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What is Evaluation?

▪ Experimentally testing hypotheses

» Is system/algorithm/model/etc X better than 

baseline or state-of-the-art?

– NLG: texts more useful, easier to read, etc

» Is system/algorithm/model/etc. X useful in 

real-world applications?

▪ Scientific rigour is essential!
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Types of NLG Evaluation

▪ Extrinsic: Ask people to use a system, 

see if it helps them

▪ (Human) intrinsic: Ask people to rate 

and assess NLG texts

▪ Metric: Compare NLG texts to human-

written “reference” texts
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Quality criteria

▪ What evaluated: correctness, goodness, 

specific features/aspects

▪ Aspect evaluated: form (eg grammar), 

content (eg, meaning), both

▪ Frame of reference: text on own, 

relative to input, in external task context

▪ Belz et al (2020). Disentangling the 

Properties of Human Evaluation 

Methods. Proc of INLG-2020
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Replicability

▪ Can evaluations be repeated by other 

researchers?

» Not good science if not replicable!

▪ Just starting a research project on this, 

let me know if interested!

» Looking for partners to repeat experiments



Ehud Reiter, Computing Science, University of Aberdeen 7

Another perspective

Good general paper/talk on NLG eval

▪ Gehrman et al (2022). Repairing the 

Cracked Foundation. 

https://arxiv.org/abs/2202.06935

▪ Video: 

https://www.youtube.com/watch?v=eSu

efO4CkHQ

https://arxiv.org/abs/2202.06935
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Extrinsic Evaluation

▪ Directly measure impact of NLG system 

on task performance or some other 

“extrinsic” outcome measure.

▪ Does system achieve its communicative 

goal?
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Example: Summarise consult

▪ Goal: Generate a summary of a doctor-

patient consultation, for the medical record.

» Summary is post-edited by doctor before being 

entered into record

▪ F Moramarco et al (2022). Human Evaluation 

and Correlation with Automatic Metrics in 

Consultation Note Generation.  To appear in 

Proc of ACL-2022. 

(https://arxiv.org/abs/2204.00447)
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Example

11
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Evaluation

▪ Ask doctors to listen to a consultation, 

view draft summary, and post-edit to fix 

mistakes

» Time post-editing

▪ Also categorise mistakes in draft sum

» Incorrect statements  vs  omission

» Critical vs non-critical

12
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Evaluation Process

13
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Evaluation criteria

▪ Post-edit time: 136s

» Big chunk of 10-min consultation!

» But still faster than manual writing

▪ Errors

» 3.9 incorrect statements per summary 

(average)

» 6.6 omissions per summary (average)

» Post-editing takes time because of num of 

errors.
14
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Error Types

15
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Outcome

▪ A lot of errors, of many different types

» Neural NLG systems make mistakes!

▪ Research question: 

» Which model better: focus on post-edit time

» Is system useful: Need to embed in 

workflow, UI/UX which allows easy/fast post-

editing

16
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Other examples

▪ Decision support: does an NLG system 

help doctors make better decisions?

» F Portet et al (2009). Automatic Generation 

of Textual Summaries from Neonatal 

Intensive Care Data. Artificial Intelligence

▪ Behaviour change: does an NLG 

system help people to stop smoking?

» E Reiter et al (2003).  Lessons from a 

Failure: Generating Tailored Smoking 

Cessation Letters. Artificial Intelligence



Ehud Reiter, Computing Science, University of Aberdeen 18

Contents

▪ Concepts

▪ Extrinsic evaluation

▪ Intrinsic evaluation

▪ Metric evaluation

▪ Evaluating hallucination

▪ Evaluating explanations



Ehud Reiter, Computing Science, University of Aberdeen 19

(Human) Intrinsic Evaluation

▪ Ask human evaluators to rate texts on 

various quality criteria

» User opinion, not based on task 

performance
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Example: Babytalk Nurse

▪ BT-Nurse: Generated shift summaries for 

nurses starting shift in neonatal ICU

» Evaluated by asking nurses what they thought of 

the texts

▪ J Hunter et al (2012). Automatic generation of 

natural language nursing shift summaries in 

neonatal intensive care: BT-Nurse. Artificial 

Intelligence in Medicine
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Context: Neonatal ICU
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Input: Sensor Data



Ehud Reiter, Computing Science, University of Aberdeen 23

BT-Nurse: Example

▪ Extract from 5 page report
Respiratory Support

Current Status

…

SaO2 is variable within the acceptable range and there have been 
some desaturations.

…

Events During the Shift

A blood gas was taken at around 19:45. Parameters were 
acceptable. pH was 7.18. CO2  was 7.71 kPa. BE was -4.8 mmol/ L.
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BT-Nurse: Evaluation

▪ Hypothesis: Nurses will find BT-Nurse texts to 

be understandable, accurate, and helpful

» Not measuring medical outcome

▪ Subjects: Neonatal ICU nurses

» 165 trials, where a nurse read a BT-Nurse texts

» 54 nurses, most participated in multiple trials

▪ Material: BT-Nurse texts

» No control/baseline
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Experimental Design

▪ Procedure (for incoming nurses)

» Research nurse vetted BT-Nurse text, to screen 

out texts which could harm patient care (ethics)

– In fact no BT-Nurse texts were screened out

» Duty nurse read BT-Nurse text

» Nurse rated texts understandable, accurate, 

helpful (3-pt)

▪ Analysis

» Percentage of nurses rated texts understand, etc

» Quantitative summary of free-text comments
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Results

▪ Numerical results

» 90% of texts understandable

» 70% of texts accurate

» 60% of texts helpful

» [no texts rejected as potentially harmful]

» All numbers are statistically significant

▪ Many free-text comments

» Most common was request for more information

» A few “really helped me” comments

» Some comments highlighted software bugs
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Good exper design!

▪ Good experimental design matters!

» Subjects, material, questions, stats, etc

▪ Poorly designed human eval worthless

▪ van der Lee et al (2021). Human 

evaluation of automatically generated 

text: Current trends and best practice 

guidelines. Computer, Speech and 

Language
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Metric evaluation

▪ Evaluate NLG system automatically, 

usually by comparing output texts to 

human-written “reference” texts

▪ Various algorithms for comparison: 

BLEU, ROUGE, BERTSCORE, etc

▪ Validity: Metrics only useful if they 

reliably predict (high-quality) human 

evaluations
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Example: Weather

▪ Task: NLG weather forecasts for oil rigs

▪ Evaluation

» Human intrinsic: Ask workers in industry to 

evaluate NLG weather forecasts

» Metric: used popular metrics to eval NLG 

weather forecasts

» Research question: do metrics predict 

human evaluation?
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Metric example

▪ Human

» SSW 16-20 GRADUALLY BACKING SSE THEN 

BECOMING VARIABLE 10 OR LESS BY 

MIDNIGHT

▪ SumTime (NLG)

» SSW’LY 16-20 GRADUALLY BACKING SSE’LY 

THEN DECREASING VARIABLE 4-8 BY LATE 

EVENING

» SSW’LY 16-20 GRADUALLY BACKING SSE’LY

THEN DECREASING BECOMING VARIABLE 4-8

10 OR LESS BY LATE EVENING MIDNIGHT

▪ Compute score using BLEU, edit distance, etc
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Experimental Design

▪ Procedure

» Use BLEU, ROUGE, etc metrics to measure 

similarity of NLG texts to human reference 

forecasts

– Several NLG systems

» Also do human intrinsic eval on these sys

▪ Analysis

» Do metrics predict (correlate with) human 

evaluations?
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Results
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Results

▪ Metrics did not predict human eval

» System preferred by humans (SumTime-Hybrid) 

was rated fourth by BLEU, etc

▪ E Reiter and A Belz (2009). An Investigation 

into the Validity of Some Metrics for 

Automatically Evaluating Natural Language 

Generation Systems.  Computational 

Linguistics. https://aclanthology.org/J09-4008/
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Not unusual!

▪ Lots of papers find poor correlation of 

metrics with human eval!

» Gehrmann et al (2022)

» Moramarco et al (2022)

» E Reiter (2018). A Structured Review of the 

Validity of BLEU.  Computational Linguistics
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Lesson

▪ Metrics do NOT predict (or correlate 

with) human eval of NLG systems!

▪ Should never be primary evaluation of 

NLG systems

» Can include as secondary eval
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Evaluating Accuracy

▪ Accuracy (hallucination) is big problem

» Especially in neural NLG

» Especially in longer texts

▪ Users expect NLG texts to be accurate!

» Lose trust if sys produces inaccurate texts

▪ How do we evaluate accuracy?
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Example: basketball stories

▪ Accuracy of summaries of basketball games

» Produced from “box score” game data

» 300 words on average

▪ C Thomson, E Reiter (2020). A Gold 

Standard Methodology for Evaluating 

Accuracy in Data-To-Text Systems. 

Proceedings of INLG-2020. 
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Team & Player Data

TEAM W L H1-PTS H2-PTS PTS FG%

Grizzlies 5 0 46 56 102 .486

Suns 3 2 52 39 91 .559

Player TEAM PTS REB AST BLK STL

Marc Gasol Grizzlies 18 5 6 0 4

Isaiah 

Thomas

Suns 15 1 2 0 1
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NLG output (partial)

The Memphis Grizzlies (5-2) defeated the Phoenix 

Suns (3-2) Monday 102-91 at the Talking Stick 

Resort Arena in Phoenix. The Grizzlies had a strong 

first half where they out-scored the Suns 59-42. 

Marc Gasol scored 18 points, leading the Grizzlies. 

Isaiah Thomas added 15 points, he is averaging 19 

points on the season so far.
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Partial summary with errors

The Memphis Grizzlies (5-2) defeated the Phoenix 

Suns (3-2) Monday 102-91 at the Talking Stick 

Resort Arena in Phoenix. The Grizzlies had a 

strong first half where they out-scored the Suns 

59-42. Marc Gasol scored 18 points, leading the 

Grizzlies. Isaiah Thomas added 15 points, he is 

averaging 19 points on the season so far.
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Mistake categories

Name Player, Team, day of week, etc.

Number Number, in any form.

Word Word or phrase that is not 

Name/Number.

Context Something that is contextually wrong.

Not 

Checkable

Impossible/time-consuming to check.

Other Any other error.
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Find mistake: Gold standard

▪ High-quality human eval to find mistakes

▪ Procedure

» 3 (selected/vetted)Turkers annotate each text

» Researcher combines (majority opinion)

▪ Process worked

» High interannotator agreement

» Various checks, including with domain experts

▪ Expensive

» US$30 for each 300-word summary
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Metrics

▪ Kasner et al (2021) proposed metric

» Generate synthetic data with rule-based NLG

» Train language model to detect errors (using 

real and synthetic data)

» Best metric for acc detection in this domain

» Z Kasner et al (2021). Text-in-Context: 

Token-Level Error Detection for Table-to-

Text Generation.  Proc of INLG-2021

▪ Works well for simpler errors

▪ Not great for complex errors
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Kasner et al metric

Type Recall Precision

Name 0.75 0.85

Number 0.78 0.75

Word 0.51 0.48

Context 0 --

Not checkable 0 --

Other 0 --

Overall 0.69 0.76
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Evaluating explanations

▪ What are we interested in?

» Debugging: Help ML engineers fix models

» Scrutability: Help user find mistakes in AI 

reasoning

» Trust: Increase user trust in system

» Etc

▪ N Tintarev and J Masthoff (2007). A survey of 

explanations in recommender systems. 

https://ieeexplore.ieee.org/iel5/4400942/4400

943/04401070.pdf
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How measure?

▪ What experimental designs are best for 

measuring scrutability, trust, etc?

▪ Can we use metrics to assess above?

▪ Poorly understood

▪ J Zhou et al (2021). Evaluating the quality of 

machine learning explanations: A survey on 

methods and metrics. 

https://www.mdpi.com/2079-9292/10/5/593/pdf
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Final Comments

▪ Be clear on what you are evaluating!

▪ Don’t use BLEU, ROUGE, etc!

▪ Extrinsic eval are best, but difficult

▪ Human intrinsic eval is often a sensible 

approach; must be well-designed!

▪ Many research challenges, especially in 

evaluating explanations


