
Deep Semantics for Dependency Structures

Paul Bédaride1 and Claire Gardent2

1 Universität Suttgart paul.bedaride@loria.fr
2 CNRS/LORIA claire.gardent@loria.fr

Abstract. Although dependency parsers have become increasingly pop-
ular, little work has been done on how to associate dependency structures
with deep semantic representations. In this paper, we propose a semantic
calculus for dependency structures which can be used to construct deep
semantic representations from joint syntactic and semantic dependency
structures similar to those used in the ConLL 2008 Shared Task.

Key words: Dependency graphs, Deep Semantics, Graph Rewriting

1 Introduction

Deep semantics have been developed for stochastic categorial parsers (1) and
for parsers based on phrase structure grammars (2; 3; 4). Much less work has
been done, however, on combining dependency parsers with a a deep seman-
tics calculus. Although (5) sketches a syntax-semantics interface for dependency
grammar, the proposed approach requires a constraint-based, tightly interleaved
construction of dependency, predicate/argument and scoping structure which is
not easily adaptable to the output of contemporary dependency parsers. Simi-
larly, (6) presents a formalism for semantic construction from dependency struc-
tures. However, the approach incorrectly assumes that semantic dependencies
match syntactic dependencies and so fails to generalise (cf. Section 2).

In this paper, we present an approach for rewriting dependency graphs into
deep semantic representations that can be applied to joint syntactic and semantic
dependency structures similar to those used in the ConLL 2008 Shared Task. We
start by discussing a number of issues raised by dependency structures in relation
to semantic construction and by motivating the choices underlying our approach
(Section 2). We then present our proposal (Section 3).

2 Motivations

In essence, a dependency structure consists of nodes labelled with lexical items
(and optionally, parts-or-speech) and linked by binary asymetric relations called
dependencies. Figure 5 illustrates this with the plain (non bold) nodes and edges
forming a possible dependency graph for the sentence �John seems to love Mary�.

Importantly, dependency structures di�er from phrase structure trees or cat-
egorial derivations in that they describe relations between words and eschew the
notions of syntactic constituents and non terminal syntactic categories. Starting
with (7) however, a key assumption is that the computation of deep semantics
strongly relies on syntax. Thus in phrase structure grammars, each syntactic



rule is coupled with a semantic rule specifying how the semantics of its daugh-
ters combines to yield the semantics of the constituent being derived. Similarly,
in categorial grammars, each word is simultaneously assigned a syntactic and
a semantic category describing both how it syntactically combines with other
word/category pairs and how its semantics combine with the semantics of the
items it combines with. In essence, syntax guides semantic construction in that
it constrains the semantic type3 of word occurrences and speci�es how the se-
mantics of constituents combine to yield the semantics of derived constituents.
Given this, dependency graphs raise two main issues with respect to semantic
construction.

First, the impoverished syntactic categories they include make it di�cult to
determine the semantic type of a given word occurrence. For instance, given the
two sentences in (1), there is no obvious way to determine from their dependency
graphs (shown in Figures 5 and 6) that the semantic functor licensed by �seems�
combines with a VP semantics in (1a) but with a sentence semantics in (1b).

(1) a. John seems to love Mary
b. It seems that John loves Mary

The problem is that, in both cases, the syntactic category associated with
�seems� is a simple part-of-speech category which fails to indicate the syntactic
and hence the semantic type of the verb arguments. To put it another way,
there is no indication in a dependency graph of which syntactic type of �seem�
is used to build each of the two sentences. To determine that �seems� combines
with an in�nitival VP in (a) but with a sentential argument in (b), dependencies
that are non local to �seems� would need to be checked e.g., Does �love� in the
dependency graph dominate a �to� or a �that� node ?

A second issue regarding semantic construction from dependency graphs is
that syntactic and semantic dependencies do not necessarily match (3). In par-
ticular, there is sometimes a mismatch between predicate/argument and scope
relations. For instance, in questions such as (2), �which man� scopes over the rest
of the sentence to yield the meaning Which is the x such that x is a man and
John thinks that Mary likes x ? Standard dependency structures fail to capture
the scope of the wh-element because �man� is related by an object relation to
�likes� but not to the main verb �thinks�.

(2) Which man does John think that Mary likes?

In sum, the combined lack in a dependency graph, of a fully �edged syn-
tactic categorial system and of a syntactic structure makes it di�cult both to
determine the semantic type of a word occurrence (Does �seems� combine with
a VP or an S semantics?) and to appropriately describe how meanings should
combine (How can both scope and predicate/argument relationships be appropri-
ately captured?). To address these issues, we propose an approach to semantic
construction which does not rely on a strict syntax/semantic parallelism but

3 Here and in what follows, the term �semantic type� refers to the logical type of
the denotation of natural language expressions e.g., in an extensional typed lambda
calculus the type t of sentences or the type ((e,t),(e,t),e) of quanti�ers with e the
type of individuals and t the type of truth values.



constructs semantic representations based on a small set of general principles
describing the syntax-semantic interface. These principles are encoded in graph
rewriting rules which determine the semantic type of each word occurrence based
on the graph con�guration in which it occurs. We show how this approach han-
dles the cases above and a range of various other semantic phenomena.

3 Proposal

We start (Section 3.1) by brie�y introducing graph rewriting and discussing
termination, con�uence and well-formedness. We then describe our approach to
semantic construction (Section 3.2) and illustrate its working by describing the
derivation of �Every man loves a woman� (Section 3.3). We then go on to sketch
how to handle control, raising, modi�ers and relative clauses (Section 3.4).

3.1 Graph Rewriting

Used in e.g., formal calculus, combinatoric algebra and operational semantics,
rewriting is a technique for modelling reduction and simpli�cation. For instance,
the rewriting rule r1 : x∗y+x∗z → x∗(y+z) permits factorising 5∗6+5∗7+5∗8
to 5 ∗ ((6 + 7) + 8). More generally, a rewriting system consists of a set of
rewriting rules of the form l → r where l and r are �ltering and rewriting
patterns respectively. Given a graph g, such a rule will apply to g if g matches
the �ltering pattern l. The result of applying a rule to a graph g is g where the
sub-part of g matched by l is rewritten according to the rewriting pattern r.
Matching consists in looking for a homomorphism between the pattern graph l
and the host graph g while the allowed rewriting operations include information
duplication, deletion and addition4.

GrGen, a standard graph rewriting system To de�ne our rewrite rules, we use an
existing rewriting system called GrGen (9). In GrGen, the objects handled by
rewriting are directed graphs with typed nodes and edges. Each node and each
edge has a type. Additionally, nodes can be associated with a set of attribute
value pairs constrained by the node type. In the �ltering pattern, attribute value
pairs are interpreted as constraints while in the rewriting pattern, they are in-
terpreted as assignments. Finally, nodes names can be used to constrain the
mapping between �ltering and rewriting pattern in that two nodes with the
same names must be identical.

Expressive and e�cient, GrGen5 is well suited to specify our semantic con-
struction rules. For instance, the rewrite rule graphically depicted in Figure 1b
can be speci�ed as shown in Figure 1a. In essence, the rewrite rule expands the

4 For a precise de�nition of matching, we refer the reader to (8).
5 There are other rewriting systems available such as in particular, the Tsurgen system
used in the Stanford Parser to map parse trees into dependency graphs. We opted
for GrGen instead because GrGen is e�cient, notationally expressive (for specifying
graphs but also rules and rule application strategies) and comes with a sophisticated
debugging environment.



seed node h6 licensed by an �Every N� dependency subgraph, with a seman-
tic subgraph capturing the corresponding semantic type namely, the type of a
universal quanti�er.

rule forall {
pattern{
w:word; d:word; h:sem;
w -det-> d;
w --> h;
if {d.word=="every"}
}
replace{
w -det-> d;
w --> h;
f:sem; v:sem; r:sem; s:sem;
eval{
v.var = "X";
f.formula = "";
r.formula = "∧";
s.formula = "∧";

}
h --> f;
f -V-> v;
f -R-> r;
f -S-> s;
}
}

(a) GrGen Rule

w . . .

d every h

⇒
w . . .

d every h

f ∀〈V 〉.〈R〉 ⇒ 〈S〉

v X r ∧ s ∧

det

det

V R S

(b) Graphical representa-
tion

Fig. 1: A rewrite rule which expands the seed node licensed by an �Every N� subgraph
with a semantic subgraph encoding the corresponding semantic type namely, the type
of a universal quanti�er. Here and in what follows, we use the following graphical
conventions. Node names (e.g., w, d, h, f, q, r) appear to the left of the vertical bar
splitting a node description while attribute values (every, X,∧) appear to its right.
Attribute names are omitted. Node types are indicated using di�erent fonts whereby
italics indicate a node in the semantic representation structure, a plain font a node in
the dependency structure and a bold font a node in the SRL structure. Edge type is
not represented but is deducible from the types of the in and out vertices.

Con�uence, termination and well-formedness The standard approach to seman-
tic construction typically relies on the typed lambda calculus to de�ne and com-
bine meaning representations. This ensures termination (through the typing sys-
tem), con�uence (all ways of combining the same sequence of lambda terms yield
the same result) and well-formedness of the resulting formulae (beta-reduction
will fail in case of a type clash).

6 See Section 3.2 for an explanation of how seed nodes are introduced.



These properties are not garanteed by rewriting. Indeed it is easy to de�ne a
non con�uent rewriting system that yields ill formed semantic representations.
We avoid those pitfalls as follows. We ensure termination and con�uence by
imposing a total order on rule application. As we shall see in the following
section, each rule captures a general semantic construction principle. The order
imposed on their application captures the way in which these principles interact
(e.g., scope can only be de�ned after quanti�ers and their semantic arguments
have been introduced). Further, well formedness is ensured by the translation
from semantic graphs to FOL formulae which will fail in case a FOL formula
cannot be reconstructed from a given constructed graph.

3.2 Basic semantic construction procedure

Our semantic calculus is semantic rather than syntax driven. Drawing on the
global dependency analysis of a sentence, it incrementally constructs a seman-
tic representation by building, linking and labelling the various substructures
composing this representation.

To simplify semantic construction, we additionally assume that the depen-
dency graphs we take as input are enriched with semantic role labelling (SRL) in-
formation. This permits abstracting over syntactic idiosyncrasies such as active-
passive alternations or dative shifts, and making certain semantic dependencies
e. g. in control constructions explicit. The dependency graphs are produced by
the Stanford parser (10) and augmented with Propbank style semantic role la-
belling information as described in (11). Given such joint structures, we use
rewrite rules to further extend them with a semantic representation. Here, we
illustrate the approach by showing how to build �rst order logical formulae but
nothing hinges on this and other types of semantic representations could be built
such as e.g., Discourse Representation Structures (DRSs) or Minimal Recursion
Semantics structures (MRSs).

Semantic construction is modelled by a rewriting system consisting of six gen-
eral syntax-semantic principles implemented as a set of cascaded rules applying
in a �xed order, each rule taking as input the output of the previous step. The
underlying intuition is as follows. First, �seed nodes� are created by adding as
many nodes to the semantic representation as there are words pointed to by se-
mantic role labelling edges. That is, a node is created for each predicate and each
argument in the SRL structure. Second, each seed node is expanded with the
subformula skeleton representing its meaning. Nominal arguments are expanded
with a generalised quanti�er tree shape while predicates (verbs or deverbal nom-
inals) are expanded with an existential quanti�cation over eventuality variables.
Third, scope is determined by linking the resulting trees together. Fourth, nodes
are labelled with the appropriate predications whereby variables are bound by
the appropriate operator.

In sum, semantic construction initialises a structure (seed nodes creation),
expands it with structures representing the semantic type of each node (node
expansion), determines scope by linking these substructures together (scoping)
and �nalises the resulting structure by labelling nodes with the appropriate lit-
erals and bound variable (node labelling, variable binding). Additional principles
are implemented for modelling connectives such as �when� or �if-then�, which are
not discussed here because of space restrictions.



3.3 Run through example

We start by giving a bird eye view of the semantic construction process for the
sentence �Every man loves a woman". In the next section, we will show in more
detail how the rewrite rules permit appropriately mapping syntax to semantics
and more particularly, how they ensure that variables are appropriately bound.

The joint dependency+SRL graph input to semantic construction is shown
in Figure 2a. The �rst step (2b) creates three seed nodes each of which is licensed
by an SRL node: the n0 node is licensed by the predicate node associated with
the verb �loves� and the n1, n2 nodes are licensed by the two verb argument
heads �man� and �woman� respectively.

The second step expands these seed nodes to build substructures describing
their semantic type. Seed nodes that are licensed by a dependency node with
nominal category dominating a determiner node licence the construction of a
subtree representing a generalised quanti�er i.e., a tripartite structure consisting
of a quanti�er, a restriction and a scope where the quanti�er will be determined
by the speci�c determiner dominated by the noun (e.g., a universal for �every�
or �all� and an existential for �a�7). In contrast, seed nodes licenced by a predi-
cate (e.g., a verb or a deverbal nominal) trigger the construction of a structure
representing an existentially bound event variable. The node expansions licensed
by �Every man�, �loves� and �A woman� respectively are shown in Figure 2c.

The third step (Figure 2d) connects the substructures built so far thereby
determining scope. Scope is speci�ed by adding an edge between the scoping node
of each scope bearing operator and the head of the semantic substructure licensed
by the next syntactic argument in the sentence (e.g., by adding a link from the
scoping node of �every man� to the root node of the head of the subformula
licenced by �a woman�). The verb structure is linked to the restriction of its
right most argument (the tree for �loves� is linked to the scoping node of �a
woman�). Here we make the simplifying assumption that scope is unambiguously
determined by the linear order of words in the sentence. Scope ambiguity could be
accounted for either by having a rule strategy that supports alternative rules and
rule application order thereby inducing several possible solutions or by mapping
the dependency graphs to underspeci�ed semantic representations such as MRSs.
In this case, the scoping links would need to underspecify, rather than specify
scope and all argument structures should be linked directly to the verb structure.

Fourth (Figure 2e), predications are handled and existing substructures are
expanded with the appropriate literals. For quanti�ers, the restriction node is
labelled with a literal whose predicate is the lemma of the nominal heading the
quanti�er and whose variable is the quanti�er variable. Similarly the semantic
structure licensed by verb and noun predicates are expanded as shown in Figure
2e so as to contain as predicate, the lemma of the licensing verb or deverbal noun
and as variable, the variable bound by the existential quanti�er licensed by this
verb/deverbal. Additionally, literals are added for each of the verb arguments
where each literal relates the verb event variable to the argument variable via
the thematic role relation given in the SRL structure.

7 For donkey sentences such as �If a farmer owns a donkey, he beats it� where the
inde�nite �a farmer� licenses a universal quanti�er, the approach should be modi�ed
so as to build Discourse Representation Structures rather than FOL formulae.



love

love

man woman

every a

pred

subj obj

det det

arg0 arg1

(a) Input dependency+SRL
graph

love

love

man woman

every a

n1 n0 n2

pred

subj obj

det det

arg0 arg1

(b) Creation of seed nodes

n1 n0 n2

∀〈V 〉.(〈R〉 ⇒ 〈S〉) ∃〈V 〉.(〈R〉) ∃〈V 〉.(〈R〉 ∧ 〈S〉)

M ∧ ∧ E ∧ W ∧ ∧

V R S V R V R S

(c) Specifying types

n1

∀〈V 〉.(〈R〉 ⇒ 〈S〉)

M ∧ ∧

n0

∃〈V 〉.(〈R〉)

E ∧

n2

∃〈V 〉.(〈R〉 ∧ 〈S〉)

W ∧ ∧

V R S V R V R S

(d) Specifying scope

n1

∀〈V 〉.(〈R〉 ⇒ 〈S〉)

M ∧ ∧

man(M)

n0

∃〈V 〉.(〈R〉)

E ∧

love(E) arg0(E,M) arg1(E,W)

n2

∃〈V 〉.(〈R〉 ∧ 〈S〉)

q:W ∧ ∧

woman(W)

V R S V R V R S

(e) Specifying predications

Fig. 2: Derivation example �Every man loves a woman�. The notation ∀〈V 〉.(〈R〉 ⇒ 〈S〉)
is syntactic sugar indicating that the node is labelled with the attribute value pair
quant:forall and that a FOL formula of that shape can be reconstructed from the
subgraph rooted in that node. Indeed, from the �nal representation, the following FOL
formula can be derived: ∀M.(man(M)∧∃W.(woman(W )∧∃E.(love(E)∧arg0(E, M)∧
arg1(E, W ))))



3.4 Rules, variable binding and semantic phenomena

We now show in more detail how variable binding occurs and sketch the treat-
ment of relative clauses, raising, control and questions.

Variable binding (Quanti�er restriction and verb semantics). Semantic construc-
tion must ensure that the variable bound by a quanti�er correctly occurs in its
restriction and in its scope. Here, this is ensured by equating the relevant vari-
able in the restriction and in the scope with the quanti�er variable. Figure 3
illustrates this graphically. The top rule shows how the quanti�er restriction is
labelled with a literal lemma(V) where lemma is the nominal head of the quan-
ti�er and V , the variable bound by the quanti�er. Similarly (Figure 3b), each
argN edge in the input graph licenses the introduction in the verb semantics of
a literal ArgN(E,A) where E is the event variable licensed by the verb and A
the variable licensed by the argN argument. Note that the binding of argument
variables is mediated not by syntactic functions but by thematic roles thereby
simplifying the syntax/semantic interface (because distinct syntactic realisations
are abstracted over).

Relative clauses. Relativised arguments are processed in the same way as argu-
ments of a main clause verb because thematic roles relate the verb of a relative
clause, not to the relative pronoun, but to its antecedent (cf. Figure 4) and, as
just mentioned, the binding of predicate argument variables is mediated by the-
matic roles. The scoping rules additionnally ensure that the semantics associated
with a relative clause is included in the restriction of the relative antecedent.

Control As for relativised arguments, control verbs do not necessitate any addi-
tional rules because the semantic role labeller already provides the information
required for appropriately binding the subject (or the object) of the control
verb to the subject of its in�nitival complement. Thus, in "John promised Mary
to shave", �John� is labelled as arg0 of both �promised� and �shave�, thereby
supporting the appropriate variable bindings.

Adjectival and Adverbial Modi�ers. Adjectives and adverbs licence the intro-
duction of a predication over an individual and an event variable respectively.
This variable is equated with the variable predicated of by the denotation of the
modi�ee (i.e., the noun or the verb) using a rule which can be summarised as
follows: if the dependency node A is in a modi�cation relation to the dependency
node W and W is related to a semantic structure with bound variable X, then
the literal A(X) should be included in the restriction of this semantic structure.

Raising. Raising verbs such as �seems� in �John seems to love Mary� and �It
seems that John loves Mary� are handled as modi�ers in that they modify the
event variable introduced by the sentential or in�nitival object. Semantic role
labelling ensures that �John� is the arg0 of �loves� in both cases (cf. Figure 5)
and therefore that the appropriate semantics is constructed.



w lemma

h

f QUANT

v V r

⇒
w lemma

h

f QUANT

v V r

lemma(V )

V R V R

(a)

p pred

vw lemma aw lemma

vh ah

vf ∃ af QUANT

vv E vr av A

⇒
p pred

vw lemma aw lemma

vh ah

vf ∃ af QUANT

vv E vr av A

argN(E, A)

pr
ed

argN

V R V

pr
ed

argN

V R V

(b)

Fig. 3: Rules adding the literal licensed by the nominal head of the quanti�er
(lemma(V)) to its restriction (top) and the argument literals (argN(E,A)) to its scope
(bottom). QUANT and ∃ abreviate the attribute value pairs quant:exists or forall

and quant:exists respectively while V, A and E are variables.The scope branch of the
quanti�er is not represented in the rule as the rule �lter needs only specify the min-
imal pattern that should be present in the host graph for the rule to be applicable.
Additional material is copied over. The top rule states that given a graph contain-
ing a dependency node w, labelled with the word �lemma� and linked to the skeleton
quanti�er subgraph rooted in h, the literal lemma(V) should be added to the quanti-
�er restriction. Similarly, the bottom rule rewrites subgraphs relating a verb semantic
skeleton (rooted in wh) and any of its argument semantic skeleton (rooted in ah) by
adding the literal argN(E,A) to the verb semantics.



love

loves sing

john woman

a sings

who

nsubj dobj

det

ref

rcmod

rel

nsubj

arg0
pred

arg1

arg0

pred

Fig. 4: "John loves a woman who sings". Semantic role labelling relate the predicate li-
censed by the verb of the relative clause not to the relative pronoun but to its antecedent
thereby supporting a uniform semantic treatment of relativised and non relativised ar-
gumentsXS

seem

seems

love

john to mary

love

xsubj aux dobj

nsubj

xcomp

pred

mod

pred
arg0 arg1

Fig. 5: "John seems to love Mary". The
symbolic SRLer we use produces a mod-
i�cation relation between �seems� and its
sentential argument thereby supporting a
modi�er treatment of �seem�.

seem

seems

it love

that john mary

love

nsubj

aux
nsubj

dobj

ccomp

pred
mod

pred arg0
arg1

Fig. 6: "It seems that John loves Mary".
The symbolic SRLer correctly labels
�John� as the arg0 of �loves�.



Questions As mentioned in Section 2, the dependency graph of questions such as
�Which woman does Mary think John likes?� fails to support a strictly compo-
sitional semantics because local information is not su�cient to simultaneously
determine that �Which woman� is the object of �likes� and takes scope over
the whole sentence. In our approach, such sentences are unproblematic: �Which
woman� licences the introduction of a quanti�er which binds the object variable
of �likes� (through the normal predicate/argument binding mechanism); further,
its scope is determined to respect the linear order of the words in the input
sentence.

Coverage and evaluation We tested (12) the coverage and the correction of our
approach by applying it to a set of 1 000 sentence pairs annotated with an
entailment value (true if the �rst sentence entails the other, false otherwise).
For each sentence, the sentences were parsed using the Stanford parser and
the semantic role labeller of (11), semantic construction was carried out and
the resulting semantic representations translated to FOL. Automated reasoners
were then used to check entailment. In all cases, a correct FOL formula was
built. Moreover, entailment detection was correct in 71.3% of the cases. Since in
many cases, parsing failed to produce a correct analysis, these �rst results are
encouraging. They need to be further tested on real world data though as the
testsuite used in this �rst experiment was arti�cially constructed and restricted
to a limited set of linguistic variations (di�erent verb subcategorisation type and
control mainly).

4 Conclusion

By adopting a semantics rather than a syntax driven strategy, the semantic con-
struction approach described in this paper permits bypassing the issues raised by
the lack of syntactic information in dependency graphs. More generally, the ap-
proach can be seen as de�ning a set of very general principles governing the con-
struction of semantic representations for predicate/argument structures, quan-
ti�ers and modi�ers. Contrary to the lambda calculus approach, this allows for
a very concise system where a small set of rewrite rules can be used to describe
a large number of syntax-semantics interfaces. We are currently extending the
approach to cover further semantic phenomena (e.g., comparatives and discourse
connectives) and evaluate its coverage and correction using the entailment recog-
nition test.



Bibliography

[1] Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-
coverage semantic representations from a ccg parser. In: Proceedings of
the 20th International Conference on Computational Linguistics (COLING
'04), Geneva, Switzerland (2004) 1240�1246

[2] Copestake, A., Flickinger, D., Sag, I., Pollard, C.: Minimal recursion seman-
tics: An introduction. Journal of Research on Language and Computation
3 (2005) 281�332

[3] van Genabith, J., Frank, A., Crouch, D.: Glue, underspeci�cation and trans-
lation (1999)

[4] Gardent, C., Kallmeyer, L.: Semantic construction in ftag. In: Proceed-
ings of the 10th meeting of the European Chapter of the Association for
Computational Linguistics, Budapest, Hungary (2003)

[5] Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater,
S.: A relational syntax-semantics interface based on dependency grammar.
In: COLING '04: Proceedings of the 20th international conference on Com-
putational Linguistics, Morristown, NJ, USA, Association for Computa-
tional Linguistics (2004) 176

[6] Cimiano, P.: Flexible semantic composition with dude. In: Proceedings of
the 8th International Conference on Computational Semantics (IWCS'09).
(2009)

[7] Montague, R.: The proper treatment of quanti�cation in ordinary English.
In Thomason, R., ed.: Formal Philosophy. Selected Papers. Yale University
Press, New Haven (1974)

[8] Ehrig, H., Heckel, R., Kor�, M., M., L., Ribeiro, L., Wagner, A., Corra-
dini, A.: Algebraic Approaches to Graph Transformation - Part II: Single
Pushout A. and Comparison with Double Pushout A. In: Handbook of
Graph Grammars and Computing by Graph Transformation. Volume 1.
World Scienti�c (1999) 247�312

[9] Kroll, M., Geiÿ, R.: Developing graph transformations with grgen.net. Tech-
nical report (2007) preliminary version, submitted to AGTIVE 2007.

[10] Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: ACL, Sap-
poro, Japan (2003) 423�430

[11] Bedaride, P., Gardent, C.: Noun/verb inference. In: 4th Language and
Technology Conference, Poznan, Poland (2009)

[12] Bedaride, P., Gardent, C.: Benchmarking for syntax-based sentential infer-
ence. In: The 23rd International Conference on Computational Linguistics
- COLING 2010, Beijing China (2010)


