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Abstract

Recently, proposals have been made to combine Tree Adjoining Gram-
mar (TAG) with either Glue or Flat Semantic Representation Languages. In
this paper, we additionally specify the combination of TAG with λ-based se-
mantics and compare the three approaches. We observe several invariants
and suggest that semantic construction in TAG is governed bya set of gen-
eral principles that can be used to facilitate the design anddevelopment of
TAGs integrating a semantic dimension.

1 A brief introduction to TAG

We use a unification based version of Lexicalised TAG namely,Feature-based
TAG. A Feature-based TAG (FTAG, [?]) consists of a set of (auxiliary or initial)
elementary trees and of two tree composition operations: substitution and adjunc-
tion. Substitution inserts a tree onto the leaf node of another tree1 while adjunction
inserts an auxiliary tree into a derived tree (i.e., either an elementary tree or a tree
resulting from the combination of a derived tree with an elementary tree by means
either of adjunction or of substitution).

In an FTAG, each tree node is associated with two feature structures called
top andbottom. Thetop feature structure encodes information that needs to be
percolated up the tree should an adjunction take place whilst thebottom feature
structure encodes information that remains local to the node at which adjunction
takes place. During derivation, the unifications listed in Figure 1 take place.

1These leaf nodes must be marked for substitution and are graphically distinguished by a dow-
narrow.

1



• The adjunction at some node X withtop featurestX andbottom features
bX , of an auxiliary tree with roottop featuresr and footbottom features
f entails the unification oftX with r and ofbX with f .

• The substitution at some node X withtop featurestX andbottom features
bX , of a tree with roottop featurest and rootbottom featuresb entails the
unification oftX with t and ofbX with b.

• At the end of a derivation, thetop andbottom features of all nodes in the
derived tree are unified.

Figure 1: Unifications in FTAG

2 Combining TAG with three distinct semantic calculi

We now show how TAG can be combined with the three types of semantic calculi
mentioned aboved: flat semantics, glue semantics andλ semantics. The first two
cases have already been discussed in the literature, the third (λ semantics) is a new
proposal.

2.1 Flat semantics

The flat semantics approach to semantic construction in TAG was first presented in
[?] and further elaborated in [?]. It works as follows.

NPj

John

lj :name(j,john)

S

NP↓s VP

V NP↓o NPm

meets Mary
lv :meet(s,o) lm:name(m,mary)

⇒ lj :name(j,john), lm:name(m,mary), lv:meet(j,m)

Figure 2: Flat Semantics for “John meets Mary”

Each elementary tree is associated with a flat semantic representation. For
instance, in Figure 22, the trees forJohn, meetsandMary are associated with the
semanticslj:name(j,john), lm:name(m,mary)andlv:meet(s,o)respectively.

2Here and in what follows, a downarrow (↓) indicates a substitution node and Cx/Cx abbreviate
a node with category C and a top/bottom feature structure including the feature-value pair{ index :
x}.
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Importantly, the arguments of a semantic functor are represented by unification
variables which occur both in the semantic representation of this functor and on
some nodes of the associated syntactic tree. For instance inFigure 2, the two
semantic indicess and o occurring in the semantic representation ofmeetalso
occur on the subject and the object substitution nodes of theassociated elementary
tree.

The value of these arguments is then determined by the unifications resulting
from adjunction and substitution3. For instance, the semantic indicess ando in
the tree formeetare unified by substitution with the semantic indices labelling the
root nodes of the trees forJohnandMary respectively. As a result, the semantics
of John meets Maryis:

lj :name(j,john),ljm:name(m,mary),lv :meet(j,m)

Note that although semantic information is here integratedinto TAG elemen-
tary trees, nothing hinges on this. Indeed as [?, ?] have shown, the semantic infor-
mation needed to guide semantic construction can be automatically extracted from
the elementary trees and the unifications required by semantic construction can be
reconstructed after parsing on the basis of the derivation forest. In other words,
although for readibility we integrate here semantic information into TAG elemen-
tary trees, the approach remains within TAG as it can be reconstructed using a
purely syntactic TAG provided the corresponding semantic information has been
stored and the unifications corresponding to the TAG operations are computed on
the basis of the derivation forest.XS

2.2 Glue semantics

In [?], TAG is combined with glue semantics. For lack of space, we present here
a slightly simplified version of their proposal where in particular we omit their
treatment of what they call “external arguments”.

In the Glue Semantics approach, TAG elementary trees are associated with
so calledmeaning constructorsconsisting of a glue- and of a meaning-part. The
meaning part is aλ-term whilst the glue part is a Linear Logic expression which
specifies how the meaning of the functor arguments combines with that of the func-
tor to determine the meaning of the whole.

As in the flat semantics approach, meanings and trees are related via variables4

in that the glue part of a meaning constructor contains variables which also occur
in the tree. This is illustrated in Figure?? above where e.g., the indexs labelling

3As [?, ?] show, these unifications can be performed either during or after parsing.
4Whilst [?] postulate explicit identifications between tree and meaning constructor variables, we

rely here instead on the unifications performed by the substitution and the adjunction operations.
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NPj

John

john:j

S

NP↓s VP

V NP↓o NPm

meets Mary
λy, x.meet(x, y) : mary:m

o ⊸ s ⊸ v

⇒ john : j, mary : m, λx, y.meet(x, y) : m ⊸ j ⊸ v

Figure 3: Glue Semantics forJohn meets Mary

the subject node of the tree formeetsalso occur in the glue part of the associated
meaning constructor (i.e.,λy, x.meet(x,y): o ⊸ s ⊸ v).

The meaning constructors derived during parsing are then taken as premises to
a linear logic derivation. Following the Curry-Howard isomorphism, a meaning is
computed in parallel.

mary : m λx, y.meet(x,y): m −◦ j −◦ v

λx.meet(x, mary) : j −◦ v john : j

meet(john, mary) : v

2.3 Lambda semantics

We now show how to combine TAG with a Montague style semanticsusing a sim-
ilar process as in the flat and the glue semantic approaches. To start with, each
elementary trees is associated with aλ-term and with a proxy (formally, a con-
stant) for thatλ-term (cf. Figure??). The proxies are then used to specify the
way in which theλ-terms associated with the elementary trees should combine. In
particular, each elementary tree associated with a semantic functor will be labelled
with an application patternindicating how theλ-terms of the arguments should
combine with that of the functor. Formally, this application pattern is a feature
structure which we abbreviate using a more intuitive linearnotation. For instance,
in Figure??below, the terms(meet(o)) abbreviates the feature structure :

2

4

functor s

arg1

»

functor meet
arg1 o

–

3

5

This application pattern indicates that the subject semantics represented by the
proxy s applies to the verb semantics with proxymeetapplied to the object seman-
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tics with proxyo5.

NPj

John

Sm2

NP↓s VPm2
m1

Vm1
s(meet(o)) NP↓o NPm

meets Mary

Proxy λ-term
j ; λP.P (j)
m ; λP.P (m)
meet ; λOλx.O(λy.meet(x, y))

Figure 4:λ-Semantics forJohn meets Mary

As in the other approaches, the value of the application pattern is determined
by the unifications triggered by the substitution and adjunction operations. Thus in
the derivation sketched in Figure??, s(meet(o)) is instantiated by substitution to
j(meet(m)) while the post derivation top and bottom unifications unifiesm2 with
m1 andj(meet(m)) .

The application pattern labelling the root node is then usedto retrieve the cor-
rectλ-terms and build the complexλ-term representing the sentence meaning:

m2 = m1 = j(meet(m))
≡ λP.P (j)(λOλx.O(λy.meet(x, y))(λP.P (m)))
≡ meet(j,m)

3 AV-Principles

The three approaches to TAG-based semantic construction just described share one
characteristic namely:

Semantic construction is guided by unification variables.

In the flat semantic approach, these unification variables are the semantic indices of
semantic functors; In the glue approach, they are part of thetypes that occur in the
meaning constructors and guide the linear logic derivation; And in theλ semantics,
they stand proxy for theλ-term to be combined.

Thus in all three cases, semantic construction is guided by unification variables
which occur both in the elementary trees and in the semantic representations (flat

5Although the feature structures used to represent application terms are recursive, the remark
made at the end of section 2.1 still holds so that the approachremains within TAG provided semantic
information is extracted from the trees and handled in a post-parsing phase.
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formula, meaning constructor or applicative pattern) associated with these trees.
From now on, we refer to these unification variables asassembler variables(AV).

Formally and computationally, it would be nice if a second invariant was true
namely if

the distribution of these assembler variables were the sameacross all
three approaches.

In what follows, we consider additional data and demonstrate that this is almost
the case. Specifically, we show that the emerging differences are due on the one
hand, to the nature of the assembler variables used (recursive for theλ-approach,
atomic for the other two) and on the other hand, to the diverging treatment of scope
ambiguity.

3.1 Predicate/Argument

Consider again the simple example we started with, namelyJohn meets Mary. Sup-
pose that we postulate the following Assembler Variable Principles (AV-principles)
to account for the tree labelling necessary to capture Predicate/Argument relation-
ships6

Let AVb(n) (resp. AVt(n)) denote the value of the assembler variable feature
AV in the bottom (resp. top) feature structure of node n. Theneach elementary tree
τ must conform to the following principles:

Anchor Projection: Given the sequence of nodesa, n1 . . . , nm, ap from the an-
chora to its maximal projection nodeap, then: AVt(a) = AVb(n1), AVt(n1)
= AVb(n2), . . ., AV t(nm) = AVb(ap) with AVt(a) a new variable

Argument Labelling: For all argument node argi in τ , AV t(argi) = x, x a new
variable

ANCHOR PROJECTIONrequires that the anchor node projects its index upwards
to its maximal projection. ARGUMENT LABELLING associates with each argument
node a fresh assembler variable. An argument node is a node representing a syn-
tactic argument e.g., a subject, an object, etc.

If we now decorate the elementary trees entering in the derivation ofJohn meets
Mary according to these principles, we obtain the trees given in Figure??.

The verb (m⊥,m1,m2) and the NP labels (j,m) are imposed by the ANCHOR

PROJECTIONPrinciple. The argument labels (s, o) are fixed by the ARGUMENT

LABELLING Principle.
6These principles as well as the idea to make them explicit were already present in [?]. We

are interested here in identifying the basic differences and similarities between the AV-principles
governing the three semantic calculi.
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NPj

John

Sm2

NP↓s VPm2

m1

Vm1

m⊥
NP↓o NPm

meets Mary

Figure 5: “John meets Mary”

Suppose further that the lexical semantics associated withJon, meeetsand
Mary are as before namely:

FS: name(j,john), name(m,mary), meet(m⊥,s,o)

GS: john:j, mary:m, λy, x.meet(x, y) : o ⊸ (s ⊸ v) ≡ meet(john, mary) : v

LS: : j ; λP.P (j); m; λP.P (m); m⊥ = j(meet(o)), meet; λOλx.O(λy.meet(x, y))

Then the AV-labelling shown in Figure?? appropriately supports all three cal-
culi (cf. section 2). To better illustrate this, we summarise below the unifications
that result from substitution and for each approach, the resulting phrasal semantics.

Unifications: { s = j, o = m, m2 = m1 = m⊥ }

FS: name(j,john), name(m,mary), meet(m⊥,j,m)

GS: john:j, mary:m,λy, x.meet(x,y):m⊸ (j ⊸ v)

LS: m2 = s(meet(o))= λP.P (j)(λOλx.O(λy.meet(x, y))(λP.P (m))) = meet(j,m)

3.2 Modification

The three approaches to semantic construction can be divided into two classes de-
pending on how the semantics of a derived tree is computed from the semantics
of the lexical trees participating in its derivation. In thefirst case (glue and flat
semantics), the semantics of a derived tree is the union of the semantics of the
lexical trees entering the derivation modulo the unifications of the assembler vari-
ables contained in these semantics. By contrast, in the lambda semantics approach,
the semantics of a derived tree is the application pattern ofthe tree root modulo
unifications of AVs.

More generally, the difference is that whilst in the lambda based approach, the
semantics of a tree is expressed by arecursive term(the application pattern of the
tree root), in the other two approaches, the semantics isflat and the dependency
between semantics parts is expressed either by labels (flat semantics) or by types
(glue semantics).

This difference shows in the treatment of modification as follows. In theλ-
based approach, ANCHOR PROJECTIONsuffices to compute the result semantics
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as it ensures (together with the top and bottom unifications performed at each node,
cf. Figure 1) that the application pattern of the main semantic functor is projected
upward to the root node. In contrast, both in the glue and in the flat semantics
approach, it is necessary to pass up indices and types so thatthey are available for
eventual further binding.

For instance for theλ-based approach, the tree foroftenand the final derived
tree can be as given in Figure??.

VPo1

ADVo1

o⊥
VP⋆e

often

Sm2

NP↓s
j VPm2

o1

ADVo1

o⊥
VPe

m1

Vm1

m⊥
NP↓o

m

John often meets Mary

Figure 6: “John often meets Mary” (λ semantics)

The lexical semantics, the unifications resulting from parsing and the resulting
phrasal semantics would then be:

Lex Sem: m⊥ = s(meet(o)), meet; λOλx.O(λy.meet(x, y)) o⊥ = often(e), of-
ten; λP.often(P )

Unifications: { s = j, o = m, m⊥ = m1 = e , o⊥ = o1 = m2 }

Result Sem: m2 = often(j(meet(m)))

In contrast, both the glue and the flat semantic approach require the following
additional principle:

Foot projection: In a modifier-type auxiliary tree with foot node f and root node
r, then: Lt(f) = Lb(r)

This principle in essence ensures that the variable bound bythe modifier is
passed up the tree for eventual binding by another modifier (John often meets Maria
in the street).

Given this additional principle, the tree foroftenand the final derived tree are
as given in Figure??.

The associated AV unification, lexical semantics and the resulting semantics
are as follows:

8



VPe=o1

ADVo1

o⊥
VP⋆e

often

Sm2

NP↓s
j VPm2

e

ADVo1

o⊥
VPe

m1

Vm1

m⊥
NP↓o

m

John often meets Mary

Figure 7: “John often meets Mary” (Glue and Flat Semantics)

Unifications: { s = j, o = m, m⊥ = m1 = m2 = e , o⊥ = o1 = m2 = e }

FS: name(j,john)+name(m,mary)+meet(m⊥ ,s,o)+
often(e)
⇒ name(j,john), name(m,mary), meet(m⊥,j,m), often(m⊥)

GS: john:j, mary:m,λy, x.meet(x,y):o ⊸ (s ⊸ m⊥),
λP.often(P):e ⊸ e

⇒ john:j, mary:m,λy, x.meet(x,y): m ⊸ (j ⊸ m⊥),
λP.often(P ) : m⊥ ⊸ m⊥

Summing up: in the flat/glue approach, a modifier needs to passup the a-
variable of its argument for an eventual further binding. This is ensured by the
FOOT PROJECTIONPrinciple. In theλ-based approach on the other hand, a mod-
ifier must pass up to the root the applicative term resulting from the application
of this modifier to the applicative term associated by semantic composition to the
constituent it modifies. This in turn is ensured by the ANCHOR PROJECTIONPrin-
ciple.

3.3 Control

To capture control phenomena, the flat semantics approach introduces an addi-
tional feature C whose value is constrained to be both the semantic index of the
controller and that of the controllee [?, ?]. We generalise this mechanism to all
three approaches and posit the following additional principle:

Controller/Controllee: In the elementary tree associated with a control verb, the
C feature of the foot node associated with the sentential argument is identi-
fied with its controller label.
Ct(ns) = Lt(nc), with ns the sentential argument node and nc, the controller
node.
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In Figure??, the derivation forJohn tries to meet Maryillustrates this (the C
value is given by the second a-variable occurring on the sentential argument node
in the tree fortries and on the root node of the tree formeet) . Note that Foot
Node Arguments are treated in the same way as Substitution Node Ones. That is,
although in TAG, a sentential argument is usually associated with a foot node, such
a node is not subject to the FOOT PROJECTIONPrinciple (because it is not part of
a modifier-type auxiliary tree).

St2 Sm2,c

NP↓st VPt2
t1

PRO VPm2

m1

NPj Vt1
tτ

S∗ot,st Vm1

mτ
NP↓om

John tries to meet NPm

Mary

Figure 8: “John tries to meet Mary”

As the associated unifications, the lexical and the phrasal semantics given be-
low illustrates, this AV-labelling supports all three approaches.

Unifications: { st = j, ot = m2, c = st, om = m, t⊥ = t1 = t2, m⊥ = m1 = m2 }

FS: name(j,john)+ name(m,mary)+ try(t⊥,st,ot) + meet(m⊥,c,om)
⇒ name(j,john), name(m,mary), try(t⊥,j,m⊥), meet(m⊥,j,m)

GS: john:j, mary:m, λy, x.meet(x,y):om ⊸ (c ⊸ m⊥), λP,x.try(x,P):(c ⊸ o⊥) ⊸

(st ⊸ t⊥)
⇒ john:j, mary:m,λy, x.meet(x,y):m ⊸ (j ⊸ m⊥), λP,x.try(x,P):(j ⊸

m⊥) ⊸ (j ⊸ t⊥)

LS: : m⊥ = c(meet(om))+t⊥ = st(try(ot))
⇒ AV(root) = j(try(j(meet(m))))

4 Conclusion

We have sketched a method for combining TAG withλ-based semantics and com-
pared the resulting calculus for semantic construction with both a glue- and a flat-
semantics approach. In so doing, we have identified the following common seman-
tic principles:

Anchor projection: The anchor node projects its label up to its maximal projec-
tion.
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Argument labelling: In trees associated with semantic functors, each argument
node is labelled with a new a-variable.

Controller/Controllee: In trees associated with control verbs, the av of the con-
troller is identified with the value of the C-feature occuring on the sentential
argument node.

On the other hand, we have shown that theλ-approach differs from both the flat-
and the glue-semantics approach in that it does not require the additional FOOT

PROJECTIONPrinciple. And although space restrictions do not allow us to do so
here, it can also be shown that only the flat-semantics approach requires additional
AV-principles for the treatment of scope ambiguity.

These observations should not be taken as “imperatives”. There are many pos-
sible ways to encode semantics in a grammar; there are various ways of encoding
scope ambiguity; and different syntactic encoding might result in different seman-
tic encoding. Hence the principles identified in this paper are not necessarily true
of all implementations. Nonetheless they suggest an important point namely, that:

The labelling principles necessary to integrate semantic information
into a Tree Adjoining Grammar are (i) limited in numbers and (ii)
partially “reusable” across semantic approaches.

These two points have an obvious practical and theoretical impact. First and
foremost, they suggest that the AV-labelling that is required to augment a syntactic
TAG with semantic information is governed bygeneral principlesin the sense
of Generalised Phrase Structure Grammar (GPSG) or more recently, head-Driven
Phrase Structure Grammar (HPSG): an elementary TAG treeτ is well-formed iff
(i) τ is a well-formed TAG tree and (ii)τ verifies the AV-Principles governing
the specific type of semantics used. This in turn raises the question of how such
principles could be enforced and we are currently investigating how such principles
could be integrated in XMG, an expressive grammar formalism [?] for specifying
and semi-automatically generating Tree-Based Grammar.

A second consequence concerns the mapping between different types of “se-
mantic TAGs” (glue-, flat- orλ-based). Given that the three approaches have much
in common, it should be relatively easy to develop and empirically compare each
of the three approaches within a TAG framework.
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