
Comparing the performance of two TAG based surface realisers using
controlled grammar traversal

Claire Gardent
CNRS/LORIA
Nancy (France)

claire.gardent@loria.fr

Benjamin Gottesman
acrolinx GmbH

Berlin (Germany)
ben.gottesman@acrolinx.com

Laura Perez-Beltrachini
Nancy 1/LORIA
Nancy (France)

laura.perez@loria.fr

Abstract

We presentGENSEM, a tool for gener-
ating input semantic representations for
two sentence generators based on the
same reversible Tree Adjoining Gram-
mar. We then show howGENSEM can
be used to produced large and controlled
benchmarks and test the relative perfor-
mance of these generators.

1 Introduction

Although computational grammars are mostly
used for parsing, they can also be used to gener-
ate sentences. This has been done, for instance,
to detect overgeneration by the grammar (Gar-
dent and Kow, 2007). Sentences that are gen-
erated but are ungrammatical indicate flaws in
the grammar. This has also been done totest a
parser (Nederhof, 1996; Purdom, 1972). Using
the sentences generated from the grammar en-
sures that the sentences given to the parser are
in the language it defines. Hence a parse failure
necessarily indicates a flaw in the parser’s design
as opposed to a lack of coverage by the grammar.

Here we investigate a third option, namely,
the focused benchmarking of sentence realisers
based on reversible grammars, i.e. on grammars
that can be used either to produce sentences from
a semantic representation or vice versa to pro-
duce semantics representations from a sentence.

More specifically, we present a linguistically-
controlled grammar traversal algorithm for Tree
Adjoining Grammar (TAG) which, when applied
to a reversible TAG, permits producing arbitrar-
ily many of the semantic representations asso-

ciated by this TAG with the sentences it gener-
ates. We then show that the semantic representa-
tions thus produced can be used to compare the
relative performance of two sentence generators
based on this grammar.

Although the present paper concentrates on
Tree Adjoining Grammar realisers, it is worth
pointing out that the semantic representations
produced could potentially be used to evaluate
any surface realiser whose input is a flat seman-
tic formula.

Section 2 discusses related work and moti-
vates the approach. Section 3 presentsGENSEM,
the DCG-based grammar traversal algorithm we
developed. We show, in particular, that the use
of a DCG permits controlling grammar traver-
sal in such a way as to systematically gener-
ate sets of semantic representations covering cer-
tain computationally or linguistically interesting
cases. Finally, Section 4 reports on the bench-
marking of two surface realisers with respect to
a GENSEM-produced benchmark.

2 Motivations

Previous work on benchmark construction for
testing the performance of surface realisers falls
into two camps depending on whether or not
the realiser uses a reversible grammar, that is, a
grammar that can be used for both parsing and
generation.

To test a surface realiser based on a large
reversible Head-Driven Phrase Structure Gram-
mar (HPSG), (Carroll et al., 1999) use a small
test set of two hand-constructed and 40 parsing-
derived cases to test the impact of intersective



modifiers1 on generation performance. More
recently, (Carroll and Oepen, 2005) present a
performance evaluation which uses as a bench-
mark, the set of semantic representations pro-
duced by parsing 130 sentences from the Penn
Treebank and manually selecting the correct se-
mantic representations. Finally, (White, 2004)
profiles a CCG2-based sentence realiser using
two domain-focused reversible CCGs to produce
two test suites of 549 and 276〈 semantic for-
mula, target sentence〉 pairs respectively.

For realisers that are not based on a reversible
grammar, there are approaches which derive
large sets of realiser input from the Penn Tree-
bank (PTB). For example, (Langkilde-Geary,
2002) proposes to translate the PTB annotations
into a format accepted by her sentence genera-
tor Halogen. The output of this generator can
then be automatically compared with the PTB
sentence from which the corresponding input
was derived. Similarly, (Callaway, 2003) builds
an evaluation benchmark by transforming PTB
trees into a format suitable for the KPML realiser
he uses.

In all of the above cases, the data is derived
from real world sentences, thereby exemplify-
ing “real world complexity”. If the corpus is
large enough (as in the case of the PTB), the data
can furthermore be expected to cover a broad
range of syntactic phenomena. Moreover, the
data, being derived from real world sentences,
is not biased towards system-specific capabili-
ties. Nonetheless, there are also limits to these
approaches.

First, they fail to support graduated perfor-
mance testing on constructs such as intersective
modifiers or lexical ambiguity, which are known
to be problematic for surface realisation.

Second, the construction of the benchmark is
in both cases time consuming. In the reversible
approach, for each input sentence, the correct
interpretation must be manually selected from
among the semantic formulae produced by the
parser. As a side effect, the constructed bench-

1As first noted in (Brew, 1992; Kay, 1996), given a set
of n modifiers all modifying the same structure, all possible
intermediate structures will be constructed, i.e., 2n+1.

2Combinatory Categorial Grammar

marks remain relatively small (825 in (White,
2004) and 130 in (Carroll and Oepen, 2005)).
In the case of a benchmark derived by trans-
formation from a syntactically annotated corpus,
the implementation of the converter is both time-
intensive and corpus-bound. For instance, (Call-
away, 2003) reports that the implementation of
such a processor for the SURGE realiser was the
most time-consuming part of the evaluation with
the resulting component containing 4000 lines of
code and 900 rules.

As we shall show in the following sections, the
GENSEM approach to benchmark construction
aims to address both of these shortcomings. By
using a DCG to implement grammar traversal, it
permits both a full automation of the benchmark
creation and some control over the type and the
distribution of the benchmark items.

3 GenSem

As mentioned above,GENSEM is a grammar
traversal algorithm for TAG. We first present the
specific TAG used for traversal, namely SEMX-
TAG (Alahverdzhieva, 2008) (section 3.1). We
then show how to automatically derive a DCG
that describes the derivation trees of this gram-
mar (section 3.2). Finally, we show how
this DCG encoding permits generating formulae
while enabling control over the set of semantic
representations to be produced (section 3.3).

3.1 SemXTAG

The SEMXTAG grammar used byGENSEM

and by the two surface realisers is a Feature-
Based Lexicalised Tree Adjoining Grammar
augmented with a unification-based semantics as
described in (Gardent and Kallmeyer, 2003). We
briefly introduce each of these components and
describe the grammar coverage.

FTAG. A Feature-based TAG (Vijay-Shanker
and Joshi, 1988) consists of a set of (auxil-
iary or initial) elementary trees and of two tree-
composition operations: substitution and adjunc-
tion. Initial trees are trees whose leaves are la-
belled with substitution nodes (marked with a
downarrow) or terminal categories. Auxiliary
trees are distinguished by a foot node (marked



with a star) whose category must be the same as
that of the root node. Substitution inserts a tree
onto a substitution node of some other tree while
adjunction inserts an auxiliary tree into a tree. In
an FTAG, the tree nodes are furthermore deco-
rated with two feature structures (calledtop and
bottom) which are unified during derivation as
follows. On substitution, the top of the substitu-
tion node is unified with the top of the root node
of the tree being substituted in. On adjunction,
the top of the root of the auxiliary tree is unified
with the top of the node where adjunction takes
place; and the bottom features of the foot node
are unified with the bottom features of this node.
At the end of a derivation, the top and bottom of
all nodes in the derived tree are unified. Finally,
each sentence derivation in an FTAG is associ-
ated with both aderived tree representing the
phrase structure of the sentence and aderiva-
tion tree recording how the corresponding ele-
mentary trees were combined to form the derived
tree.

FTAG with semantics. To associate seman-
tic representations with natural language expres-
sions, the FTAG is modified as proposed in (Gar-
dent and Kallmeyer, 2003).

NPj

John

name(j,john)

Sc

NP↓s VPc
b

Vb
a

runs

run(a,s)

VPx

often VP*
often(x)

⇒ name(j,john), run(a,j), often(a)

Figure 1:Flat Semantics for “John often runs”

Each elementary tree is associated with a flat
semantic representation. For instance, in Fig-
ure 1,3 the trees forJohn, runs andoften are asso-
ciated with the semanticsname(j,john), run(a,s)
and often(x) respectively. Importantly, the ar-
guments of a semantic functor are represented
by unification variables which occur both in the
semantic representation of this functor and on
some nodes of the associated syntactic tree. For

3Cx/Cx abbreviate a node with category C and a
top/bottom feature structure including the feature-value
pair{ index : x}.

instance in Figure 1, the semantic indexs occur-
ring in the semantic representation ofruns also
occurs on the subject substitution node of the as-
sociated elementary tree. The value of semantic
arguments is determined by the unifications re-
sulting from adjunction and substitution. For in-
stance, the semantic indexs in the tree forruns
is unified during substitution with the semantic
index labelling the root node of the tree forJohn.
As a result, the semantics ofJohn often runs is
{name(j,john),run(a,j),often(a)}.

SemXTAG. SEMXTAG is an FTAG for En-
glish augmented with a unification-based com-
positional semantics of the type described above.
Its syntactic coverage approaches that of XTAG,
the FTAG developed for English by the XTAG
group (The XTAG Research Group, 2001). Like
this grammar, it contains around 1300 elemen-
tary trees and covers auxiliaries, copula, raising
and small clause constructions, topicalization,
relative clauses, infinitives, gerunds, passives,
adjuncts, ditransitives and datives, ergatives, it-
clefts, wh-clefts, PRO constructions, noun-noun
modification, extraposition, sentential adjuncts,
imperatives and resultatives.

3.2 Converting SemXTAG to a DCG

We would like to be able to traverse SEMXTAG

in order to generate semantic representations that
are licensed by it. In the DCG formalism, a
grammar is represented as a set of Prolog defi-
nite clauses, and Prolog’s query mechanism pro-
vides built-in grammar traversal. We take advan-
tage of this by deriving a DCG from SEMXTAG

and then using Prolog queries to generate seman-
tic representations that are associated with sen-
tences in the language described by it.

Another advantage of the DCG formalism is
that arbitrary Prolog goals can be inserted into
a rule, to constrain when the rule applies or to
bind variables occurring in it. We use this to
ground derivations with lexical items, which are
represented using Prolog assertions. We also use
it to control Prolog’s grammar traversal in such
a way as to generate sets of semantic formu-
lae covering certain computationally interesting
cases (see section 3.3).



Our algorithm for converting SEMXTAG to
a DCG is inspired by (Schmitz and Le Roux,
2008), who derive from an FTAG a feature-
based regular tree grammar (RTG) whose lan-
guage is the derivation trees of the FTAG. In-
deed, in our implementation, we derive a DCG
from such an RTG, thereby taking advantage of a
SEMXTAG-to-RTG converter previously imple-
mented by Sylvain Schmitz.

TAG to RTG. In the conversion to RTG4, each
elementary tree in SEMXTAG is converted to a
rule that models the contribution of the tree to a
TAG derivation. A TAG derivation involves the
selection of an initial tree, which has some nodes
requiring substitution and some permitting ad-
junction. Let us think of the potential adjunction
sites as requiring, rather than permitting, adjunc-
tion, but such that the requirement can be satis-
fied by ‘null’ adjunction. Inserting another tree
into this initial tree satisfies one of the substitu-
tion or adjunction requirements, but introduces
some new requirements into the resulting tree, in
the form of its own substitution nodes and ad-
junction sites.

Thus, intuitively, the RTG representation of a
SEMXTAG elementary tree is a rule that rewrites
the satisfied requirement as a local tree whose
root is a unique identifier of the tree and whose
leaves are the introduced requirements. A re-
quirement of a substitution or adjunction of a tree
of root categoryX is written asXS or XA, re-
spectively. Here, for example, is the translation
to RTG of the TAG tree (minus semantics) for
run in Figure 1, using the word anchoring the
tree as its identifier (the superscripts abbreviate
feature structures:b/t refers to the bottom/top
feature structure and the upper case letters to the
semantic index value, so[idx : X] is abbreviated
to X):

SS → run(S
[b:D]
A NP

[t:S]
S V P

[t:D,b:B]
A V

[t:B]
A )

The semantics of the SEMXTAG tree are carried
over as-is to the corresponding RTG rule. Fur-
ther, the feature structures labelling the nodes of

4For a more precise description of the FTAG to RTG
conversion see (Schmitz and Le Roux, 2008).

the SEMXTAG tree are converted into the RTG
rules so as to correctly interact with substitu-
tion and adjunction (see (Schmitz and Le Roux,
2008) for more details on this part of the conver-
sion process).

To account for the optionality of adjunction,
there are additional rules allowing any adjunc-
tion requirement to be rewritten as the symbolǫ,
a terminal symbol of the RTG.

The terminal symbols of the RTG are thus the
tree identifiers and the symbolǫ, and its non-
terminals areXS andXA for each terminal or
non-terminalX of SEMXTAG.

RTG to DCG. Since the right-hand side of
each RTG rule is a local tree – that is, a tree of
depth no more than one – we can flatten each of
them into a list consisting of the root node fol-
lowed by the leaves without losing any structural
information. This is the insight underlying the
RTG-to-DCG conversion step. Each RTG rule is
converted to a DCG rule that is essentially iden-
tical except for this flattening of the right-hand
side. Here is the translation to DCG of the RTG
rule above5:

rule(s,init,Top,Bot,Q:F1;S;N;VP;V)
--> [run],

{lexicon(run,n0V,[run])},
rule(s,aux,_,[C],S),
rule(np,init,[X],_,N),
rule(vp,aux,[C],[B],VP),
rule(v,aux,[B],[A],V),
{F1 =.. [run,A,X]}.

We represent non-terminals of the DCG using
the rule predicate6, whose five (non-hidden)
arguments, in order, are the category, the sub-
script (init for subscript S,aux for subscript
A), the top and bottom feature values, and the
semantics. The difference list for a given DCG
rule contains lexical items grounding DCG rules
rewriting its right-hand-side non-terminals. Fea-
ture structures are represented using Prolog lists
with a fixed argument position for each attribute

5In practice, the lexicon is factored out, so there is no
rule specifically forrun, but one for intransitive verbs (n0V)
in general. Each rule hooks into the lexicon, so that a given
invocation of a rule is grounded by a particular lexical item.

6The −− > notation is syntactic sugar for the usual
Prolog : − definite clause notation with two hidden argu-
ments on each predicate.



in the grammar (in this example, only the in-
dex attribute). The semantics associated with the
left-hand-side symbol are composed of the se-
mantics associated with this rule and those asso-
ciated with each of the right-hand-side symbols.

The language of the resulting DCG is neither
the language of the RTG nor the language of
SEMXTAG, and indeed the language of the DCG
does not interest us but rather its derivation trees.
These are correlated one-to-one with the trees in
the language described by the RTG, i.e. with the
derivation trees of SEMXTAG, and the latter can
be trivially reconstructed from the DCG deriva-
tions. From a SEMXTAG derivation tree, one can
compose the semantic representation of the as-
sociated sentence, and in fact this semantic com-
position occurs as a side effect of a Prolog query
against the DCG, allowing semantic representa-
tions licensed by SEMXTAG to be returned as
query results.

We define a Prolog predicate for querying
against the DCG, as follows. Its one input ar-
gument,Cat, is the label of the root node of the
derivation tree (typicallys), and its one output
argument,Sem, is the semantic representation
associated with that tree7.

genSem(Cat,Sem) :-
rule(Cat,init,_,_,Sem,_,[]).

3.3 Control parameters

In order to give the users some control over the
sorts of semantic representations that they get
back from a query against the DCG, we augment
the DCG in such a way as to allow control over
the TAG family8 of the root tree in the derivation
tree, over the number and type of adjunctions
in the derivation, and over the depth of substi-
tutions. To implement the former is quite sim-
ple: we need merely to index the DCG rules by
family and modify theGENSEMcall accordingly.
For instance, the above DCG rule becomes :

rule(s,init,_,_,n0V,Q:F1;S;NP;VP;V)

7The 6th and 7th arguments of the rule call are the hid-
den arguments needed by the DCG.

8TAG families group together trees which belong to-
gether, in particular, the trees associated with various re-
alisation of a specific subcategorisation type. Thus, here
the notion of TAG family is equivalent to that of subcate-
gorisation type.

--> [run],
{lexicon(run,n0V,[Rel])},
...

We implement restrictions on adjunctions by
adding an additional argument to the grammar
symbols, namely a vector of non-negative inte-
gers representing the number of non-null adjunc-
tions of each type that are in the derivation sub-
tree dominated by the symbol. By ‘type’ of ad-
junction, we mean the category of the adjunction
site. In DCG terms, a non-null adjunction of a
categoryX is represented as the expansion of an
x/aux symbol other than asǫ. So, for exam-
ple, a DCG symbol associated with the vector
[1,0,0,0,0], where the five dimensions of
the vector correspond to then, np, v, vp, and
s categories, respectively, dominates a subtree
containing exactly onen/aux symbol expanded
by a non-epsilon rule, and no otheraux symbol
expanded by a non-epsilon rule. We link the vec-
tor associated with the root of the derivation to
the query predicate.

Finally, we add an additional argument to the
DCG rule and to theGENSEM’s call to control
the traversal depth with respect to the number of
substitutions applied. The overall depth of each
derivation is therefore constrained both by the
user defined adjunctions and substitution depth
constraints.

Our query predicate now has four input argu-
ments and one output argument:

genSem(Cat,Fam,[N,NP,V,VP,S],Dth,Sem):-
rule(Cat,init,_,_,Fam,

[N,NP,V,VP,S],Dth,Sem,_,[]).

We define a special predicate to handle the
divvying up of a mother node’s vector among
the daughters, taking advantage of the fact that
the DCG formalism permits the insertion of ar-
bitrary Prolog goals into a rule.

4 UsingGENSEM for benchmarking

We now show howGENSEM can be put to work
for comparing two TAG-based surface realisers,
namelyGENI (Gardent and Kow, 2007) and RT-
GEN (Perez-Beltrachini, 2009). These two re-
alisers follow globally similar algorithms but dif-
fer in several respects. We show howGENSEM



can be used to produce benchmarks that are tai-
lored to test hypotheses about how these differ-
ences might impact performance. We then use
this GENSEM-generated benchmark to compare
the performance of the two realisers.

4.1 GenI and RTGen

Both GENI and RTGEN use the SEMXTAG

grammar described in section 3.1. Moreover,
both realisers follow an algorithm pipelining
three main phases. First,lexical selectionse-
lects from the grammar those elementary trees
whose semantics subsumes part of the input se-
mantics. Second, thetree combiningphase sys-
tematically tries to combine trees using substitu-
tion and adjunction. Third, theretrieval phase
extracts the yields of the complete derived trees,
thereby producing the generated sentence(s).

There are also differences however. We now
spell these out and indicate how they might im-
pact the relative performance of the two surface
realisers.

Derived vs. derivation trees. While GENI

constructs derived trees, RTGEN uses the RTG
encoding of SEMXTAG sketched in the previous
section to construct derivation trees. These are
then unraveled into derived trees at the final re-
trieval stage. As noted in (Koller and Striegnitz,
2002), these trees are simpler than TAG elemen-
tary trees, which can favourably impact perfor-
mance.

Interleaving of feature constraint solving and
syntactic analysis. GENI integrates in the tree
combining phase a filtering step in which the ini-
tial search space is pruned by eliminating from it
all combinations of TAG elementary trees that
cover the input semantics but cannot possibly
lead to a valid derived tree. This filtering elim-
inates all combinations of trees such that either
the category of a substitution node cannot be
cancelled out by that of the root node of a dif-
ferent tree, or a root node fails to have a match-
ing substitution site. Importantly, filtering ig-
nores feature information and tree combining
takes place after filtering. RTGEN, on the other
hand, directly combines derivation trees deco-
rated with full feature structure information.

Handling of intersective modifiers. GENI and
RTGEN differ in their strategies for handling
modification.

Adapting (Carroll and Oepen, 2005)’s pro-
posal to TAG, GENI adopts a two-step tree-
combining process such that in the first step, only
substitution applies, while in the second, only
adjunction is used. Although the number of in-
termediate structures generated is still 2n for n
modifiers, this strategy has the effect of block-
ing these 2n structures from multiplying out with
other structures in the chart.

RTGEN, on the other hand, uses a standard
Earley algorithm that includes sharing and pack-
ing. Sharing allows intermediate structures com-
mon to several derivations to be represented
once only while packing groups together par-
tial derivation trees with identical semantics and
similar combinatorics (same number and type of
substitution and adjunction requirements), keep-
ing only one representative of such groups in the
chart. In this way, intermediate structures cov-
ering the same set of intersective modifiers in a
different order are only represented once and the
negative impact of intersective modifiers is less-
ened.

4.2 Two GENSEMbenchmarks

We useGENSEM to construct two benchmarks
designed to test the impact of the differences be-
tween the two realisers and, more specifically, to
compare the relative performance of both realis-
ers (i) on cases involving intersective modifiers
and (ii) on cases of varying overall complexity.

The MODIFIERS benchmark focuses on
intersective modifiers and contains semantic
formulae corresponding to sentences in-
volving an increasing number of modifiers.
Recall that GENSEM calls are of the form
gensem(Cat,Family,[N,NP,V,VP,S],Dth,Sem)
where N,NP,V,VP,S indicates the number of
required adjunctions inN, NP, V, VP and
S, respectively, whileFamily constrains the
subcategorisation type of the root tree in the
derivations produced byGENSEM. To produce
formulae involving the lexical selection of
intersective modifiers, we set the following
constraints. Cat is set tos and Family is set



to either n0V (intransitive verbs) or n0Vn1
(transitive verbs). Furthermore,N andV P vary
from 0 to 4 thereby requiring the adjunction of 0
to 4 N and/or VP modifiers. All other adjunction
counters are set to null. To avoid producing
formulae with identical derivation trees but
distinct lemmas, we use a restricted lexicon con-
taining one lemma of each syntactic type, e.g.
one transitive verb, one intransitive verb, etc.
Given these settings,GENSEM produces 1 737
formulae whose adjunction requirements vary
from 1 to 6. For instance, the semantic formula
{sleep(b,c),man(c),a(c),blue(c),sleep(i,c),carefully(b)} (A
sleeping blue man sleeps carefully) extracted
from the MODIFIERS benchmark contains two
NP adjunctions and one VP adjunction.

The MODIFIERS benchmark is tailored to fo-
cus on cases involving a varying number of in-
tersective modifiers. To support a comparison of
the realisers on this dimension, it displays little
or no variation w.r.t. other dimensions, such as
verb type and non-modifying adjunctions.

To measure the performance of the two realis-
ers on cases of varying overall complexity, we
construct a second benchmark (COMPLEXITY)
displaying such variety. TheGENSEM parame-
ters for the construction of this suite are the fol-
lowing. The verb type (Family) is one of 28 pos-
sible verb types9. The number and type of re-
quired adjunctions vary from 0 to 4 forN ad-
junctions, 0 to 1 forNP , 0 to 4 forV P and 0 to
1 for S. The resulting benchmark contains 1 823
semantic formulae covering an extensive set of
verb types and of adjunction requirements.

9The 28 verb types are
En1V,n0BEn1,n0lVN1Pn2,n0V,n0Va1,n0VAN1,n0VAN1Pn2,
n0VDAN1,n0VDAN1Pn2,n0VDN1,n0VDN1Pn2,n0Vn1,
n0VN1,n0Vn1Pn2,n0VN1Pn2,n0Vn2n1,n0Vpl,n0Vpln1,
n0Vpn1,n0VPn1,n0Vs1,REn1VA2,REn1VPn2,Rn0Vn1A2,
Rn0Vn1Pn2,s0V,s0Vn1,s0Vton1. The notational conven-
tion for verb types is from XTAG and reads as follows.
Subscripts indicate the thematic role of the verb argument.
n indicates a nominal, Pn a PP and s a sentential argument.
pl is a verbal particle. Upper case letters describe the
syntactic functor type: V is a verb, E an ergative, R a
resultative and BE the copula. Sequences of upper case
letters such as VAN in n0VAN1 indicate a multiword
functor with syntactic categories V, A, and N. For instance,
n0Vn1 indicates a verb taking two nominal arguments
(e.g., like) and n0VAN1 a verb locution such asto cry
bloody murder.

4.3 Results

Using the twoGENSEM-generated benchmarks,
we now compareGENI and RTGEN. Because
GENI does not produce time information, we re-
strict the comparison to space complexity. We
plot the average number of chart items against
both the number of intersective modifiers present
in the input (Figure 3) and the size of the Initial
Search Space (ISS), i.e., the number of combina-
tions of elementary TAG trees covering the input
semantics to be explored after thelexical selec-
tion step (Figure 2). In our case, the ISS gives a
more meaningful idea about the complexity than
taking the number of input literals as is done in
(Carroll and Oepen, 2005). In an FTAG, the
number of elementary trees selected by a given
literal may vary considerably depending on the
number and the size of the tree families selected
by this literal. For instance, a literal selecting
the n0Vn2n1 class will select many more trees
than a literal selecting the n0V family because
there are many more ways of realising the three
arguments of a ditransitive verb than the single
subject argument of an intransitive one. Chart
items include all elementary trees selected by the
lexical selection step as well as the intermediate
and final structures produced by the tree combin-
ing phase. In the plot for RTGEN, we further-
more distinguish between the number of struc-
tures built before unpacking and the number of
structures obtained after unpacking.

Overall efficiency. The plot in Figure 2 shows
the results obtained by running both realisers on
the COMPLEXITY benchmark. Recall (cf. sec-
tion 4.2) that the COMPLEXITY benchmark con-
tains input with varying verb arity and a vary-
ing number of required adjunctions. Hence it
provides cases of increasing complexity in terms
of ISS to be explored. Furthermore, test cases
in the benchmark trigger sentence realisation in-
volving certain TAG families, which have a cer-
tain number of trees. Those trees within a fam-
ily often have identical combinatorics but differ-
ent features. Consequently, the COMPLEXITY

benchmark also provides an appropriate testbed
for testing the impact of feature structure infor-
mation on the two approaches to tree combina-



0-
10

0

10
0-

10
00

10
00

-5
00

0

50
00

-1
00

00

10
00

0-
10

00
00

10
00

00
-5

00
00

0

50
00

00
-1

00
00

00

m
or

e
th

an
10

00
00

0

10
2

10
3

10
4

10
5

10
6

initial search space size

nu
m

be
r

of
ch

ar
ti

te
m

s

RTGEN chart size
RTGEN unpacked chart size

GENI chart size

Figure 2:Comparing tree combining strategies and over-

all efficiency on the COMPLEXITY benchmark

tion.

The graphs show that as complexity increases,
the performance delta betweenGENI and RT-
GEN increases. We conjecture that as complex-
ity grows, the filtering used byGENI does not
suffice to reduce the search space to a manage-
able size. Conversely, the overhead introduced
by RTGEN’s all-in-one, tree-combining Earley
strategy seems compensated throughout by the
construction of a derivation rather than a derived
tree and pays off increasingly as complexity in-
creases.

Modifiers. Figure 3 plots the results obtained
by running the realisers on the MODIFIERS

benchmark. Here again, RTGEN outperforms
GENI and the delta between the two realisers
grows with the number of intersective modifiers
to be handled. A closer look at the data shows
that the global constraints set byGENSEMon the
number of required adjunctions covers an impor-
tant range of variation in the data complexity.
For instance, there are cases where 4 modifiers
modify the same NP (or VP) and cases where
the modifiers are distributed over two NPs. Sim-
ilarly, literals introduced into the formula by a
GENSEM adjunction requirement vary in terms
of the number of auxiliary trees whose selection
they trigger. The steep curve inGENI’s plot sug-
gests that although the delayed adjunction mech-
anism helps in avoiding the proliferation of in-

0 1 2 3 4 5 6 7

10
3

10
4

10
5

number of modifiers (different test suites)

nu
m

be
r

of
ch

ar
ti

te
m

s

RTGEN chart size
RTGEN unpacked chart size

GENI chart size

Figure 3: Comparing intersective modifier handling on

the MODIFIERSbenchmark

termediate incomplete modifiers’ structures, the
lexical ambiguity of modifiers still poses a prob-
lem. In contrast, RTGEN’s packing uniformly
applies to word order variations and to the cases
of lexical ambiguity raised by intersective mod-
ifiers because the items have the same combina-
toric potential and the same semantics.

5 Conclusion

Surface realisers are complex systems which
need to handle diverse input and require complex
computation. Testing raises among other things
the issue of coverage – how can the potential in-
put space be covered? – and of test data creation
– should this data be hand tailored, created ran-
domly, or derived from real world text?

In this paper, we presented an approach which
permits automating the creation of test input for
surface realisers whose input is a flat semantic
formula. The approach differs from other ex-
isting evaluation schemes in two ways. First, it
permits producing arbitrarily many inputs. Sec-
ond, it supports the construction of grammar-
controlled, linguistically focused benchmarks.

We are currently working on further extending
GENSEMwith more powerful (recursive) control
restrictions on the grammar transversal ; on com-
bining GENSEM with tools for detecting gram-
mar overgeneration ; and on producing a bench-
mark that could be made available to the com-
munity for testing surface realisers whose input
is either a dependency tree or a flat semantic for-
mula.



References

Alahverdzhieva, K. 2008. XTAG using XMG. Mas-
ter’s thesis, U. Nancy 2. Erasmus Mundus Master
”Language and Communication Technology”.

Brew, C. 1992. Letting the cat out of the bag: Gen-
eration for shake-and-bake MT. InProceedings of
COLING ’92, Nantes, France.

Callaway, Charles B. 2003. Evaluating coverage for
large symbolic NLG grammars. In18th IJCAI,
pages 811–817, Aug.

Carroll, J. and S. Oepen. 2005. High efficiency re-
alization for a wide-coverage unification grammar.
2nd IJCNLP.

Carroll, J., A. Copestake, D. Flickinger, and
V. Paznánski. 1999. An efficient chart generator
for (semi-)lexicalist grammars. InProceedings of
EWNLG ’99.

Gardent, C. and L. Kallmeyer. 2003. Semantic con-
struction in FTAG. In10th EACL, Budapest, Hun-
gary.

Gardent, C. and E. Kow. 2007. Spotting overgen-
eration suspects. In11th European Workshop on
Natural Language Generation (ENLG).

Kay, Martin. 1996. Chart generation. InProceed-
ings of the 34th annual meeting on Association for
Computational Linguistics, pages 200–204, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

Koller, A. and K. Striegnitz. 2002. Generation as
dependency parsing. InProceedings of the 40th
ACL, Philadelphia.

Langkilde-Geary, I. 2002. An empirical verification
of coverage and correctness for a general-purpose
sentence generator. InProceedings of the INLG.

Nederhof, M.-J. 1996. Efficient generation of ran-
dom sentences.Natural Language Engineering,
2(1):1–13.

Perez-Beltrachini, L. 2009. Using regular tree
grammars to reduce the search space in surface
realisation. Master’s thesis, Erasmus Mundus
Master Language and Communication Technol-
ogy, Nancy/Bolzano.

Purdom, P. 1972. A sentence generator for testing
parsers.BIT, 12(3):366–375.

Schmitz, S. and J. Le Roux. 2008. Feature unifica-
tion in TAG derivation trees. In Gardent, C. and
A. Sarkar, editors,Proceedings of the 9th Interna-
tional Workshop on Tree Adjoining Grammars and

Related Formalisms (TAG+’08), pages 141–148,
Tübingen, Germany.

The XTAG Research Group. 2001. A lexicalised tree
adjoining grammar for english. Technical report,
Institute for Research in Cognitive Science, Uni-
versity of Pennsylvannia.

Vijay-Shanker, K. and AK Joshi. 1988. Feature
Structures Based Tree Adjoining Grammars.Pro-
ceedings of the 12th conference on Computational
linguistics, 55:v2.

White, M. 2004. Reining in CCG chart realization.
In INLG, pages 182–191.


