Comparing the performance of two TAG based surface realisers using
controlled grammar traversal

Claire Gardent Benjamin Gottesman Laura Perez-Beltrachini
CNRS/LORIA acrolinx GmbH Nancy 1/LORIA
Nancy (France) Berlin (Germany) Nancy (France)

claire.gardent@loria.fr ben.gottesman@acrolinx.com laura.perez@Ioria.fr

Abstract ciated by this TAG with the sentences it gener-
ates. We then show that the semantic representa-
We presentGENSEM a tool for gener- tions thus produced can be used to compare the

ating input semantic representations for re|ative performance of two sentence generators
two sentence generators based on the pased on this grammar.
same reversible Tree Adjoining Gram- Although the present paper concentrates on
mar. We then show hOWENSEM can Tree Adjoining Grammar realisers, it is worth
be used to produced large and controlled qinting out that the semantic representations
benchmarks and test the relative perfor- ,rqqyced could potentially be used to evaluate
mance of these generators. any surface realiser whose input is a flat seman-
tic formula.
Section 2 discusses related work and moti-
Although computational grammars are mostlyates the approach. Section 3 pres&HSsISEM,
used for parsing, they can also be used to gen#te DCG-based grammar traversal algorithm we
ate sentences. This has been done, for instandeyeloped. We show, in particular, that the use
to detect overgeneration by the grammar (Gar- of a DCG permits controlling grammar traver-
dent and Kow, 2007). Sentences that are gesal in such a way as to systematically gener-
erated but are ungrammatical indicate flaws imte sets of semantic representations covering cer-
the grammar. This has also been dondgesba tain computationally or linguistically interesting
parser (Nederhof, 1996; Purdom, 1972). Usingases. Finally, Section 4 reports on the bench-
the sentences generated from the grammar enarking of two surface realisers with respect to
sures that the sentences given to the parser ar@eENSEM-produced benchmark.
in the language it defines. Hence a parse failure
necessarily indicates a flaw in the parser’s design Motivations
as opposed to a lack of coverage by the grammar.

Here we investigate a third option, namelyPrevious work on benchmark construction for
the focused benchmarking of sentence realisers testing the performance of surface realisers falls
based on reversible grammars, i.e. on grammaf¢o two camps depending on whether or not
that can be used either to produce sentences frime realiser uses a reversible grammar, that is, a
a semantic representation or vice versa to prgrammar that can be used for both parsing and
duce semantics representations from a sentengeneration.

More specifically, we present a linguistically- To test a surface realiser based on a large
controlled grammar traversal algorithm for Treeeversible Head-Driven Phrase Structure Gram-
Adjoining Grammar (TAG) which, when appliedmar (HPSG), (Carroll et al., 1999) use a small
to a reversible TAG, permits producing arbitrartest set of two hand-constructed and 40 parsing-
ily many of the semantic representations assderived cases to test the impact of intersective

1 Introduction

modifiers on generation performance. Morenarks remain relatively small (825 in (White,
recently, (Carroll and Oepen, 2005) present 2004) and 130 in (Carroll and Oepen, 2005)).
performance evaluation which uses as a bendh-the case of a benchmark derived by trans-
mark, the set of semantic representations prisrmation from a syntactically annotated corpus,
duced by parsing 130 sentences from the Petire implementation of the converter is both time-
Treebank and manually selecting the correct setensive and corpus-bound. For instance, (Call-
mantic representations. Finally, (White, 2004away, 2003) reports that the implementation of
profiles a CCG-based sentence realiser usinguch a processor for the SURGE realiser was the
two domain-focused reversible CCGs to produgeost time-consuming part of the evaluation with
two test suites of 549 and 276semantic for- the resulting component containing 4000 lines of
mula, target sentencepairs respectively. code and 900 rules.

For realisers that are not based on a reversibleAs we shall show in the following sections, the
grammar, there are approaches which deri@ENSEM approach to benchmark construction
large sets of realiser input from the Penn Tre@&ims to address both of these shortcomings. By
bank (PTB). For example, (Langkilde-Gearywising a DCG to implement grammar traversal, it
2002) proposes to translate the PTB annotatiopsrmits both a full automation of the benchmark
into a format accepted by her sentence gene@eation and some control over the type and the
tor Halogen. The output of this generator cadistribution of the benchmark items.
then be automatically compared with the PTB
sentence from which the corresponding inp®@ GensSem
was derive_d. Similarly, (Callaway, 2003_) buildsng mentioned abOVeGENSEM is a grammar
an evaluation benchmark by transforming PTR,ersal algorithm for TAG. We first present the
trees into a format suitable for the KPML rea"seépecific TAG used for traversal, namelg X -
he uses. . TacG (Alahverdzhieva, 2008) (section 3.1). We

In all of the above cases, the data is deriveflen show how to automatically derive a DCG
from real world sentences, thereby exemplifyat describes the derivation trees of this gram-
ing “real world cgmplexny". If the corpus is par (section 3.2). Finally, we show how
large enough (as in the case of the PTB), the das pcG encoding permits generating formulae
can furthermore be expected to cover a brogghle enabling control over the set of semantic

range of syntactic phenomena. Moreover, thepresentations to be produced (section 3.3).
data, being derived from real world sentences,

is not biased towards system-specific capabiB-1 SemXTAG

ties. Nonetheless, there are also limits t0 the§ge g-mMXTac grammar used byGENSEM
approaches. and by the two surface realisers is a Feature-
First, they fail to support graduated perforgased Lexicalised Tree Adjoining Grammar
mance testing on constructs such as intersectii§gmented with a unification-based semantics as
modifiers or lexical ambiguity, which are knownyescribed in (Gardent and Kallmeyer, 2003). We

to be problematic for surface realisation. briefly introduce each of these components and
Second, the construction of the benchmark {fescribe the grammar coverage.

in both cases time consuming. In the reversible

approach, for each input sentence, the corrdcfAG. A Feature-based TAG (Vijay-Shanker
interpretation must be manually selected frond Joshi, 1988) consists of a set of (auxil-
among the semantic formulae produced by ti@ry or initial) elementary trees and of two tree-

parser. As a side effect, the constructed benckmposition operations: substitution and adjunc-
tion. Initial trees are trees whose leaves are la-

"As first noted in (Brew, 1992; Kay, 1996), given a sepajled with substitution nodes (marked with a
of n modifiers all modifying the same structure, all possible

intermediate structures will be constructed, i.&72 downarrOW)_ O_r terminal categories. Auxiliary
2Combinatory Categorial Grammar trees are distinguished by a foot node (marked

with a star) whose category must be the same iastance in Figure 1, the semantic indesccur-
that of the root node. Substitution inserts a treéng in the semantic representationrains also
onto a substitution node of some other tree whilgccurs on the subject substitution node of the as-
adjunction inserts an auxiliary tree into a tree. Isociated elementary tree. The value of semantic
an FTAG, the tree nodes are furthermore decarguments is determined by the unifications re-
rated with two feature structures (callegp and sulting from adjunction and substitution. For in-
bottom) which are unified during derivation asstance, the semantic indexn the tree forruns
follows. On substitution, the top of the substituis unified during substitution with the semantic
tion node is unified with the top of the root nodéndex labelling the root node of the tree fimhn.

of the tree being substituted in. On adjunctiorAs a result, the semantics dbhn often runs is

the top of the root of the auxiliary tree is unifiednane(j, j ohn), run(a,j), of ten(a)}.

with the top of the node where adjunction takes

place: and the bottom features of the foot nod@€MXTAG. SEMXTAG is an FTAG for En-
are unified with the bottom features of this nodd/ish augmented with a unification-based com-
At the end of a derivation, the top and bottom gpositional ;emantlcs of the type described above.
all nodes in the derived tree are unified. FinalljtS Syntactic coverage approaches that of XTAG,
each sentence derivation in an FTAG is assodle FTAG developed for English by the XTAG
ated with both aderived tree representing the 970UP (The XTAG Research Group, 2001). Like
phrase structure of the sentence andesiva- this grammar, it contains 'a'lro.und 1300 elemgn-
tion tree recording how the corresponding eletary trees and covers auxiliaries, copula, raising

mentary trees were combined to form the derivét'd Small clause constructions, topicalization,
tree relative clauses, infinitives, gerunds, passives,

adjuncts, ditransitives and datives, ergatives, it-
FTAG with semantics. To associate seman-clefts, wh-clefts, PRO constructions, noun-noun
tic representations with natural language exprestodification, extraposition, sentential adjuncts,
sions, the FTAG is modified as proposed in (Gaimperatives and resultatives.
dent and Kallmeyer, 2003).

S, 3.2 Converting SemXTAG to a DCG
NPL{\VPg‘ *VPI We would like to be able to traverseeBXTAG
ij ! V‘Z % ft/\vp* in order to generate semantic representations that
John I [are licensed by it. In the DCG formalism, a
namegj john) grammar is represented as a set of Prolog defi-
run(as) nite clauses, and Prolog’s query mechanism pro-
= name(j ,john), run(a,j), often(a) vides built-in grammar traversal. We take advan-

Figure 1:Flat Semantics for “John often runs” tage of this by deriving a DCG fromeSIXTAG
and then using Prolog queries to generate seman-

Each elementary tree is associated with a flat representations that are associated with sen-
semantic representation. For instance, in Fitences in the language described by it.
ure 12 the trees fodohn, runsandoften are asso- ~ Another advantage of the DCG formalism is
ciated with the semantiagame(j,john), run(a,s) that arbitrary Prolog goals can be inserted into
and often(x) respectively. Importantly, the ar-a rule, to constrain when the rule applies or to
guments of a semantic functor are representbthd variables occurring in it. We use this to
by unification variables which occur both in theground derivations with lexical items, which are
semantic representation of this functor and amepresented using Prolog assertions. We also use
some nodes of the associated syntactic tree. Foto control Prolog’s grammar traversal in such
Erea——— _ a way as to generate sets of semantic formu-

C*/C, abbreviate a node with category C and

top/bottom feature structure including the feature-valt?@e covering Certa'n computationally interesting
pair { index : z}. cases (see section 3.3).

Our algorithm for converting SMXTAG to the SEMXTAG tree are converted into the RTG
a DCG is inspired by (Schmitz and Le Rouxtules so as to correctly interact with substitu-
2008), who derive from an FTAG a featuretion and adjunction (see (Schmitz and Le Roux,
based regular tree grammar (RTG) whose 1aB008) for more details on this part of the conver-
guage is the derivation trees of the FTAG. Insion process).
deed, in our implementation, we derive a DCG To account for the optionality of adjunction,
from such an RTG, thereby taking advantage oftaere are additional rules allowing any adjunc-
SEMXTAG-t0-RTG converter previously imple-tion requirement to be rewritten as the symbol
mented by Sylvain Schmitz. a terminal symbol of the RTG.

The terminal symbols of the RTG are thus the
tree identifiers and the symbe) and its non-
terminals areXg and X 4 for each terminal or
Ron-terminalX of SEMXTAG.

TAGto RTG. Inthe conversion to RT6 each

elementary tree in BMXTAG is converted to a
rule that models the contribution of the tree to
TAG derivation. A TAG derivation involves the

selection of an initial tree, which has some node$TG to DCG. Since the right-hand side of
requiring substitution and some permitting adeach RTG rule is a local tree — that is, a tree of
junction. Let us think of the potential adjunCtiorUepth no more than one — we can flatten each of
sites as requiring, rather than permitting, adjunghem into a list consisting of the root node fol-
tion, but such that the requirement can be satigwed by the leaves without losing any structural
fied by ‘null” adjunction. Inserting another treginformation. This is the insight underlying the
into this initial tree satisfies one of the substitURTG-to-DCG conversion step. Each RTG rule is
tion or adjunction requirements, but introducegonverted to a DCG rule that is essentially iden-
some new requirements into the resulting tree, {ftal except for this flattening of the right-hand
the form of its own substitution nodes and adside. Here is the translation to DCG of the RTG

junction sites. rule above’:

Thus, intuitively, the RTQ representation qf arlul e(s.init. Top, Bot,Q FL: S N. VP: V)
SEMXTAG elementary tree is a rule that rewrites . _> " [run],

the satisfied requirement as a local tree whose {1 exicon(run, n0V, [run])},
rule(s,aux, ,[C,9),

root is a unique identifier of the tree and whose cule(np inT (X N
leaves are the introduced requirements. A re- rul e(vp, aux, [Q, [B], VP),
quirement of a substitution or adjunction of a tree rule(v, aux, [B],[A], V),

of root categoryX is written asXg or X 4, re- {FL = [run A X}

spectively. Here, for example, is the translation We represent non-terminals of the DCG using
to RTG of the TAG tree (minus semantics) fothe r ul e predicaté, whose five (non-hidden)
run in Figure 1, using the word anchoring thearrguments, in order, are the category, the sub-
tree as its identifier (the superscripts abbreviageript (ni t for subscript Saux for subscript
feature structuresbd/t refers to the bottom/top A), the top and bottom feature values, and the
feature structure and the upper case letters to @mantics. The difference list for a given DCG
semantic index value, galz : X]is abbreviated rule contains lexical items grounding DCG rules
to X): rewriting its right-hand-side non-terminals. Fea-
ture structures are represented using Prolog lists
Sg — run(SEPN NPy plEPEBL Bl i o fixed argument position for each attribute
s A S A A g p

The semantics of theeES1XTAG tree are carried 5In practice, the lexicon is factored out, so there is no
. . rule specifically forun, but one for intransitive verbs (n0V)
over as-is to the corresponding RTG rule. Furﬁ general. Each rule hooks into the lexicon, so that a given
ther, the feature structures labelling the nodes iafocation of a rule is grounded by a particular lexical item.
- ®The —— > notation is syntactic sugar for the usual
“For a more precise description of the FTAG to RTGrolog: — definite clause notation with two hidden argu-

conversion see (Schmitz and Le Roux, 2008). ments on each predicate.

in the grammar (in this example, only the in- --> [run],
dex attribute). The semantics associated with the {l exi con(run, noV, [Rel)},
left-hand-side symbol are composed of the se- o
mantics associated with this rule and those asso-We implement restrictions on adjunctions by
ciated with each of the right-hand-side symbolsidding an additional argument to the grammar
The language of the resulting DCG is neithegsymbols, namely a vector of non-negative inte-
the language of the RTG nor the language @fers representing the number of non-null adjunc-
SEMXTAG, and indeed the language of the DC@ons of each type that are in the derivation sub-
does not interest us but rather its derivation tredsee dominated by the symbol. By ‘type’ of ad-
These are correlated one-to-one with the treesjimction, we mean the category of the adjunction
the language described by the RTG, i.e. with ttgite. In DCG terms, a non-null adjunction of a
derivation trees of BMXTAG, and the latter can categoryX is represented as the expansion of an
be trivially reconstructed from the DCG derivax/ aux symbol other than as. So, for exam-
tions. From a 8MXTAG derivation tree, one canple, a DCG symbol associated with the vector
compose the semantic representation of the 4sk, 0, 0, 0, 0] , where the five dimensions of
sociated sentence, and in fact this semantic cothe vector correspond to the np, v, vp, and
position occurs as a side effect of a Prolog quesy categories, respectively, dominates a subtree
against the DCG, allowing semantic representaentaining exactly ona/ aux symbol expanded
tions licensed by BMXTAG to be returned as by a non-epsilon rule, and no othenx symbol
query results. expanded by a non-epsilon rule. We link the vec-
We define a Prolog predicate for queryingor associated with the root of the derivation to
against the DCG, as follows. Its one input athe query predicate.
gument,Cat , is the label of the root node of the Finally, we add an additional argument to the
derivation tree (typicallys), and its one output DCG rule and to thesENSEMS call to control
argument,Sem is the semantic representationthe traversal depth with respect to the number of

associated with that trée substitutions applied. The overall depth of each
genSen(Cat , Sem) : - derivation is therefore constrained both by the
rule(Cat,init,_, _,Sem_[]). user defined adjunctions and substitution depth

constraints.

Our query predicate now has four input argu-
In order to give the users some control over th@ents and one output argument:

sorts of semantic representatlons that they eetnSem Cat, Fam [N, NP, V, VP, S] . Dt h, Seny : -
back from a query againstthe DCG, we augment | yje(cat,init, , , Fam

the DCG in such a way as to allow control over [N.NP,V, VP, §], Dth, Sem _, []).
the TAG family? of the root tree in the derivation We define a special predicate to handle the

_tree, over thg number and type of adjunctiorwtﬁwying up of a mother node’s vector among
|tnt'the de_lr_lva}tlor;, andtci\r/‘er fthe dePth OT S“t?s“nhe daughters, taking advantage of the fact that
utions. - 10 implement the Tormer 15 quite SMihe DCG formalism permits the insertion of ar-
ple: we need merely to index the DCG rules b%itrary Prolog goals into a rule

family and modify theseNseEMcall accordingly. '

For instance, the above DCG rule becomes : 4 UsingGENSEMfor benchmarking
rule(s,init, , ,n0V,QFl;S; NP;, VP; V)

3.3 Control parameters

— .We now show howcENSEMcan be put to work
The 6th and 7th arguments of the rule call are the h|?— . TAG-b d f i

den arguments needed by the DCG. or comparing two -pasea surrace realisers,
8TAG families group together trees which belong tohamelyGENI (Gardent and Kow, 2007) and RT-

gether, in particular, the trees associated with various rgg (Perez-Beltrachini, 2009). These two re-
alisation of a specific subcategorisation type. Thus, her

the notion of TAG family is equivalent to that of sub(:ate-aeiiS(':‘rS follow globally similar algorithms but dif-

gorisation type. fer in several respects. We show h@ENSEM

can be used to produce benchmarks that are teiandling of intersective modifiers. GENIand
lored to test hypotheses about how these diffdRT GEN differ in their strategies for handling
ences might impact performance. We then useodification.
this GENSeEm-generated benchmark to compare Adapting (Carroll and Oepen, 2005)’'s pro-
the performance of the two realisers. posal to TAG, GENI adopts a two-step tree-
combining process such that in the first step, only
4.1 Genland RTGen substitution applies, while in the second, only
Both GENI and RTGN use the &MXTAG adjunction is used. Although the number of in-
grammar described in section 3.1. Moreovetermediate structures generated is stillfar n
both realisers follow an algorithm pipeliningmodifiers, this strategy has the effect of block-
three main phases. Firdgxical selectionse- ingthese 2 structures from multiplying out with
lects from the grammar those elementary treesher structures in the chart.
whose semantics subsumes part of the input seRTGEN, on the other hand, uses a standard
mantics. Second, thieee combining phase sys- Earley algorithm that includes sharing and pack-
tematically tries to combine trees using substiting. Sharing allows intermediate structures com-
tion and adjunction. Third, theetrieval phase mon to several derivations to be represented
extracts the yields of the complete derived treesnce only while packing groups together par-
thereby producing the generated sentence(s). tial derivation trees with identical semantics and
There are also differences however. We nowimilar combinatorics (same number and type of
spell these out and indicate how they might imsubstitution and adjunction requirements), keep-
pact the relative performance of the two surfad@ag only one representative of such groups in the
realisers. chart. In this way, intermediate structures cov-
ering the same set of intersective modifiers in a
different order are only represented once and the
negative impact of intersective modifiers is less-

Derived vs. derivation trees. While GENI
constructs derived trees, REB® uses the RTG
encoding of &MXTAG sketched in the previous
section to construct derivation trees. These af&@¢%:

then unraveled into derived trees at the final rg-2 TwocENSEMbenchmarks

trieval stage. As noted in (Koller and Striegnitzwe USEGENSEM to construct two benchmarks
2002), these trees are simpler than TAG elemen-

. . designed to test the impact of the differences be-
tary trees, which can favourably impact perfor- . -
mance. tween the two rea!lsers and, more specifically, 'to
compare the relative performance of both realis-
Interleaving of feature constraint solving and ers (i) on cases involving intersective modifiers
syntactic analysis. GENI integrates in the tree and (ii) on cases of varying overall complexity.
combining phase a filtering step in which the ini- The MobDIFIERS benchmark focuses on
tial search space is pruned by eliminating from intersective modifiers and contains semantic
all combinations of TAG elementary trees thadbrmulae corresponding to sentences in-
cover the input semantics but cannot possiblxolving an increasing number of modifiers.
lead to a valid derived tree. This filtering elimRecall that GENSEM calls are of the form
inates all combinations of trees such that eithgensem(Cat,Family,[N,NP,V,VP,§ ,Dth,Sem)

the category of a substitution node cannot behere N,NPV,VPS indicates the number of
cancelled out by that of the root node of a difrequired adjunctions inN, NP, V, VP and
ferent tree, or a root node fails to have a matcls; respectively, while Family constrains the
ing substitution site. Importantly, filtering ig-subcategorisation type of the root tree in the
nores feature information and tree combiningerivations produced bgeENSEM To produce
takes place after filtering. RTEN, on the other formulae involving the lexical selection of
hand, directly combines derivation trees decantersective modifiers, we set the following
rated with full feature structure information. constraints. Cat is set tos and Family is set

to either nOV (intransitive verbs) or n0Vnl4.3 Results

(transitive verbs). Furthermord] andV P vary Using the twoGENSEMgenerated benchmarks,
from O to 4 thereby requiring the adjunction of Qe now compareseNI and RTGN. Because
to 4 N and/or VP modifiers. All other adjunction; .\ does not produce time information, we re-
counters are set to null. To avoid producingyict the comparison to space complexity. We
formulae with identical derivation trees bufyiot the average number of chart items against
distinct lemmas, we use a restricted lexicon COjyth the number of intersective modifiers present
taining one lemma of each syntactic type, €.¢, the input (Figure 3) and the size of the Initial
one transitive verb, one intransitive verb, et&gagch Space (ISS), i.e., the number of combina-
Given these settings;ENSEM produces 1 737 (ions of elementary TAG trees covering the input
formulae whose adjunction requirements Varyamantics to be explored after tiexical selec-
from 1 to 6. For instance, the semantic formulg,, step (Figure 2). In our case, the ISS gives a
{dleep(b.c),man(c) a(c) blue(c) seep(i.c).carefully(b)} (A more meaningful idea about the complexity than
sleeping blue man sleeps carefully) extracted aying the number of input literals as is done in
from the MoDIFIERS benchmark contains tWO(CarroII and Oepen, 2005). In an FTAG, the
NP adjunctions and one VP adjunction. number of elementary trees selected by a given
The MobDIFIERS benchmark is tailored to fo- |iteral may vary considerably depending on the
cus on cases involving a varying number of ilhymber and the size of the tree families selected
tersective modifiers. To support a comparison @ this literal. For instance, a literal selecting
the realisers on this dimension, it displays littlghe novn2n1 class will select many more trees
or no variation w.r.t. other dimensions, such apan a literal selecting the nOV family because
verb type and non-modifying adjunctions. there are many more ways of realising the three
To measure the performance of the two realisrguments of a ditransitive verb than the single
ers on cases of varying overall complexity, weubject argument of an intransitive one. Chart
construct a second benchmarkd@pPLEXITY) items include all elementary trees selected by the
displaying such variety. TheENSEM parame- lexical selection step as well as the intermediate
ters for the construction of this suite are the foland final structures produced by the tree combin-
lowing. The verb typeKamily) is one of 28 pos- ing phase. In the plot for RTEN, we further-
sible verb types The number and type of re-more distinguish between the number of struc-
quired adjunctions vary from 0 to 4 fa¥ ad- tures built before unpacking and the number of
junctions, 0 to 1 forVP, 0to 4 forVVP and O to structures obtained after unpacking.

1 for S. The resulting benchmark contains 1 823

semantic formulae covering an extensive set ofverall efficiency. - The plot in Figure 2 shows
verb types and of adjunction requirements. the results obtained by running both realisers on
the CoMpPLEXITY benchmark. Recall (cf. sec-

T he 28 verb types are tion 4.2) that the ©MPLEXITY benchmark con-

En1V,n0BEN1,n0IVN1Pn2,n0V,n0Val,n0VAN1,nOVAN1Ptens input with varying verb arity and a vary-
nOVDAN1,nOVDAN1Pn2,n0VDN1,n0VDN1Pn2,n0Vn1, : i i i i
nOVN1,n0Vn1Pn2,n0VN1Pn2,n0Vn2n1,n0Vpl,n0Vpinl, 'ng r_]umber of reqwred e_ldjunctlons._ H_ence I
n0Vpn1,n0VPN1,n0Vsl,REN1VA2,REn1VPN2, RnOVn1ARrovides cases of increasing complexity in terms

RnOVN1Pn2,s0V,s0Vn1,s0Vtonl. The notational convef ISS to be explored. Furthermore, test cases
tion for verb types is from XTAG and reads as follows; ; ication in-
Subscripts indicate the thematic role of the verb argumerllia the benchmark trigger sentence realisation in

n indicates a nominal, Pn a PP and s a sentential arguméfQJVing certain TAG families, which have a cer-
pl is a verbal particle. Upper case letters describe thgin number of trees. Those trees within a fam-

syntactic functor type: V is a verb, E an ergative, R e
resultative and BE the copula. Sequences of upper c:ﬁ%Oﬁen have identical combinatorics but differ

letters such as VAN in nOVAN1 indicate a multiwordent features. Consequently, thedRZPLEXITY
functor with syntactic categories V, A, and N. For instancgenchmark also provides an appropriate testbed
nOVnl indicates a verb taking two nominal argument]s . he i ff inf
(e.g., like) and nOVAN1 a verb locution such ds cry or testing the impact of feature structure infor-
bloody murder. mation on the two approaches to tree combina-

6 T T —T T —F —
o E RTGEN chart size El 105 || —— RTGEN chart size E
[| —=— RTGEN unpacked chart size] | | = RTGENunpacked chartsizg, o 1
10° || —e— GENI chart size - [|—®— GENI chart size

number of chart items
number of chart items

10% |-

0-100 [~

number of modifiers (different test suites)

100-1000 |
1000-5000{—
5000-10000
10000-100000—

100000-500000+—
500000-1000000—
more than 1000004

Figure 3: Comparing intersective modifier handling on
the MobIFIERSbenchmark

initial search space size

Figure 2:Comparing tree combining strategies and over-
all efficiency on the @ MPLEXITY benchmark termediate incomplete modifiers’ structures, the
lexical ambiguity of modifiers still poses a prob-
, lem. In contrast, RT&N’'s packing uniformly
tion. applies to word order variations and to the cases
The graphs show that as complexity increasess, lexical ambiguity raised by intersective mod-

the performance delta betwe&ENI and RT- ffiers because the items have the same combina-
GEN increases. We conjecture that as completgric potential and the same semantics.

ity grows, the filtering used byENI does not
suffice to reduce the search space to a manage- Conclusion
able size. Conversely, the overhead introduced
by RTGEN’s all-in-one, tree-combining EarleySurface realisers are complex systems which
strategy seems compensated throughout by theed to handle diverse input and require complex
construction of a derivation rather than a derive@gdmputation. Testing raises among other things
tree and pays off increasingly as complexity inthe issue of coverage — how can the potential in-
creases. put space be covered? — and of test data creation
— should this data be hand tailored, created ran-
Modifiers. Figure 3 plots the results obtainedlomly, or derived from real world text?
by running the realisers on the ®bIFIERS In this paper, we presented an approach which
benchmark. Here again, REG outperforms permits automating the creation of test input for
GENI and the delta between the two realisegurface realisers whose input is a flat semantic
grows with the number of intersective modifierformula. The approach differs from other ex-
to be handled. A closer look at the data showsting evaluation schemes in two ways. First, it
that the global constraints set BENSEMon the permits producing arbitrarily many inputs. Sec-
number of required adjunctions covers an impoend, it supports the construction of grammar-
tant range of variation in the data complexitycontrolled, linguistically focused benchmarks.
For instance, there are cases where 4 modifiersWe are currently working on further extending
modify the same NP (or VP) and cases whe®ENSEMwith more powerful (recursive) control
the modifiers are distributed over two NPs. Sinrestrictions on the grammar transversal ; on com-
ilarly, literals introduced into the formula by abining GENSEM with tools for detecting gram-
GENSEM adjunction requirement vary in termsmar overgeneration ; and on producing a bench-
of the number of auxiliary trees whose selectiomark that could be made available to the com-
they trigger. The steep curve @ENI's plot sug- munity for testing surface realisers whose input
gests that although the delayed adjunction meadk-either a dependency tree or a flat semantic for-
anism helps in avoiding the proliferation of inmula.

References Related Formalisms (TAG+'08), pages 141-148,

Alahverdzhieva, K. 2008. XTAG using XMG. Mas- Tubingen, Germany.

ter's thesis, U. Nancy 2. Erasmus Mundus Mastemhe XTAG Research Group. 2001. A lexicalised tree
Language and Communication Technology”. adjoining grammar for english. Technical report,
Institute for Research in Cognitive Science, Uni-

Brew, C. 1992. Letting the cat out of the bag: Gen- versity of Pennsylvannia.

eration for shake-and-bake MT. Rroceedings of
COLING "92, Nantes, France. Vijay-Shanker, K. and AK Joshi. 1988. Feature
Structures Based Tree Adjoining GrammalPso-
ceedings of the 12th conference on Computational
linguistics, 55:v2.

Callaway, Charles B. 2003. Evaluating coverage for
large symbolic NLG grammars. |1@8th 1JCAI,
pages 811-817, Aug.

Carr_oll, J. and S. Oepen. 2005. I_—I_igh_efﬁciency reWTﬁl’\MG',Zp%%ts Iiglzrlnlglln CCG chart realization.
alization for a wide-coverage unification grammar.
2nd 1JCNLP.

Carroll, J., A. Copestake, D. Flickinger, and
V. Paznaski. 1999. An efficient chart generator
for (semi-)lexicalist grammars. IRroceedings of
EWNLG " 99.

Gardent, C. and L. Kallmeyer. 2003. Semantic con-
struction in FTAG. In10th EACL, Budapest, Hun-

gary.

Gardent, C. and E. Kow. 2007. Spotting overgen-
eration suspects. Ihlth European Workshop on
Natural Language Generation (ENLG).

Kay, Martin. 1996. Chart generation. Rroceed-
ings of the 34th annual meeting on Association for
Computational Linguistics, pages 200-204, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

Koller, A. and K. Striegnitz. 2002. Generation as
dependency parsing. IRroceedings of the 40th
ACL, Philadelphia.

Langkilde-Geary, I. 2002. An empirical verification
of coverage and correctness for a general-purpose
sentence generator. Rroceedings of the INLG.

Nederhof, M.-J. 1996. Efficient generation of ran-
dom sentences.Natural Language Engineering,
2(1):1-13.

Perez-Beltrachini, L. 2009. Using regular tree
grammars to reduce the search space in surface
realisation. Master’s thesis, Erasmus Mundus
Master Language and Communication Technol-
ogy, Nancy/Bolzano.

Purdom, P. 1972. A sentence generator for testing
parsersBIT, 12(3):366—375.

Schmitz, S. and J. Le Roux. 2008. Feature unifica-
tion in TAG derivation trees. In Gardent, C. and
A. Sarkar, editorsProceedings of the 9th Interna-
tional Workshop on Tree Adjoining Grammars and

