Lexical Reasoning

Claire Gardent Evelyne Jacquey
CNRS CNRS
LORIA, Campus Scientifique BP 239 ATILF,
Vandoeuvre-les-Nancy, France Nancy, France
gardent@loria.fr ejacquey@atilf.fr

July 14, 2003

Abstract

We first argue that lexical reasoning could help improve precision in question answer-
ing. We then indicate how to develop the various NLP tools required to perform the
inference base, semantic comparison of question and answer implied by such a lexical
reasoning.

1 Introduction

Reasoning is an essential part of natural language processing (NLP): it is used to disambiguate
anaphora, scope and ellipses; to recover the implicit meaning conveyed by presuppositions,
implicatures and entailments; and to check the felicity of producing an utterance in a given
context.

In the 1970s, work on reasoning in NLLP was an important trend of research with in partic-
ular Roger Schank’s PhD thesis on story comprehension [17]. This work however resulted in a
negative result: the amount of knowledge and reasoning necessary to fully “understand” a text
was both too vast and too complex to be tractable by current reasoners. Since then much of
the work in NLP has concentrated on more tractable areas of language such as morphological
analysis, grammar writing and syntactic processing.

Over the last decade however, the situation has changed dramatically suggesting that the
time is ripe to again investigate and attempt to model the role of inference in NLP. Three
main changes have taken place. First, automated reasoners are now available which are highly
efficient even when coupled with ontologies populated with several thousands of concepts
(J11]). Second, large scale, online, lexical knowledge resources (e.g., |9, 5, 14]|) now exist
which can be used as a basis to model lexical i.e., domain independent knowledge. Third, new
applications (e.g., question answering, information extraction, text summarisation) arose from
the web which suggests more tractable reasoning problems than the “full text comprehension
task” Roger Schank had set himself.

In this paper, we argue that lexical reasoning could help improve precision in question
answering (QA). We then go on to describe an architecture which, based on existing resources,
supports lexical reasoning and should permit testing and optimising existing reasoners on
linguistic data.

2 Question answering and Lexical reasoning

In open domain question answering, the dominant approach consists in first, finding a set of
potentially relevant passages using information retrieval techniques and second, identifying
the answer by searching for an entity whose semantic type matches the expected answer type.

Light et al. [15] established an upper bound on the performance of such systems at around
70% (assuming perfect passage retrieval, named entity recognition and question classification)
thus clearly showing the limitation of linguistically uninformed approaches. To improve pre-
cision, it is increasingly argued, the standard two step approach (passage retrieval followed by
type matching) need to be complemented with linguistically informed techniques. In particu-
lar, [18] argues that inference could be used to compare questions and answers between and
among themselves both with respect to entailment and to equivalence.

No matter how sophisticated existing theorem provers are however, the amount of knowl-
edge needed to perform equivalence and entailment tests between two arbitrary formulas re-
mains a bottleneck because there is neither a model nor a general ontology encoding this
knowledge and because it is unclear that existing theorem provers could handle the resulting
combinatorics.

Rather than scaling up directly to the full complexity of the task by assuming unrestricted
corpora as well as complete world and lexical knowledge, we will here pursue a more restricted
approach whose principal aim is to develop a basic architecture permitting the integration of
lezical reasoning within NLP. In specific, the approach presented in this paper restricts the
complexity of the reasoning task in the following several ways.

e It considers (in a first stage) a single inference task namely, the task of testing whether
given the available lexical knowledge, a potential answer is a real answer to a given
question.

e It concentrates on lezical, rather than fully blown general knowledge reasoning.

e It uses Description Logic (henceforth, DL), rather than the more expressive but less
tractable first order logic, as a logical framework.

e It operates on a set of constructed examples rather than on open domain corpora. The
underlying aim is to establish a systematic test suite on which existing theorem provers
can be compared and optimised with respect to linguistic (rather than mathematical)
problems. Once such an architecture is in place, it becomes possible to test existing
reasoners on linguistic data, to optimise them and eventually to upgrade the approach
with more extensive knowledge and reasoning capacity.

3 The general approach

In this section, we outline the general approach we are pursuing. First, we introduce the
logical framework used namely Description Logic. Second, we define the inference task we
are interested in investigating namely, the semantic comparison, under lexical knowledge of
question and potential answers. Third, we delimit a number of lexical semantics phenomena
the approach is intended to cover. Fourth, we identify the NL processing tools needed to carry
out our basic inference task.

3.1 Description Logic

Description Logic (DL, [1]) provides a natural logical framework in which to reason about
concepts. In this framework, concepts can be defined and ordered under subsumption whilst
assertions can be made about properties of, and relations between, individuals. Moreover,
inference services are available which support the retrieval both of all the concepts true of
an individual and of all the individuals satisfying a given concept. In short, DLs support the
definition and use of subsumption hierarchies i.e., precisely the type of hierarchies we will use
to represent and classify word meanings. The particular language we assume has the following
syntax.

C,D — A|T|L|-A|CND|CUD|VR.C |3R.C

The semantics of this language is given below with A the domain of interpretation and
I the interpretation function which assigns to every atomic concept A, a set A’ C A and to
every atomic role R a binary relation R C A x A.

T = A
o=
(-4 = A
(cnD)y = c'np’
(CubD) = ctubDf!
(VR.C)! = {a€A|Vb(a,b) € RT - beCl}
AR.C) = {acA|TbecCA(a,b) € RIn}

3.2 The task

The task at hand consists in testing whether, given the available lexical knowledge, a potential
answer is a real answer to a given question. In other words, we want to test whether the
denotation of a sentence entails the denotation of another sentence under such lexical relations
as synonymy, troponymy, opposition.

As a first approximation, we assume here that a potential answer A is an answer to a
question () provided its DL representation Cy is subsumed by the DL representation Cg of
the question® given some lexical ontology K Br.. encoding lexical semantic information of the
type contained in WordNet and VerbNet. That is, a text with semantic representation Cy
provides the answer to a text with semantic representation C provided

KBLe:c): CA L CQ

For yes/no questions, we furthermore draw on [3|’s proposal and assume that two queries
are sent to the prover: one where the body (i.e., that part of the semantic representation
associated with the sentence after the wh-phrase has been extracted) of the question is negated
and the other where it is not. The answer is “yes” if the first query is successfull and “no” if
the second query succeeds.

LA more sophisticated account of the relation between question and answer is given in [3] which could be
used to refine the approach proposed here.

3.3 Question/Answers “lexical semantics” mismatches

Most current question answering systems select possible answers based on simple bag-of-words
approach scoring by word intersection between question and potential answers. As mentioned
in section 2, such approaches however have their limits and it is clear that a more semantic
approach could improve precision: as [13] points out, most current QA systems cannot even
differentiate between “the cat ate the mouse” and “the mouse ate the cat” as they include too
little syntactic knowledge for that purpose.

In this section, we illustrate by means of examples the type of question/answer mismatches
lexical reasoning could allow to cover. To do this, we assume that NL sentences are translated
into DL concepts and that the relevant lexical knowledge is encoded in a DL ontology. Sections
4 and 5 then indicate how these each of these processes can be automatised.

Synonymy. Synonyms are words with equivalent meaning (usually within a given context).
Taking synonymy into account will permit proving that (1a) provides a positive answer to
(1b) for instance.

(1) a. Text: John builds a house.
b. Question: Does John construct a house?.
c. Answer: Yes.

Assuming that synonyms are represented by the same concept, then the queries testing
whether (1a) is an answer to (1b) are as given in (2). Since the first query (2a) is verified, the
answer is “yes”.

(2) a. [=+ (Jagent.JohnM BuildConstruct M 3patient. House) C (Jagent.JohnT1 BuildConstruct M

dpatient. House) TRUE
b. |, (Jagent.JohnMBuildConstructMIpatient. House) T (Jagent.John—(BuildConstruct
dpatient. House)) FALSE

A slightly more sophisticated treatment of synonymy where concepts were defined rather
than primitive would further allow to cover cases such as (3)

(3) a. Text: The bag contains nothing.
b. Question: Is the bag emtpy?
c. Answer: Yes.

Assuming “empty” is defined as “containing nothing” and the lexical knowledge base K By,
is updated accordingly with

Empty = Contain M dpatient. |
then the query in (4) is valid thus confirming that (3a) provides a positive answer to (3b).

(4) K Bpe: =2 (Contain M 3theme.Bag M Jpatient. L) T (Empty M Jtheme.Bag) TRUE

Antonymy. As illustrated in (5a-b), a word mismatch between question and answer can
result from the use of antonyms i.e., words with opposite meaning.

(5) a. Text: The bag is empty.
b. Question: Is the bag full?.
c. Answer: No.

Assuming that the antonymy relation between “empty” and “full” is captured by the pres-
ence in K By, of the following statements

(Full T —=Empty) (Empty T —Full)

then (5a) can be proved to provide a negative answer to (5b) as the query in (6) will then
returns true.

(6) K Bpe, =2 (3theme.Bag M Empty) C (3theme.Bag M —Full) TRUE

Hyponymy. Example (7) shows that the mismatch between question and answer can also
come from hyponymy as “liquid, solid” and “steam” are hyponyms of “state”.

(7) a. Text: The water is liquid, solid or steam.
b. Question: What are the three states of the water?

Assuming that hyponymy translates into subsumption and that therefore K By, contains
the following statements:

Liquiq £ State
Solid T State
Steam LC State

Then if (7a-b) are assigned the following DL concept terms

A (Liquid U Solid LI Steam) M Jtheme. Water
Q : State N dtheme.Water

it follows that

K Br.. = (Liquid L Solid LI Steam) M Jtheme.Water) C (State 1 Itheme. Water)

and thus that (7a) is an answer to (7b).

Troponomy. Troponymy is another lexical relation encoded in Wordnet which can help
overcome question/answer mismatches of the type illustrated in example (8).

(8) a. Text: John is running.
b. Question: Is John moving?
c. Answer: Yes.

Specifically, a verb V5 is a troponym of some other verb Vi if V| —ing is V5 — ing in a
p Y pony g g
certain manner. Hence “to run” is a troponym of “to move” and furthermore “to run” implies
“to move”. Assuming that the lexical concepts representing “runs” and “move” are:

Move = Movement 'l dagent.Animate
Run = Move M dmanner.Fast 1 dmeans.Foot

Then provided these definitions are included in K By,

K B, = (RunT 3agent.John) C (Move 1 3agent.John)

is true and it can therefore be proved that (8b) is a positive answer to (8a).

3.4 The tools

Simplified as it is, the reasoning task just described (testing whether given the available
lexical knowledge, a potential answer is a real answer to a given question) cannot currently
be carried out using existing NLP and reasoning resources. Two things are missing: (i) a
means to associate a DL based semantic representation with NL expressions and (ii) a DL
ontology encoding lexical knowledge. The aim of the rest of this paper is to show how such
tools can be developed on the basis of existing resources and how they can be integrated in an
overall architecture which will support lexical reasoning. Specifically, the general architecture
we propose consists of the following components:

1. A test suite: a set of question/answer pairs extracted from the CBC4Kids corpus or
constructed on the basis of these. Question and answers are in natural language (e.g.,
french or english).

2. A lexical ontology: this ontology written in Description Logic and implemented in
RACER encodes lexical knowledge (e.g., the rich verb semantics encoded in VerbNet
[14], synonymy and antonymy between concepts as capture in WordNet etc.)

3. A TAG meta-grammar and a meta-grammar compiler which permits the semi-automatic
creation of a TAG grammar on the basis of factorised syntactic and semantic information.

4. The TAG grammar produced by the meta-grammar compiler. Importantly, this gram-
mar encodes both syntactic and semantic information so that any sentence generated
by that grammar is associated not only with a syntactic structure but also with a DL
based semantic representation of the type illustrated in section 3.3.

5. A parser which given a sentence returns the semantic representation(s) associated by
the grammar with this sentence.

6. A description logic theorem prover (RACER) which is used to check whether the seman-
tic representations of the potential answer entails that of the question.

In this paper, we concentrate on components 2, 3 and 4. Component 5 is already available
(for example the XTAG parser is online which could be adapted to fit the grammar described in
section 4) as well as component 6 (http://kogs-www.informatik.uni-hamburg.de/ race/).
Component 1 (a systematic test suite for lexical reasoning) has yet to be specified and devel-
oped. We leave this question open for the moment.

4 Constructing semantic representations

The first obstacle against systematically testing the inference task sketched in section 3.2
is that there is no existing tool which given some NL sentence S would return a DL based
semantic representation for S.

A simple way to carry this out is to define a grammar which assigns to each sentence it
generates both a syntactic structure and a DL semantic representation. Given this grammar
and a sentence, a parser for this grammar will then not only recognize the input sentence
(provided it is grammatically correct) but also build the syntactic structure and semantic
representation associated by the grammar to this sentence. We now describe such a grammar
and indicate how its production can be semi-automatised.

Specifying a grammar describing both syntax and semantics. The grammar we are
using is a Tree Adjoining Grammar (TAG, [12]) which is based on a flat semantic representation
similar to that described in |6, 2| and uses the unification based syntax/semantic interface
proposed in [10]. It can be sketched as follows (see [10] for further details).

A TAG consists of a set of elementary trees and of two tree combining operations called
substitution and adjunction. In the approach presented in [10], each elementary tree is fur-
thermore associated with a flat semantic formula representing its meaning. Further, some of
the tree nodes are decorated with unification variables and constants occuring in this formula.
The idea behind this is that the association between tree nodes and unification variables en-
codes the syntax/semantics interface — it specifies which node in the tree provides the value
for which variable in the final semantic representation.

As trees combine during derivation, two things happen: (i) variables are unified — both in
the tree and in the associated semantic representation — and (ii) the semantics of the derived
tree is constructed from the conjunction of the semantics of the combined trees. A simple
example will illustrate this.

S
NP |1 VP
L
NP, V NpP|** NPy,
John loves Mary
lo:Love lm:Mary
lj:John Magent.Ly
Mpatient.Lo

Figure 1: “John loves Mary”

b

Suppose the elementary trees for “John”, “loves” and “Mary” are as given in Fig. 1 where
a downarrow (|) indicates a substitution node and C*/C, abbreviate a node with category
C and a top/bottom feature structure including the feature-value pair { index : z}. On
substitution, the root node of the tree being substituted in is unified with the node at which
substitution takes place. Further, when derivation ends, the top and bottom feature structures
of each node in the derived tree are unified. Thus in this case, L; is unified with [; and Ly
with [,,. Hence, the resulting semantics is:

lo:Love T agent.l; M patient.l,,, l;:John l,,:Mary

The intuition between the flat representation used is that labels (e.g.,lo, [}, ;) stand in for
the formula they label®>. Hence the above formula should be viewed as equivalent to the DL
formula:

Love M agent.John 1N patient.Mary

That is, the semantic representations constructed by this grammar are compatible with
the kind of semantic representations assumed in section 3.3.

Implementing this grammar. Writing an extensive grammar with DL semantics (as re-
quired by the inference task we want to investigate) is not a trivial task however. Indeed
grammar writing in general (i.e., with or without a semantic dimenstion) is a reputedly time-
and expertise-costly enterprise. [7] for instance estimates to 11 man/year the time needed
to write ERG, one of the biggest available grammar for English. It is therefore crucial that
grammar writing be made as easy as possible.

For TAG grammars, various tools have been developed which support a partial automation
of grammar generation [16, 4, 19, 8]. The tool we are using is inspired from these and uses
three-dimensional classes to factorise syntactic, semantic and interfacing information: one
dimension is for the specification of syntactic structure using tree descriptions (i.e., trees
which are underspecified with respect to dominance and/or precedence thus representing a
set of possible trees rather than a single tree); a second dimension is used to specify semantic
information using sets of literals; the third dimension has an interface function and supports
variable sharing between classes.

Since space is too limited to define this tool in any details, we will instead try to illustrate
its workings by means of the example metagrammar given in Figure 2 and from which the
lexical entries for intransitive verbs (e.g., “run”) can be compiled out.

The first class definition says that trees for the lexeme “run” can be obtained by conjoining
the classes Intransitive, LemmeRun and UnaryRel(run). The interface constraints further
ensure that the values referred to by the interface features subj and agent are the same.
Intuitively this last constraint ensures that the unification variable appearing on the subject
node of the verb be the same as that appearing in the semantic representation associated with
the verb and abbreviated by the class UnaryRel (run).

The class Intransitive is then defined as the conjunction of the classes SubjCan and
ActiveMorph where each of these two classes abbreviates a tree description capturing the
syntactic configuration in an intransitive TAG tree, of a canonical subject and of a finite verb
respectively.

The class LemmeRun abbreviates three single node tree descriptions each corresponding to
one of the three possible variants of “run”.

Finally the class UnaryRel with parameter Pred abbreviates a semantic representation
of the form !'L:Pred M agent.?A } with !L a skolemised constant, $Pred the value of the
parameter and 7A the value designed by the feature agent through the interface [agent=7A].

In sum, the language used to describe a grammar supports the factorisation of structural
information through tree descriptions; of semantic information through conjunction of literals;
and of value sharing though interface declarations and constraints.

A compiler for this metagrammar language is currently being developed by Denys Duchier
at INRIA Lorraine and tested by various linguists there for different applications. Several

2For more details on flat semantics and their interpretation see [6, 2]

class LexemeRun =
Intransitive:: [suj=74]

& LemmeRun

& UnaryRel (run) :: [agent="7A]

class Intransitive = SubjCan
& ActiveMorph

class SubjCan = <syn>{
node[cat = s]{
node (subst) [cat=n, idx=7W]
node [cat=v]
+
} = [suj=7wW]

class ActiveMorph=<syn>{
node[cat=s]{
node [cat=v]{
node}}}

class LemmeRun =

<syn> { node [cat=v,phon=run] }
| <syn> { node [cat=v,phon=runs] }
| <syn> { node [cat=v,phon=ran] }

class UnaryRel(Pred) =
<gsem> {!L:$Pred I agent.?A } := [agent=7A]

Figure 2: Toy metagrammar

medium size TAG grammars have already been rapidly implemented using that tool and we
are currently using it to develop a TAG grammar with DL semantics which will deliver the
sort of semantic representation assumed in section 3.3.

5 Lexical knowledge and Description Logic Ontology

As illustrated by the examples in (3.3), the lexical knowledge required to bridge words mis-
matches between questions and answers, includes inter alia: synonymy (words with similar
meaning e.g., build/construct), antonymy (words with opposite meanings e.g., dry/wet but
also full/empty), hyperonymy (more or less general means of referring to an object e.g., liq-
uid,solid,steam /state), troponymy (further specification of a verb semantics e.g., move/run)
and fine grained verb semantics (e.g., the fact that giving Y to Z implies that Z has Y).

The four lexical relations of synonymy, antonymy, hyperonymy, troponymy have been
extensively studied and encoded within WordNet. Thus for these relations, a data base exists
which provides the knowledge required to establish that the assertions in 3.3 entails their

corresponding questions and are thus positive answers to these same questions.

This knowledge base however does not support logical inference: it is not equiped with
a reasoner which allows one to check whether one proposition entails another. To put this
knowledge base to work, we now sketch how this knowledge could be encoded into a DL
knowledge base.

Synonyms. In WordNet, quasi-synonyms (i.e., words that have the same meaning within a
certain context) are grouped within so-called “synsets” the intuition being that synsets stand
for lexicalised concepts. Furthermore, each synset is associated with a numerical identifier and
with a gloss giving the intuitive meaning of the lexicalised concept. So for instance, the synset
{ robin, American robin, Turdus migratorius } is associated with the gloss Large American
thrush having a rust-red breast and abdomen .

A simple encoding of synonymy within DL would consist in associating WN synset elements
(i.e., quasi-synonyms) with the same DL concept. In a first approximation, such DL concepts
might be undefined (for instance, “robin”, “American robin” and “Turdus migratorius” would
be associated with the undefined DL concept Robin). In a further refinement step, one could
try to define this concept e.g., on the basis of the gloss so that for instance, Robin might be
defined as

Robin = large T American 1 Thrush 1M 3has.(RustRedBreast M Abdomen)

Hyponymy. WordNet systematically encode hyponymy relations between synsets thus defin-
ing a taxonomy. For instance the hyperonyms for the synset {robin, American robin, Turdus
migratorius} are:

robin, American robin, Turdus migratorius
=> thrush
=> oscine, oscine bird
=> passerine, passeriform bird
=> bird
=> vertebrate, craniate
=> chordate
=> animal, animate beast, creature, fauna
=> organism, being
=> living thing, animate thing
=> object, physical object
=> entity, physical thing

Assuming as above that each synset Syn; translates into a DL concept Cj, then for each
Synset pair Syn; , Syn; in WordNet s.t. Syn; is a hyperonym of Syn;, a DL statement of the
form C; C C} is added to K Bpe,.

Opposition. WordNet encodes both antonymy (a relation between paired words e.g., heavy /light)
and semantic opposition (a relation between words related by antonyms e.g., heavy /weightless).
Both relations can be used to capture the type of mismatches illustrated in section 3.3. Specif-
ically, given two words wi,wy and their associated DL concepts Cy,Cs | if wq,ws are either

10

WN opposites or WN antonyms, then either
Cl E _'CQ and CQ E _|01 (1)

or

Cy = ~Cy (2)
The first case is illustrated by the pair full/empty, the second by the pair dry/wet.

Troponymy. As we saw in section 3.3, a verb V5 is a troponym of some other verb V; if
Vi —ing is Vo, — ing in a certain manner M. Generally, this implication relation between
concepts can be captured by encoding the lexical concepts associated with troponym pairs
according to the following schema:

If V5 is a troponym of V;, (5 is the DL concept representing the meaning of V5, and
Vi —ing means V5 —ing in a certain manner M, then the DL concept representing
the meaning of V; should be of the form G, M 3manner.M (with M the DL concept
representing M).

The table in Figure 3 summarises the relation between WN relations and DL encoding
(with 7 a function mapping words onto DL concepts).

wy, wy are in the same synset T(wy) = 7(ws)

w is a hyponym of w, T(wy) C 7(ws)

wy is a troponym of w; w.r.t manner M | 7(w;) = 7(wq) M Imanner.T(M)

wy is an opposite of ws 7(wy) C =7 (we) and 7(wq) C =7 (wq))
or (1(wy) = —7(wy)

Figure 3: Relation between WN relations and DL encoding

In sum, there are some obvious ways in which existing lexical bases could be used to
construct DL ontologies supporting lexical reasoning. Clearly, the translation techniques just
presented are only a first approximation of what could and should be done. In particular, other
lexical bases should be considered (e.g., VerbNet and Framenet) and finer grained distinctions
need to be made (e.g., to differentiate between the various types of troponymy encoded in
WordNet). There is also the issue of ensuring that the constructed ontology remains con-
sistent (it is unlikely that the hand-constructed WordNet does not contain inconsistencies).
Nonetheless these translation techniques give us some preliminary guidelines on how to pro-
ceed and we are currently developing the software necessary to translate WordNet into a DL
ontology that can be used to support lexical reasoning.

6 Conclusion

We have given some evidence that lexical reasoning could help improve precision in question
answering. Furthermore, we have indicated how the various NLP tools required to perform
an inference based, semantic comparison of question and answer, could be developed.

Current work concentrates on developing these tools, specifying a test suite and validating
the approach on the resulting test suite.

11

References

[1] F. Baader, D. Calvanese, D. Hardi D. McGuiness, and P. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge, 2003.

[2] J. Bos. Predicate logic unplugged. In Paul Dekker and Martin Stokhof, editors, Proceed-
ings of the 10th Amsterdam Colloquium, pages 133—-142, 1995.

[3] Johan Bos and Malte Gabsdil. First-order inference and the interpretation of questions
and answers. In Proceedings of Goetalog 2000. Fourth Workshop on the Semantics and
Pragmatics of Dialogue, 2000.

[4] Marie-Helene Candito. Representation modulaire et parametrable de grammaires electron-
tques lexicalisees. PhD thesis, University of Paris 7, 1999.

[5] C.Johnson, C. Fillmore, M. Petruckand C. Baker, M. Ellsworth, and J. Ruppenhofer.
Framenet: Theory and practice. Technical report, Berkeley, 2002.

[6] A. Copestake, A. Lascarides, and D. Flickinger. An algebra for semantic construction in
constraint-based grammars. In Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, Toulouse, France, 2001.

[7] Ann Copestake and Dan Flickinger. An open-source grammar development environment
and broad-coverage english grammar using hpsg. In Proceedings of the Second conference
on Language Resources and Evaluation (LREC-2000), Athens, Greece, 2000.

[8] Benoit Crabbe and Bertrand Gaiffe. A new metagrammar compiler. In Proc. of the sizth
TAG+ Workshop, Venice, Italy, 2002.

[9] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[10] Claire Gardent and Laura Kallmeyer. Semantic construction in ftag. In Proceedings of the
10th meeting of the Furopean Chapter of the Association for Computational Linguistics,
Budapest, Hungary, 2003.

[11] Volker Haarslev and Ralf Moller. High performance reasoning with very large knowledge
bases: A practical case study. In IJCAIL pages 161-168, 2001.

[12] A. K. Joshi and Y. Schabes. Tree-Adjoning Grammars. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, pages 69-123. Springer, 1997.

[13] Boris Katz and Jimmy Lin. Selectively using relations to improve precision in question
answering. In FACLO3 workshop on question answering, Budapest, 2003.

[14] Karin Kipper, Hoa Trang Dang, and Martha Palmer. Class based construction of a
verb lexicon. In Proceedings of AAAI-2000 Seventeenth National Conference on Artificial
Intelligence, Austin TX, July 30 - August 3 2000.

[15] M. Light, G. Mann, E. Riloff, and E. Breck. Analyses for elucidating current question
answering technology. Journal of Natural Language Engineering, 2001.

[16] Gerald Gazdar Roger Evans and David Weir. Encoding lexicalised tree adjoining gram-
mars with nonmonotonic inheritance hierarchy. In Proceedings of ACL95, 1995.

12

[17]

18]

[19]

R.C. Schank. Conceptual dependency: a theory of natural language understanding. Cog-
nitive Psychology, 1972.

Bonnie Webber, Claire Gardent, and Johan Bos. Position statement: Inference in question
answering. In Proceedings of the third international conference on language resources and
evaluation (LREC), Las Palmas, Canary Islands, Spain, 2002.

Fei Xia, Martha Palmer, K. Vijay-Shanker, and Joseph Rosenzweig. Consistent gram-
mar development using partial-tree descriptions for ltags. In Proc. of the fourth TAG+
Workshop, Philadelphia, 1998.

13

