the result.We call this an ” open chain ”. Some
open chains can be treated by induction using a lemma, called typing lemma,
that restricts the possible results. Others, like the following one, are linked to
an attack on the protocol.

The open chain we are facing is articulated around rule B1. Indeed, a dis-
honest client can send a twice blinded message blind(blind(m, r1)r2) to the bank
that signs it leading to sign(blind(blind(m, r1)r2), kB . Then by applying un-
blinding, the client gets sign(blind(m, r1), kB) and sign(m, kB) which consists
in two signed coins although only one message has been signed. Since the ad-
versary has the possibility to blind message an unbound number of times, it
leads to an open chains. For the moment, we keep this as it is.

4.1.2 Unforgeability

We now prove that Chaum’s Online protocol guaranties the property of unforge-
ability. This property ensures that, in an e-cash protocol, a client must not be
able to create a coin without involving the bank, resulting in a fake coin, or to
double spend a valid coin he withdrew from the bank [10]. Since the attack may
comes from the client part, we don’t consider rules C1 and C2 in the protocol
rules. It leaves to the adversary the possibility to act like a honest client.

We model unforgeability with the following lemma:

lemma unforgeability :

”All x #j. Spend(x)@j ==>

(Ex #i. Withdraw(x)@i & #i < #j

& not(Ex #l. Spend(x)@l & not(#l = #j)))”

Tamarin returns the expected attack we can see it in Figure 11.
Indeed we can see the spent coin is x, even though the withdrawn coin is

blind(x, r). The attack is not considered pertinent because the bank is supposed
to verify that the blinded message has a correct structure. To do this verifica-
tion, the bank performs a procedure called ”Cut and Choose” that we model
by imposing with pattern matching, that the received message is of the form
blind(∼ x, r). If x is fresh, ensured by the prefix ∼, then it cannot be a blind
message.

Once this correction made, we can notice that open chains have also been
solved.

By launching again the automatic verification, Tamarin finds another not
pertinent attack where the seller accepts a blind coin whereas he should also
verify the form of the received message (Figure 12). We correct this the same
way. Under this last model, Tamarin manages to proof unforgeability.

Proposition 4.1. Chaum’s Online protocol ensures unforgeability.

4.1.3 Anonymity

Anonymity is a property that we can prove using observational equivalence.
Before defining what is anonymity, it is important to remark that in the context
of observational equivalence, the adversary is given an additional rule:

equality =
K⇓(m) K⇑(m)

47

4.1 Chaum’s Online protocol 4 CASES STUDIES

Figure 11: Attack on Chaum’s Online protocol

Figure 12: Attack on Chaum’s Online protocol

48

4.1 Chaum’s Online protocol 4 CASES STUDIES

It permits the adversary to compare messages.

We distinguish two kinds of anonymity: weak anonymity and strong anonymity.
To define weak anonymity, we consider two clients C1 and C2 and the case where
both of them, withdraw a coin in the same bank, but only one of them makes a
purchase. Weak anonymity is the property guaranteeing that neither the bank
nor the seller are able to distinguish the case where C1 makes the purchase from
the case where it is C2 that makes it. Strong anonymity guarantees the same
indistinguishability regardless of the number of clients and coins withdrawn or
spent.

Weak anonymity is considered in a context where two clients are involved
and the dishonest part is supposed to come from the bank or the seller. Thus,
we model the identity of the clients by the constants ′c1′ and ′c2′ and consider
a starting protocol rule for each one:

C1
1 =

Fr(∼ x) Fr(∼ r)
Out(blind(∼ x,∼ r)) St C 1(′c1′, ∼ x, ∼ r)

and

C2
1 =

Fr(∼ x) Fr(∼ r)
Out(blind(∼ x,∼ r)) St C 2(′ c2′, ∼ x, ∼ r)

Then, we consider the rule C ′2 representing that a client get his coin back
signed by the bank. It is the same as C2, used for unforgeability, except that
the Out fact in conclusion is replaced by a state fact that stores the signature.

C ′2 =
St C 1(C, x, r) In(sign(blind(x, r), ltkB)) !Bank Pk(B, pk(ltkB))

St C 2(C, x, sign(x, ltkB))
.

At this state, if a client makes a purchase while the other has not yet with-
drawn any coin, it is trivial that one can identify the purchaser as the only client
that made a withdraw. We need therefore, to perform a synchronisation step to
ensure they both perform a withdrawing but also, consider separately the case
where C1 makes the purchase, and the case where C2 makes it.

Then we specify the two rules C2syncn:

C2syncn =
St C 2(′c1′, x1, s1) St C 2(′c2′, x2, s2)

Out(< xn, sn >)

where n ∈ {1, 2}
The two states facts in premises with identities as constants ensure the syn-

chronisation in both rules C2sync1 and C2sync2 while the conclusion distin-
guishes the cases.

Since the bank and the seller are supposed to be dishonest, we do not involve
any protocol rules involving them except for the key registration rule for which
we publish the secret key:

Reg Corrupted Bank Pk =

[Fr(∼ ltkB)]−[OnlyOnce]→
[!Bank Ltk($B, ∼ ltkB) , !Bank Pk($B, pk(∼ ltkB)) , Out(∼ ltkB)]

Then we consider the two protocol models P1 and P2:

49

4.2 The FOO protocol 4 CASES STUDIES

P1 =


Reg Corrupted Bank Pk

C1
1 C2

1 C ′2 C2sync1


and

P2 =


Reg Corrupted Bank Pk

C1
1 C2

1 C ′2 C2sync2


The anonymity is considered proved if P1 and P2 are observationally equiv-

alent [5].
The only difference between P1 and P2 is the C2syncn rule. To simplify the

model, Tamarin disposes of the diff (,) operator that permits to specify two
cases in one rule. As first arguments of diff (,), we put terms involved in P1

and as second argument, we put those of P2. Then we consider the rule:

C2sync =
St C 2(′c1′, x1, s1) St C 2(′c2′, x2, s2)

Out(diff (< x1, s1 >,< x2, s2 >))
.

System with the diff operator are called bi-system. Then we obtain the
multiset rewriting bi-system PChaum Anonym analysed by Tamarin as:

PChaum Anonym =


Reg Corrupted Bank Pk

C1
1 C2

1 C ′2 C2sync


which correspond to P1 and P2.

Tamarin verifies observational equivalence for PChaum Anonym.

Proposition 4.2. Chaum’s Online protocol ensures weak anonymity.

Remark. We do not prove strong anonymity but we can prove variants of weak
anonymity by completing the C2sync rule. For example, we can consider that
C1 and C2 withdraw two coins each, and we distinguish the case where C1

spends its coins while C2 spends only one of them and the reverse case. This
corresponds to the rule:

C ′2sync =
St C 2(′c1′, x1, s1),
St C 2(′c1′, x2, s2),
St C 2(′c2′, x3, s3),
St C 2(′c2′, x4, s4)

−[]→
 Out(< x1, s1 >),

Out(< x3, s3 >),
Out(diff (< x2, s2 >,< x4, s4 >))


4.2 The FOO protocol

The FOO protocol [12] allows a voter to publish a vote signed by the admin-
istration without being identified even by the administration. The protocol
is designed to ensure that each published vote has been signed by the bank
guaranteeing eligibility, and at the same time ensuring anonymity.

We consider three roles, the voter V , the administration A, and the collector
C. The protocol is split into three phases described in [9].

50

4.2 The FOO protocol 4 CASES STUDIES

• In the first phase the administrator signs the voter’s commitment to his
vote: Voter V chooses his vote v and computes a commitment x =
commit(v, r) for a random key r. He blinds the commitment using a
random value b and obtains e = blind(x, b). Then he signs e and sends
the signature sbV = sign(e, LtkV) together with e and his identity to the
administrator. The administrator checks if V has the right to vote and has
not yet voted, and if the signature sbV is correct. If all tests succeed, he
signs sbA = sign(e, ltkA) and sends it back to V . V checks the signature,
and unblinds it to obtain sA = unblind(sbA, b) = sign(x, ltkA).

• In the second phase, the voter submits his ballot: Voter V sends (x, sA)
to the collector C through an anonymous channel. The collector checks
the administrator’s signature and enters (x, sA) as the l-th entry into a
list.

• When all ballots are cast the counting phase begins: The collector pub-
lishes the list of correct ballots. V verifies that his commitment appears on
the list and sends (l, r) to C using an anonymous channel. The collector
C opens the l-th ballot using r and publishes the vote.

4.2.1 Modelisation

The protocol can be schematised the following way:

V −→ A : 〈e, sbV 〉
A −→ V : 〈e, sbA〉
V −→ C : 〈x, sA〉anonymously

C −→ Pub : 〈x, sA〉l
V −→ C : 〈r, l〉anonymously

C −→ Pub : v

To model commitment, we use the equational theory BSC = (ΣBSC ,R'BSC)
where ΣBSC = ΣBS∪{commit(,), open(,)} andRBSC = RBS∪{open(commit(m, r), r)→
m}. Then Tamarin computes the set NDBSC of deduction rules.

We formalize the protocol under the following rules.

V1 =
Fr(x) Fr(r) !Ltk(V, ltkV)

Out(〈e, sign(e, ltkV)〉) St V 1(V, $vote, r, b)

with e = blind(commit($vote, r), b).

A1 =
In(〈e, sign(e, ltkV)〉) !AdminLtk(A, ltkA) !Pk(V, pkV)

Out(〈e, sign(e, ltkA)〉) [Registered(e)]

V2 =
In(〈e, sign(e, ltkA)〉) St V 1(V, vote, r, b) !AdminPk(A, pkA(ltkA))

Out(〈x, sign(x, ltkA)〉) St V 2(V,A, vote, r)

with x = commit(vote, r) and e = blind(x, b).

C1 =
In(〈x, sign(x, ltkA)〉) !AdminPk(A, pkA(ltkA))

St C 1(A, x) Out(〈x, sign(x, ltkA), l〉)

51

4.2 The FOO protocol 4 CASES STUDIES

V3 =
In(〈commit(vote, r), l〉) St V 2(V,A, vote, r)

Out(〈r, l〉)

C2 =
In(〈r, l〉) St C 1(A, x)

Out(v)
[V otePublished(v)]

We model public key infrastructure for voters and administration.

regiser V oter pk =
Fr(ltkV)

!Ltk($V, ltkV) !Pk($V, pk(ltkV)) Out(pk(ltkV))

regiser Admin pk =

Fr(ltkA)

!Admin Ltk($A, ltkA) !Admin Pk($A, pk(ltkA)) Out(pk(ltkA))

In a first approach, we do not model the anonymous channel, it is not nec-
essary to prove eligibility. Now the structure of the protocol is established, we
verify if it is executable by proving the following lemma:

lemma exec :

exists− trace ”Ex v #i. V otePublished(v)@i”

Tamarin managed to find an execution whose trace satisfies the above lemma.
It is illustrated in Figure 13.

It also detects 20 open chains that we managed to solve with a typing lemma.

4.2.2 Eligibility

We now prove that the FOO protocol guarantees the property of eligibility.
This property ensures that, if a vote is published then its commitment has been
signed by the administration.

We model eligibility with the following lemma:

lemma eligibility :

”All v #j. V otePublished(v)@j ==>

(Ex b r #i. Registered(blind(commit(v, r), b))@i & #i < #j)”

It is successfully proved by Tamarin.

Proposition 4.3. The FOO protocol ensures eligibility.

4.2.3 Vote privacy

To define vote privacy, we consider two clients V1 and V2 and the case where,
both of them commit a different vote among yes and no (for example). Vote
privacy is the property guaranteeing that neither the administration nor the
collector can distinguish the case where V1 votes for yes from the case where he
votes for no.

52

4.2 The FOO protocol 4 CASES STUDIES

Figure 13: Execution of the FOO protocol

53

4.2 The FOO protocol 4 CASES STUDIES

To model the bi-system, we consider the following rule that separates the two
possible case.

setup =
V ote1(diff ($yes, $no)) V ote2(diff ($no, $yes))

[OnlyOnce()]

Votes are considered as public messages and, the diff operator and the state
facts V ote1 and V ote2 ensure the distinction of the two cases.

As for Chaum’s online protocol, honest participant’s identity, here the voters,
is modelled by constants. We consider the two following rules to introduce the
voters:

V 1 1 =
Fr(x) Fr(r) V ote1(vote) !Ltk(′v1′, ltkV)

Out(〈e, sign(e, ltkV)〉) St V 1(′v1′, vote, r, b)

V 1 2 =
Fr(x) Fr(r) V ote2(vote) !Ltk(′v1′, ltkV)

Out(〈e, sign(e, ltkV)〉) St V 1(′v2′, vote, r, b)

with e = blind(commit(vote, r), b).

Then we consider the second rule for voters. Since they send their commitment
to the collector that is supposed to be dishonest, modelling the an anonymous
channel is necessary. To do so, we consider the associative commutative theory
multiset ACm. Its signature is only composed of the function symbol +. We
use the fact that a + b =ACm b + a to model anonymous channel. Materially
it can correspond to ballot box where ballots have been shuffled. To guarantee
its effectiveness, it is preceded by a synchronisation phase We model this the
following way:

V 2 =
In(〈e, sign(e, ltkA)〉) St V 1(V, vote, r, b) !AdminPk(A, pkA(ltkA))

St V 2 sync(< V, pk(ltkA), $vote, r >)

with x = commit(vote, r) and e = blind(x, b) ,

V 2 sync =
St V 2 sync(m1) St V 2 sync(m2)

Shuffle(m1 +m2)

shuffle votes =
Shuffle(m1 +m2)

St V 2(m1) St V 2(m2)

V 2 out =
St V 2(< V, pk(ltkA), $vote, r >) !AdminPk(A, pk(ltkA))

Out(< x, y >), St V 3(V, $vote, r)

with x = commit($vote, r) and y = sign(x, ltkA)
Finally, we model the rules for sending the key that opens commitment.

V4 =
In(commit($vote, r)), St V 3(V, $vote, r)

Out(r)

Since that the bank is supposed dishonest, we publish its long term key in
the rule that registers bank keys.

Then we consider the associated bi-system PFOO privacy

Tamarin verifies observational equivalence for PFOO privacy.

Proposition 4.4. The FOO protocol ensures vote privacy.

54

4.3 The Okamoto protocol 4 CASES STUDIES

4.3 The Okamoto protocol

The Okamoto protocol [14] is similar to the FOO protocol, but it uses trap-
door commitments and it involves a timeliness member to achieve the receipt-
freeness property The first phase, during which the voter obtains a signature
on his commitment x, is the same as for the FOO protocol, except that x is a
trapdoor-commitment.

• In the second phase the vote is submitted; the voter V sends the signed
trap-door commitment to the collector through an anonymous channel.
The collector checks the administrators signature and enters (x, sA) into
a list. The voter sends (v, r, x) to the timeliness member T through an
untappable anonymous channel.

• When all ballots are cast the counting phase begins: the collector publishes
the list of correct ballots. V verifies that his commitment appears on the
list. The timeliness member publishes the randomly shuffled list of votes
[9].

4.3.1 Modelisation

The protocol can be shematised the following way:

V −→ A : 〈e, sbV 〉
A −→ V : 〈e, sbA〉
V −→ C : 〈x, sA〉anonymously

V −→ T : 〈v, r, x〉privatly
C −→ Pub : 〈x, sA〉
T −→ Pub : v

To model trap-door commitment algebraic properties, we can use the signa-
ture BST DC0 = (ΣBST DC ,R'BST DC0) where

ΣBST DC = ΣBS ∪ {tdcommit(, ,), open(,), f(, , ,)}

and

RBST DC0 = RBS∪
{

open(tdcommit(m, r, td), r)→ m,
tdcommit(m2, f(m1, r, td,m2), td)→ tdcommit(m1, r, td)

}
.

This denotes that the voter is able to permute m1 and m2 in his commitment.

Remark. RBST DC0 is not a convergent rewriting system.

Indeed, consider the term
open(tdcommit(m2, f(m1, r, td,m2), td), f(m1, r, td,m2)). If we apply the first
new rule, we directly obtain the term m2. However, if we apply the second
new rule, we obtain the term open(tdcommit(m1, r, td), f(m1, r, td,m2)). But
nothing says that open(tdcommit(m1, r, td), f(m1, r, td,m2)) can be rewritten
into m2.

55

4.3 The Okamoto protocol 4 CASES STUDIES

open(tdcommit(m2, f(m1, r, td,m2), td), f(m1, r, td,m2))

m2

open(tdcommit(m1, r, td), f(m1, r, td,m2))

To obtain a convergent system, we have to consider RBST DC as:

RBST DC = RBST DC0∪
{
open(tdcommit(m1, r, td), f(m1, r, td,m2))→ m2,
f(m1, f(m, r, td,m1), td,m2)→ f(m, r, td,m2)

}
.

And the associated equational theory BST DC.
We model the protocol with the following rules:

V 1 =
Fr(r) Fr(b) Fr(td) !Ltk(V, ltkV)

Out(< e, s = sign(e, ltkV) >) St V 1(V, $vote, r, b, td)

with x = tdcommit($vote, r, td), e = blind(x, b).

A 1 =
In(< e, sign(e, ltkV) >) !AdminLtk(A, ltkA) !Pk(V, pkV)

Out(< e, sign(e, ltkA) >)
[Registered(e)]

V 2 =
In(< e, sign(e, ltkA) >) St V 1(V, $vote, r, b, td) !AdminPk(A, pkA)

Out(< x, sign(x, ltkA) >) P Ch Timeliness($vote, r, x)

with x = tdcommit($vote, r, td)

C 1 =
In(< x, y >) !AdminPk(A, pkA)

Out(< x, y >)

T 1 =
P Ch Timeliness($vote, r, x)

Out($vote)
[V otePublished(x)]

4.3.2 Eligibility and Vote Privacy

We now prove that the Okamoto protocol guarantees the property of eligibility.
For the same reason as for the FOO protocol, we can not consider the adversary
totally active.

We model eligibility with the following lemma:

lemma eligibility :

”All v #j. V otePublished(v)@j ==>

(Ex b r td #i. Registered(blind(tdcommit(v, r, td), b))@i & #i < #j)”

It is successfully proved by Tamarin.

Proposition 4.5. The Okamoto protocol ensures eligibility.

We do not explicit the model used to prove vote privacy since it is very
similar.

However, Tamarin manages to prove vote privacy.

Proposition 4.6. The Okamoto protocol ensures vote privacy.

56

4.3 The Okamoto protocol 4 CASES STUDIES

4.3.3 Receipt-freeness

Receipt-freeness is a property that guarantee that a voter cannot construct a
receipt which allows him to prove to a third party that he voted for a certain
candidate. This is to prevent vote-buying [9].

To model it, we a bi-system containing rule setup found in the FOO protocol
model accompanied by the first rule for each voter:

setup =
V ote1(diff ($yes, $no)) V ote2(diff ($no, $yes))

[OnlyOnce()]

V 1 1 =
Fr(r) Fr(b) Fr(td) V ote1(vote) !Ltk(′v1′, ltkV)

Out(< e, s >) St V 1(′v1′, vote, r, b, td) Out(< $yes, f, td >)

V 1 2 =
Fr(r) Fr(b) Fr(td) V ote2(vote) !Ltk(′v2′, ltkV)

Out(< e, s >) St V 1(′v2′, vote, r, b, td)

with x = tdcommit(vote, r, td), e = blind(x, b), s = sign(e, ltkV) and
f = f(vote, r, td, $yes).

This permits to consider a case where the voter V 1 votes for yes and sends
< $yes, f($yes, r, td, $yes), td > as a receipt from the case he votes no and
sends < $yes, f($no, r, td, $yes), td > as a fake receipt.

In both cases, we have that:

open(tdcommit(yes, f(vote, r, td, $yes), td), f(vote, r, td, $yes)) = vote

According to this, an adversary could buy any without and be sure that he
voted as the adversary asked.

In theory, the Okamoto protocol guarantees receipt-freeness against a Dolev-
Yao adversary.

With Tamarin it is difficult to establish such a proof because Tamarin creates
redundancy around the deconstruction rule for f :

K⇓
d

(f(m, r, td,m1)) K⇑(m1) K⇑(td) K⇑(m2)

K⇓d(f(m, r, td,m2))

This is illustrated in Figure 14.
For now, we do not managed to solve this problem.

Figure 14: Redundancy around f

57

5 CONCLUSION

5 Conclusion

The goal of my internship was to adapt the Tamarin prover for equational the-
ories more general than subterm convergent theories. In particular, we wanted
to find all deconstruction rules associated to a rewriting rule. To achieve this,
we managed to find how deconstruction rules should be determined so that
Tamarin still construct proofs correctly. The proof of this correctness has been
established, it is largely inspired the precedent proof found in [16].

Next, we have implemented such deconstruction rules in the source code of
Tamarin. Since the former implementation was very clear and clean, it was
really easy to adapt it.

Then we have tested the new implementation by running Tamarin. We
observed that he correctly computed deconstruction rules. Thus we were able
to make Tamarin prove security properties on three protocol involving blind
signature. That was not possible before.

Formalising such protocols on Tamarin was not always an easy task, and
most of the models used should be questioned or optimized. For instance the
model for synchronisation and anonymous channel used for FOO and Okamoto
protocols should be perfectible using rules like the following:

Anonymous Ch Out =
Anonym Ch Out(m1 +m2)

Out(m1) Out(m2)

and

Anonymous Ch In =
In(m1) In(m2)

Anonym Ch In(m1 +m2)

but the properties that involve anonymous channels required too much time to
be proved. Moreover, it would have been possible to gain such a time by looking
for lemmas that Tamarin could reuse.

All of the cases studies are findable on the github for Tamarin by following the
path ”tamarin-prover/examples/features/equational theories” with other exam-
ples for testing

The adaptation of context subterm rules for Tamarin has progressed but it
is not yet totally achieved.

The model of the protocol of Okamoto showed some rewriting rules are
difficult to adapt. An idea to resolve the problem of redundancy found with the
rule f(m1, f(m, r, td,m1), td,m2) → f(m, r, td,m2) is to decompose K⇓ facts
into two cases like it is done for Diffie-Hellman exponentiation.

Another kind of rewriting rule that we have not treated is the verify rule
that have a ground term for right-hand side term. For instance, instead of
using checksign(sign(m, k), pk(k)) → m and pattern matching for extract-
ing messages and verifying signature, we can use getmess(sign(m, k)) → m,
verify(m, sign(m, k), pk(k) → true and equality axiom. It works for trace
property but is not totally treated for observational equivalence. Neverthe-
less, we can notice that the composition of the checksign rule and the equality

rule:

K⇓(sign(m, k)) K⇑(pk(k))

K⇓(m) K⇑(m)

may be equivalent to the verify

rule:
K⇓(sign(m, k)) K⇑(m) K⇑(pk(k))

.

58

REFERENCES REFERENCES

References

[1] https://team.inria.fr/pesto/.

[2] www.inria.fr.

[3] www.larousse.fr.

[4] www.loria.fr.

[5] David Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs
of observational equivalence. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015.

[6] Qingfeng Chen, Chengqi Zhang, and Shichao Zhang. Secure transaction
protocol analysis: models and applications. Springer-Verlag, 2008.

[7] Stéphanie Delaune and Francis Klay. Vérification automatique appliquéea
un protocole de commerce électronique. Actes des 6emes Journées Doctor-
ales Informatique et Réseau (JDIR’04).

[8] Danny Dolev and Andrew Yao. On the security of public key protocols.
Transactions on information theory, 1983.

[9] Jannik Dreier. Formal Verification of Voting and Auction Protocols : From
Privacy to Fairness and Verifiability. Theses, Université de Grenoble,
November 2013.

[10] Jannik Dreier and Ali Kassem Pascal Lafourcade. Formal analysis of e-cash
protocols. In Proceedings of the 12th International Conference on Security
and Cryptography, SECRYPT, 2015.

[11] Santiago Escobar, Ralf Sasse, and José Meseguer. Folding variant nar-
rowing and optimal variant termination. In International Workshop on
Rewriting Logic and its Applications. Springer, 2010.

[12] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret
voting scheme for large scale elections. In International Workshop on the
Theory and Application of Cryptographic Techniques. Springer, 1992.

[13] Steve Kremer. Formal verification of cryptographic protocols. In-
vited tutorial, 7th School on Modelling and Verifying Parallel Processes
(MOVEP’06), Bordeaux, France, 2006.

[14] Tatsuaki Okamoto. An electronic voting scheme. In Advanced IT Tools.
Springer, 1996.

[15] Ralf Sasse. Protocol security properties. In Lecture notes from ETH Zurich,
2016.

[16] Benedikt Schmidt. Formal analysis of key exchange protocols and physical
protocols. PhD thesis, 2012.

[17] Bruce Schneier. Applied cryptography: protocols, algorithms, and source
code in C. john wiley & sons, 2007.

[18] William Stallings. Cryptography and network security: principles and prac-
tices. Pearson Education India, 2006.

59

	Introduction
	Internship context
	Research problem

	Background
	Cryptographic protocol
	Formal verification of security protocols
	Modelling messages
	Term algebra
	Rewriting theory

	Modelling protocols
	Cryptographic messages
	Labeled Multiset Rewriting
	Protocol/Adversary rules

	Modelling properties
	Example: NSPK
	Dependency graphs modulo AX

	Resolution
	Prior works
	Construction and deconstruction rules
	Normal Dependency graphs

	Proof of Lemma 3.1 for context subterm rules
	Implementation of context subterm rules in Tamarin
	Haskell
	Implementation

	Cases Studies
	Chaum's Online protocol
	Modelisation
	Unforgeability
	Anonymity

	The FOO protocol
	Modelisation
	Eligibility
	Vote privacy

	The Okamoto protocol
	Modelisation
	Eligibility and Vote Privacy
	 Receipt-freeness

	Conclusion

