
SemTAG, the LORIA toolbox for TAG-based Parsing and Generation

Eric Kow
INRIA / LORIA

Universit́e Henri Poincaŕe
615, rue du Jardin Botanique
F-54 600 Villers-L̀es-Nancy

kow@loria.fr

Yannick Parmentier
INRIA / LORIA

Universit́e Henri Poincaŕe
615, rue du Jardin Botanique
F-54 600 Villers-L̀es-Nancy
parmenti@loria.fr

Claire Gardent
CNRS / LORIA

615, rue du Jardin Botanique
F-54 600 Villers-L̀es-Nancy

gardent@loria.fr

Abstract

In this paper, we introduce SEMTAG, a
toolbox for TAG-based parsing and gen-
eration. This environment supports the
development of wide-coverage grammars
and differs from existing environments
for TAG such asXTAG, (XTAG-Research-
Group, 2001) in that it includes a semantic
dimension. SEMTAG is open-source and
freely available.

1 Introduction

In this paper we introduce a toolbox that allows for
both parsing and generation withTAG. This tool-
box combines existing software and aims at facili-
tating grammar development, More precisely, this
toolbox includes1:

• XMG: a grammar compiler which supports the
generation of aTAG from a factorisedTAG

(Crabb́e and Duchier, 2004),

• LLP2 andDyALog: two chart parsers, one
with a friendly user interface (Lopez, 2000)
and the other optimised for efficient parsing
(Villemonte de la Clergerie, 2005)

• GenI : a chart generator which has been
tested on a middle size grammar for French
(Gardent and Kow, 2005)

2 XMG, a grammar writing environment
for Tree Based Grammars

XMGprovides a grammar writing environment for
tree based grammars2 with three distinctive fea-
tures. First,XMGsupports a highly factorised and

1All these tools are freely available, more information and
links athttp://trac.loria.fr/˜semtag .

2Although in this paper we only mentionTAG, the XMG
framework is also used to develop so called Interaction Gram-

Figure 1: XMG’s graphical interface

fully declarative description of tree based gram-
mars. Second,XMGpermits the integration in a
TAG of a semantic dimension. Third,XMGis based
on well understood and efficient logic program-
ming techniques. Moreover, it offers a graphical
interface for exploring the resulting grammar (see
Figure 1).

Factorising information. In the XMG frame-
work, aTAG is defined by a set of classes organised
in an inheritance hierarchy where classes define
tree fragments (using a tree logic) and tree frag-
ment combinations (by conjunction or disjunc-

mars i.e., grammars whose basic units are tree descriptions
rather than trees (Parmentier and Le Roux, 2005).

tion). XMGfurthermore integrates a sophisticated
treatment of names whereby variables scope can
be local, global or user defined (i.e., local to part
of the hierarchy).

In practice, the resulting framework supports a
very high degree of factorisation. For instance, a
first core grammar (FRAG) for French comprising
4 200 trees was produced from roughly 300XMG
classes.

Integrating semantic information. In XMG,
classes can be multi-dimensional that is, they can
be used to describe several levels of linguistic
knowledge such as for instance, syntax, seman-
tics or prosody. At present,XMGsupports classes
including both a syntactic and a semantic dimen-
sion. As mentioned above, the syntactic dimen-
sion is based on a tree logic and can be used to
describe (partial) tree fragments. The semantic di-
mension on the other hand, can be used to asso-
ciate with each tree a flat semantic formula. Such a
formula can furthermore include identifiers which
corefer with identifiers occurring in the associated
syntactic tree. In other words,XMGalso provides
support for the interface between semantic formu-
lae and tree decorations. Note that the inclusion of
semantic information remains optional. That is, it
is possible to useXMGto define a purely syntactic
TAG.

XMGwas used to develop a core grammar for
French (FRAG) which was evaluated to have 75%
coverage3 on the Test Suite for Natural Language
Processing (TSNLP, (Lehmann et al., 1996), see
section 3 below). The FRAG grammar was fur-
thermore enriched with semantic information us-
ing another 50 classes describing the semantic di-
mension (Gardent, 2006). The resulting grammar
(SEMFRAG) describes both the syntax and the se-
mantics of the french core constructions.

Compiling an XMG specification. By build-
ing on efficient techniques from logic program-
ming and in particular, on the Warren’s Abstract
Machine idea (Ait-Kaci, 1991), theXMGcom-
piler allows for very reasonable compilation times
(Duchier et al., 2004). For instance, the compila-
tion of aTAG containing 6 000 trees takes about 15
minutes with a Pentium 4 processor 2.6 GHz and
1 GB of RAM.

3This means that for 75 % of the sentences, aTAG parser
can build at least one derivation.

Figure 2: The LLP2 parser.

3 Two TAG parsers

The toolbox includes two parsers: theLLP2 and
theDyALog parsers. Both of them can be used in
conjunction withXMG. First we will briefly intro-
duce both of them, and then show that they can be
used with a semantic grammar (e.g., SEMFRAG)
to perform not only syntactic parsing but also se-
mantic construction.

LLP2 The LLP2 parser is based on a bottom-
up algorithm described in (Lopez, 1999). It has
relatively high parsing times but provides a user
friendly graphical parsing environment with much
statistical information (see Figure 2). It is well
suited for teaching or for small scale projects.

DyALog The DyALog system on the other
hand, is a highly optimised parsing system based
on tabulation and automata techniques (Ville-
monte de la Clergerie, 2005). More precisely, the
DyALog system is a programming language and
a compiler which is well-suited for performing
tabular logic programming. One of the main use
of DyALog concerns the compilation of efficient
syntactic parsers for many linguistic formalisms
(such asTree Adjoining Grammars, Range Con-
catenation Grammars, etc).

Semantic construction The target of our tool-
box is not to gather parsers and generators for a
given formalism but to provide an efficient sys-
tem for parsing and generation using common re-
sources. In this context, we want to be able to pro-
duce semantic representations that would be used
as input for generation4. To perform this, we can
use the results of syntactic parsing with a semantic

4And vice-versa, we would use the generated sentences
for parsing and thus cross-check the tools (and the resources).

Figure 3: The SemConst system

grammar using two different strategies relying ei-
ther on the derived trees or on the derivation forest
(Gardent and Parmentier, 2005). The latter tech-
nique is better suitable for large scale semantic
construction as it offers a better information shar-
ing by dealing with derivation forests. This tech-
nique has been implemented in our toolbox using
the DyALog system which build parsers whose
output are derivation forests. This implementation
is called SemConst (see Figure 3).

Some features In spite of being a work in
progress, we managed to use our toolbox for pars-
ing the TSNLP withDyALog and obtained the
following results. On sentences ranging from 1
to 18 words, with an average of 7 words per sen-
tence, and with a grammar containing 5 069 trees,
DyALog average parsing time is of 0.38 sec with
a P4 processor 2.6 GHz and 1 GB of RAM (these
features only concern classic syntactic parsing as
the semantic construction module has not been
tested on real grammars yet).

4 A TAG-based surface realiser

The surface realiserGenI takes a TAG and a flat
semantic logical form as input, and produces all
the sentences that are associated with that logi-
cal form by the grammar. It implements two bot-
tom up algorithms, one which manipulates derived
trees as items and one which is based on Earley for
TAG. Both of these algorithms integrate a number
of optimisations such as delayed adjunction and
polarity filtering (Kow, 2005; Gardent and Kow,
2005).

GenI is written in Haskell and includes a
graphical debugger to inspect the state of the gen-

Figure 4: The GenI debugger

test expected simple earley
t1 il le accepter pass pass

t32 il nous accepter pass pass
t83 le ingnieur le lui apprendre pass DIED

t114 le ingnieur nous le prsenter pass pass
t145 le ingnieur vous le apprendre pass pass
t180 vous venir pass pass

Figure 5: Fragment of test harness output - The
Earley algorithm timed out.

erator at any point in the surface realisation pro-
cess (see Figure 4). It also integrates a test harness
for automated regression testing and benchmark-
ing of the surface realiser and the grammar. The
harnessgtester is written in Python. It runs the
surface realiser on a test suite, outputting a single
document with a table of passes and failures and
various performance charts (see Figures 5 and 6).

Test suite and performance The test suite is
built with an emphasis on testing the surface re-
aliser’s performance in the face of increasing para-
phrastic power{FIXME: word choice} i.e., ambi-
guity. We have a core suite which consists of se-
mantic inputs that select for and combines verbs
with different valencies. For example, given a hy-
pothetical English grammar, a valency (2,1) se-
mantics might be realised in asMartin thinks Faye
drinks (thinkstakes 2 arguments anddrinks takes
1), whereas a valency (2,3,2) would beDora says
that Martin tells Bob that Faye likes music. The
suite also adds a varying number of intersective
modifiers into the mix, giving us for instance,The
girl likes music, The pretty scary girl likes indie
music.

The sentences in the suite range from 2 to 15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160 180 200

ch
ar

t_
siz

e

lex_foot_nodes

chart_size for lex_foot_nodes

simple
earley

Figure 6: Automatically generated graph of per-
formance data by the test harness.

words (8 average). Realisation times for the core
suite range from 0.7 to 2.84 seconds CPU time
(average 1.6 seconds).

We estimate the ambiguity for each test case
in two ways. The first is to count the number of
paraphrases. Given our current grammar, the test
cases in our suite have up to 669 paraphrases (av-
erage 41). The second estimate for ambiguity is
the number of polarity automaton paths for each
case. Polarity automata are used during the po-
larity filter optimisation (Gardent and Kow, 2005).
To determine how effective polarity filtering with
respect to ambiguity, we compare the number of
paths in the initial polarity automaton (where all
polarities are 0) to the number of paths in the fi-
nal automaton (where all polarities are taken into
account). This comparison lets us determine the
reduction in the overall search space of the prob-
lem.

In our suite, the initial automata for each case
have 1 to 800 000 paths (76 000 average). The fi-
nal automata have 1 to 6000 paths (192 average).
This can represent quite a large reduction in search
space, 4000 times in the case of the largest au-
tomaton. The effect of this search space reduc-
tion is most pronounced on the larger sentences or
those with the most modifiers. Indeed, realisation
times with and without filtering are comparable for
most of the test suite, but for the most complicated
sentence in the core suite, polarity filtering makes
surface realisation 87% faster, producing a result
in 4.7 seconds instead of 37.38.

5 Benefits of an integrated toolset

Simplified resource management The first ad-
vantage of an integrated toolkit is that it facilitates
the management of linguistic resources,i.e., gram-
mar and lexicon. Indeed it is common that each
NLP tool (parser or generator) has its own repre-
sentation format. Thus, managing the resources
gets tiresome as one has to deal with several ver-
sions of a single resource. When one version is
updated, the others have to be recomputed. Using
an integrated toolset avoid such a drawback as the
intermediate formats are hidden and the user can
focus on his linguistic description.

Better support for grammar development
When developing parsers or surface realisers, it
is useful to test them out by running them on
large, realistic grammars. Such grammars can ex-
plore nooks and crannies in our implementations
that would otherwise have be overlooked by a toy
grammar. For example, it was only when we ran
GenI on our French grammar that we realised our
implementation did not account for auxiliary trees
with substitution nodes (this has been rectified).
In this respect, one could argue thatXMGcould al-
most be seen as a parser/realiser debugging utility
because it helps us to build and extend the large
grammars that are crucial for testing.

This perspective can also be inverted; parsers
and surface realiser make for excellent grammar-
debugging devices. For example, one possible
regression test is to run the parser on a suite of
known sentences to make sure that the modified
grammar still parses them correctly. The exact
reverse is useful as well; we could also run the
surface realiser over a suite of known semantic
inputs and make sure that sentences are gener-
ated for each one. This is useful for two reasons.
First, reading surface realiser output (sentences)
is arguably easier for human beings than reading
parser output (semantic formulas). Second, the
surface realiser can tell us if the grammar overgen-
erates because it would output nonsense sentences.
Parsers, on the other hand, are much better adapted
for testing for undergeneration because it is easier
to write sentences than semantic formulas, which
makes it easier to test phenomena which might not
already be in the suite.

Towards a reversible grammar Another ad-
vantage of using such a toolset relies on the fact
that we can manage a common resource for both
parsing and generation, and thus avoid inconsis-

tency, redundancy and offer a better flexibility as
advocated in (Neumann, 1994).

On top of these practical questions, having a
unique reversible resource can lead us further.
For instance, (Neumann, 1994) proposes an inter-
leaved parsing/realisation architecture where the
parser is used to choose among a set of para-
phrases proposed by the generator; paraphrases
which are ambiguous (that have multiple parses)
are discarded in favour of those whose meaning is
most explicit. Concretely, we could do this with a
simple pipeline usingGenI to produce the para-
phrases,DyALog to parse them, and a small shell
script to pick the best result. This would only be
a simulation, of course. (Neumann, 1994) goes
as far as to interleave the processes, keeping the
shared chart and using the parser to iteratively
prune the search space as it is being explored by
the generator. The version we propose would not
have such niceties as a shared chart, but the point
is that having all the tools at our disposable makes
such experimentation possible in the first place.

Moreover, there are several other interest-
ing applications of the combined toolbox. We
could use the surface realiser to build artifi-
cial corpora. These can in turn be parsed to
semi-automatically create rich treebanks contain-
ing syntactico-semantic analysesà la Redwoods
(Oepen et al., 2002).

Eventually, another use for the toolbox might be
in components of standard NLP applications such
as machine translation, questioning answering, or
interactive dialogue systems.

6 Availability

The toolbox presented here is open-source and
freely available under the terms of the GPL5. More
information about the requirements and installa-
tion procedure is available athttp://trac.
loria.fr/˜semtag . Note that this toolbox is
made of two main components: the GenI6 sys-
tem and the SemConst7 system, which respec-
tively performs generation and parsing from com-
mon linguistic resources. The first is written in
Haskell (except theXMGpart written in Oz) and is
multi-platform (Linux, Windows, Mac OS). The
latter is written in Oz (except theDyALog part

5Note that XMG is released under the terms of the
CeCILL license (http://www.cecill.info/index.
en.html), which is compatible with the GPL.

6http://trac.loria.fr/˜geni
7http://trac.loria.fr/˜semconst

which is bootstrapped and contains some intel as-
sembler code) and is available on unix-like plat-
forms only.

7 Conclusion

The LORIA toolbox provides an integrated envi-
ronment for TAG based semantic processing: ei-
ther to construct the semantic representation of a
given sentence (parsing) or to generate a sentence
verbalising a given semantic content (generation).

Importantly, both the generator and the parsers
use the same grammar (SEMFRAG) so that both
tools can be used jointly to improve grammar pre-
cision. All the sentences outputted by the surface
realiser should be parsed to have at least the se-
mantic representation given by the test suite, and
all parses of a sentence should be realised into at
least the same sentence.

Current and future work concentrates on de-
veloping an automated error mining environment
for both parsing and generation; on extending the
grammar coverage; on integrating further optimi-
sations both in the parser (through parsing with
factorised trees) and in the generator (through
packing and accessibility filtering cf. (Carroll and
Oepen, 2005); and on experimenting with differ-
ent semantic construction strategies (Gardent and
Parmentier, 2005).

References

H. Ait-Kaci. 1991. Warren’s Abstract Machine: A Tu-
torial Reconstruction. In K. Furukawa, editor,Proc.
of the Eighth International Conference of Logic Pro-
gramming. MIT Press, Cambridge, MA.

J. Carroll and S. Oepen. 2005. High efficiency re-
alization for a wide-coverage unification grammar.
In R. Dale and K-F. Wong, editors,Proceedings of
the Second International Joint Conference on Natu-
ral Language Processing, volume 3651 ofSpringer
Lecture Notes in Artificial Intelligence, pages 165–
176.

B. Crabb́e and D. Duchier. 2004. Metagrammar Re-
dux. InProceedings of CSLP 2004, Copenhagen.

D. Duchier, J. Le Roux, and Y. Parmentier. 2004. The
Metagrammar Compiler: An NLP Application with
a Multi-paradigm Architecture. In2nd International
Mozart/Oz Conference (MOZ’2004), Charleroi.

C. Gardent and E. Kow. 2005. Generating and select-
ing grammatical paraphrases.ENLG, Aberdeen.

C. Gardent and Y. Parmentier. 2005. Large scale
semantic construction for tree adjoining grammars.

In Proceedings of The Fifth International Confer-
ence on Logical Aspects of Computational Linguis-
tics (LACL05).

C. Gardent. 2006. Intégration d’une dimension
sémantique dans les grammaires d’arbres adjoints.
In Actes de la conférence TALN’2006 Leuven.

E. Kow. 2005. Adapting polarised disambiguation
to surface realisation. In17th European Summer
School in Logic, Language and Information - ESS-
LLI’05, Edinburgh, UK, Aug.

S. Lehmann, S. Oepen, S. Regnier-Prost, K. Netter,
V. Lux, J. Klein, K. Falkedal, F. Fouvry, D. Estival,
E. Dauphin, H. Compagnion, J. Baur, L. Balkan, and
D. Arnold. 1996.TSNLP — Test Suites for Natural
Language Processing. InProceedings of COLING
1996, Kopenhagen.

P. Lopez. 1999.Analyse d’́enonćes oraux pour le dia-
logue homme-machinèa l’aide de grammaires lex-
icalisées d’arbres. Ph.D. thesis, Université Henri
Poincaŕe – Nancy 1.

P. Lopez. 2000. Extended Partial Parsing for
Lexicalized Tree Grammars. InProceedings of
the International Workshop on Parsing Technology
(IWPT2000), Trento, Italy.

G. Neumann. 1994. A Uniform Computational
Model for Natural Language Parsing and Gener-
ation. Ph.D. thesis, University of the Saarland,
Saarbr̈ucken.

S. Oepen, E. Callahan, C. Manning, and K. Toutanova.
2002. Lingo redwoods—a rich and dynamic tree-
bank for hpsg.

Y. Parmentier and J. Le Roux. 2005. XMG: an Ex-
tensible Metagrammatical Framework. InProceed-
ings of the STUdent Session of the 17th European
Summer School in Logic, Language and Informa-
tion, Edinburg, Great Britain, Aug.

E. Villemonte de la Clergerie. 2005. DyALog: a tabu-
lar logic programming based environment for NLP.
In Proceedings of CSLP’05, Barcelona.

XTAG-Research-Group. 2001. A lexical-
ized tree adjoining grammar for english.
Technical Report IRCS-01-03, IRCS, Uni-
versity of Pennsylvania. Available at
http://www.cis.upenn.edu/˜xtag/gramrelease.html.

