
Semantic Normalisation : a Framework and an Experiment

Paul Bedaride Claire Gardent
INRIA/LORIA et CNRS/LORIA

Université Henri Poincaré, Nancy Nancy
paul.bedaride@loria.fr claire.gardent@loria.fr

December 1, 2008

Abstract

We present a normalisation framework for linguistic representations and illustrate its
use by normalising the Stanford Dependency graphs (SD) produced by the Stanford parser
into Labelled Stanford Dependency graphs (LSDs). The normalised representations are
evaluated both on a testsuite of constructed examples and on free text. The resulting repre-
sentations improve on standard Predicate/Argument structures produced by SRL by com-
bining role labelling with the semantically oriented features of SDs. Furthermore, the pro-
posed normalisation framework opens the way to stronger normalisation processes which
should be useful in reducing the burden on inference.

1 Introduction

In automated text understanding, there is a tradeoff between the degree of abstraction provided
by the semantic representations used and the complexity of the logical or probabilistic reason-
ing involved. Thus, a system that normalises syntactic passives as actives avoids having to
reason about equivalences between grammatical dependencies. Similarly, normalising phrasal
synonyms into their one word equivalent (e.g., take a turn for the worse/worsen) or converting
the semantic representation of deverbal nominals into their equivalent verbal representations
(Caesar’s destruction of the city/Caesar destroyed the city) avoids having to reason with the
corresponding lexical axioms. In short, the better, semantic representations abstract away from
semantically irrelevant distinctions, the less reasoning needs to be performed.

In this paper, we investigate a normalisation approach and present a framework for normalis-
ing linguistic representations which we apply to converting the dependency structures output by
the Stanford parser (henceforth, Stanford Dependencies or SDs) into labelled SD graphs (LSD)
that is, dependency graphs where grammatical relations have been converted to roles.

The LSD graphs we produce and the normalisation framework we present, provide an inter-
esting alternative both for the shallow Predicate/Argument structures produced by semantic role
labelling (SRL) systems and for the complex logical formulae produced by deep parsers.

Thus as we shall see in Section 2, labelled SDs are richer than the standard Predicate/Ar-
gument structures produced by SRL in that (i) they indicate dependencies between all parts of

1



a sentence, not just the verb and its arguments1 and (ii) they inherit the semantically oriented
features of SDs namely, a detailed set of dependencies, a precise account of noun phrases and a
semantically oriented treatment of role marking prepositions, of heads and of conjunctions.

Furthermore, the normalisation framework (formal system and methodology) we present,
can be extended to model and implement more advanced normalisation steps (e.g., dever-
bal/verbal and phrasal/lexical synonym normalisation) thereby potentially supporting a stronger
normalisation process than the semantic role labelling already supported by SRL systems and
by deep parsers.

In sum, although the normalised SDs presented in this paper, do not exhibit a stronger nor-
malisation than that available in the Predicate/Argument structures already produced by deep
parsers and by SRL systems, we believe that they are interesting in their own right in that they
combine semantic role labelling with the semantic features of SDs. Moreover, the proposed
normalisation framework opens the way for a stronger normalisation process.

The paper is structured as follows. Section 2 presents the representations handled by the
system namely, the SD graphs and their labelled versions, the LSDs. Section 3 presents the
rewriting system used and explains how SDs are converted to LSDs. Section 4 reports on eval-
uation. Section 5 discusses related work and concludes with pointers for further research.

2 (Normalised) Stanford Dependency graphs

Stanford Dependency graphs. SD graphs are syntactic dependency graphs where nodes are
words and edges are labelled with syntactic relations. As detailed in [dMMM06, dMM08], SD
graphs differ from other dependency graphs in several ways. First, they involve an extensive
set of 56 dependency relations. These relations are organised in a hierarchy thereby permitting
underspecifying the relation between a head and its dependent (by using a very generic relation
such as dependent). Second, in contrast to other relational schemes such as the GR [CMB99]
and PARC [KCR+03], NP-internal dependency relations are relatively fine-grained2 thereby
permitting a detailed description of NPs internal structure and providing better support for an
accurate definition of their semantics. Third, heads are constrained to be content words i.e.,
noun, verbs, adjectives, adverbs but also conjunctions. In particular, contrary to the GR scheme,
SD graphs take copula be to be a dependent rather than a head. Fourth, SD graphs are further
simplified in that some nodes may be collapsed. for instance, role marking prepositions are
omitted and a trace kept of that preposition in the dependency name (e.g., prep-on).

The practical adequacy of SD graphs and their ability to support shallow semantic reason-
ing is attested by a relatively high number of experiments. Thus, in 2007, 5 out of the 21
systems submitted to the RTE (Recognising Textual Entailment) challenge used the SD rep-
resentations. SDs have been used in bioinformatics for extracting relations between genes and

1In the CoNLL 2008 shared task on joint parsing of syntactic and semantic dependencies [SJM+08], the aim is
to produce dependency structures labelled with predicate/argument relations. Although such structures are similar
to the LSD graphs we produce, there are differences both in the precise type of structures built and in how these are
built. We discuss this point in more detail in section 5.

2e.g., appos for apposition, nn for noun-noun compounds, num for a numeric modifier and number for an element
in a compound number.

2



love

John Mary
nsubj dobj

love

Mary be John

nsubjpass agentauxpass

love

John Mary
arg0 arg1

Figure 1: SDs and LSDs for ”John loves Mary” and ”Mary is loved by John”

proteins [EOR07, CS07]. It has furthermore been used for opinion extraction [ZJZ06], sentence-
level sentiment analysis [MP07] and information extraction [BCS+07].

Normalised Stanford Dependency graphs. From the SDs produced by the Stanford parser,
we produce labelled SDs where the syntactic relations between a verb and its arguments are
replaced by the roles. For instance, the SDs and LSDs for the sentences “john loves mary” and
“mary is loved by john” are as given in Figure 1. The roles used in LSDs are those used in
the PropBank for core- and adjunct-like arguments namely, A0, A1, A2, A3, A4, AM where AM
covers all PropBank adjunct tags such as AM-TMP, AL-LOC, etc..

As mentioned in the introduction, LSD graphs combine the advantages of SD graphs with
semantic role labelling. From semantic role labelling, they take the more semantic predi-
cate/argument relations. From SD graphs, they inherit the semantic oriented features such as
the deletion of content poor function words, the rich hierarchy of NP internal relations and the
detailed description of the relations holding between words other than the verb and its argu-
ments.

In short, LSD graphs are both more semantic than SD graphs and richer than SRL Predi-
cate/Argument structures.

3 Normalising dependency trees

To normalise the SD graphs, we extend the Stanford parser with a normalisation module
designed to translate the grammatical relations between a verb and its arguments into roles.
This normalisation module consists of an ordered set of rewrite rules and is defined semi-
automatically in a two-step procedure as follows.

First, the rewrite rules for transitive verbs are defined. This first step is done manually and
is based on the XTAG [Gro01] inventory of possible syntactic contexts for verbs of this type.

Second, further rewrite rules for verbs of other classes (ditransitive, verbs with sentential
argument, verbs with one prepositional argument, etc.) are automatically derived from the set
of rewrite rules for transitive verbs and from a small set of “base-form rewrite rules” manually

3



x

y z

x

y z
nsubj dobj arg0 arg1

x

y z t

x

z y
nsubjpass agentauxpass arg0 arg1

Figure 2: Rewriting rules for active and passive

defined for each class. The rules are then lexicalised using the information contained in the
PropBank Frames3.

3.0.1 Defining basic rewrite rules

In the first phase, we manually define a set of rewrite rules for each possible syntactic variation
of a transitive verb.

Using the XTAG Tree Adjoining Grammar [Gro01], we start by listing these variations.
Indeed a Tree Adjoining Grammar (TAG) lists the set of all possible syntactic configurations for
basic clauses and groups them into so-called (tree) families. Thus the Tnx0Vnx1 family is a set
of trees describing the possible syntactic contexts in which a transitive verb can occur. Further,
W1nx0Vnx1 names a tree in that family which describes a syntactic context in which a transitive
verb (nx0Vnx1) occurs together with a canonical nominal subject (nx0) and a questioned object
(W1). We use the XTAG families to produce a list of basic clauses illustrating the possible
syntactic variations of each verb type. For instance, using the Tnx0Vnx1 XTAG family, we
create a “list of Tnx0Vnx1 sentences” i.e.,

(1) “John loves Mary”,“Mary is loved by John”, “Mary, John loves”, “It is Mary who is loved
by John”, “It is John who loves Mary”, “Mary who is loved by John”, “John who loves
Mary”,etc.

We then parse these sentences using the Stanford parser and retrieve the correct dependency
structure from the output thus gathering the set of dependency structures associated by the Stan-
ford parser with the various syntactic realisations of a given verb type.

Finally, for each distinct dependency structure found, we define a rewrite rule which maps
this dependency structure onto a unique (canonical) semantic representation. For instance, the
rewrite rules for the active and passive form of a sentence featuring a transitive verb are as
sketched in Figure 2 (see below for the exact content of these rules).

3The PropBank Frames specify for each verb sense in PropBank, the arguments it accepts and the corresponding
semantic roles.

4



rule nx0Vnx1 {
pattern{
verb:element;
if{verb.verb != "None";}
np0:element;
np1:element;
verb -:nsubj-> np0;
verb -:dobj-> np1;
}
replace {
verb -:arg0-> np0;
verb -:arg1-> np1;
}}

rule nx1Vbynx0 {
pattern{
verb:element;
if{verb.verb != "None";}
np1:element;
be:element;
np0:element;
verb -:nsubjpass-> np1;
verb -:auxpass-> be;
verb -:agent-> np0;

}
replace {
verb -:arg0-> np0;
verb -:arg1-> np1;

}}

Figure 3: Two rewrite rules in the GrGen format

To define our rewrite rules, we resort to a standard rewriting system namely GrGen [KG07].
Used in multiple domains (e.g., formal calculus, combinatoric algebra, operational semantics),
rewriting is a technique for modelling reduction and simplification. For instance, the rewriting
rule r1 : x ∗ y +x ∗ z → x ∗ (y + z) permits factorising 5 ∗ 6+5 ∗ 7+5 ∗ 8 to 5 ∗ ((6+7)+8).
More generally, a rewriting system consists of a set of rewriting rules of the form l→ r where l
and r are filtering and rewriting patterns respectively. Given an object o, such a rule will apply
to o if o satisfies the filtering pattern l. The result of applying a rule to an object o is o where the
sub-part of o matched by l is rewritten according to the rewriting pattern r. Matching consists
in looking for a homograph homomorphism between the pattern graph l and the host graph h
while the allowed rewriting operations include information duplication, deletion and addition4.

In GrGen, the objects handled by rewriting are attributed typed directed multigraphs. These
are directed graphs with typed nodes and edges, where between two nodes more than one edge of
the same type and direction is permitted. According to its type, each node or edge has a defined
set of attributes associated with it. Moreover, the type system suppports multiple inheritance on
node and edge types.

Expressive and efficient, GrGen5 is well suited to specify our normalisation rules. For in-
stance, the rewrite rule sketched in figure 2 can be specified as given in Figure 3. The left
handside (lhs) of the rule specifies a pattern in terms of nodes, node attributes, edge labels and
conditions on nodes. The right handside specifies how to rewrite the subgraphs matched by the
lhs.

More generally, the SD graphs can be seen as attributed typed directed multigraphs where
node attributes are words and edge labels are grammatical relations. Rewrite rules can then

4For a more precise definition of satisfaction, matching and replacement, we refer the reader to [EHK+99].
5There are other rewriting systems available such as in particular, the Tsurgen system used in the Stanford Parser

to map parse trees into dependency graphs. We opted for GrGen instead because it fitted our requirements best.
GrGen is efficient, notationally expressive (for specifying graphs but also rules and rule application strategies) and
comes with a sophisticated debugging environment. Importantly, GrGen developers are also quick to react to ques-
tions and to integrate proposed modifications.

5



be used to modify, add or duplicate information present in the dependency graphs to create
predicate-argument structures.

Typically, rewriting is not confluent (different rule application orders yield different re-
sults)%and GrGen supports various sophisticated control strategies. So far however, we simply
used rule sequencing : rules are tested and fired in the order in which they are listed. They are
ordered by specificity with the most specific rules listed first. For instance, the rule rewriting a
long passive will precede that for a short passive thereby preventing the short passive rule from
applying to a long passive sentence.

We also use GrGen “global rewriting mode”. This ensures that whenever the rule filtering
pattern matches several subgraphs in the input structures, the rewriting operates on each of the
filtered subgraph. As we shall see in section 3, our rewrite rules are applied on not one but
5 dependency graphs at a time. Moreover the same rewrite rules may be applicable to several
subgraphs in a sentence analysis (typically when the sentence contains 2 or more verbs occurring
in the same syntactic configuration). Global rewriting thereby avoids having to iterate over the
rule set.

3.0.2 Deriving new rewrite rules

Manually specifying the normalisation rules is time consuming and error prone. To extend the
approach to all types of verbs and syntactic configurations, we semi-automatically derive new
rewrite rules from existing ones.

Let us call source class, the syntactic class from which we derive new rules, target class, the
syntactic class for which rewrite rules are being derived and base-form rewrite rule, a rewrite
rule operating on a “base-form” that is, either on an active, a passive or a short passive form
subcategorising for canonical (i.e., non extracted) arguments.

Now, let us define the set of primitive rewrite rules used to bootstrap the process as the set
of all rewrite rules defined for the source class together with the set of base-form rewrite rules
defined for the target class.

To derive new rules from the set of primitive rewrite rules, we start by computing the dif-
ferences (in terms of edges, node and labels) between a source base-form rewrite rule (RR) and
either a target, base-form RR (DIFF+arg) or a source non base-form RR (DIFF+movt). We
then use the resulting DIFFs to compute new rewrite rules which differ either from a source
RR by a DIFF+arg patch or from a target base-form RR by a DIFF+movt. Figure 4 illustrates
the idea on a specific example. The RR for a ditransitive verb with questioned object (“What
does John put on the table?”, W1nx0Vnx1pnx2) is derived both by applying a DIFF+W1 patch
to the nx0Vnx1pnx2 active base-form RR (“John put a book on the table.”) and by applying
a DIFF+pnx2 patch to the source RR operating on W1nx0Vnx1 verbs with questioned object
(“Who does Mary love?”). Note that in this way, the same rewrite rule (W1nx0Vnx2nx1) is de-
rived in two different ways namely, from the W1nx0Vnx1 RR by applying a DIFF+pnx2 patch
and from the nx0Vnx1pnx2 RR by applying a DIFF+W1 one. We use this double derivation
process to check the approach consistency and found that in all cases, the same rule is derived
by both possible paths.

Using the method just sketched, we derived 377 rules from a set of 352 primitive rewrite
rules. Although the ratio might seem weak, automating the derivation of rewrite rules facilitates

6



nx0Vnx1 nx0Vnx1pnx2

W1nx0Vnx1 W1nx0Vnx1pnx2

+pnx2

+pnx2

DIFFarg

+W1 +W1DIFFmvt

Source RR Target RR

Base Form RR

Figure 4: Deriving new rules from existing ones

system maintenance and extension. This is because whenever a correction in the set of primitive
rewrite rules is carried out, the change automatically propagates to the related derived rules. In
practice, we found that a real feature when adapting the system to the Propbank data. We believe
that it will also be useful when extending the system to deal with nominalisations.

4 Evaluation and discussion

We evaluated our normalisation method both on a testsuite of constructed examples and on real
world data namely, the Propbank corpus.

4.1 Evaluation on a testsuite of constructed examples

This first evaluation aims to provide a systematic, fine grained assessment of how well the
system normalises each of the several syntactic configurations assigned by XTAG to distinct
verb types. The emphasis is here in covering the most exhaustive set of possible syntactic
configurations possible. Because constructing the examples was intricate and time consuming,
we did not cover all the possibilities described by XTAG however. Instead we concentrated on
listing all the configurations specified by XTAG for 4 very distinct families namely, Tnx0Vnx1,
Tnx0Vnx2nx1,Tnx0Vplnx1 and Tnx0Vnx1pnx2. The first class is the class for transitive
verbs. Because of passive, this class permits many distinct variations. The second class is the
class of verbs with 3 nominal arguments. This class is difficult for role labelling as the distinction
between the complements often relies on semantic rather than syntactic grounds. The third class
is the class of verbs with a particle and 2 nominal arguments (ring up) and the fourth, the class
of ditransitive.

For these constructed sentences, we had no gold standard i.e., no role annotation. Hence we
used logical inference to check normalisation. We proceeded by grouping the test items in (non)
entailment pairs and then checked whether the associated LSDs supported the detection of the
correct entailment relation (i.e., true or false).

The testsuite. Using a restricted lexicon, a set of clauses covering the possible syntactic pat-
terns of the four verb classes and regular expressions describing sentence-semantics pairs, we
develop a script generating (sentence,semantics) pairs where sentences contain one or more

7



clauses. After having manually verified the correctness of the generated pairs, we used them
to construct textual entailment testsuite items that is, pairs of sentences annotated with TRUE

or FALSE dependending on whether the two sentences are related by entailment (TRUE) or not
(FALSE). The resulting testsuite6 contains 4 976 items of which 2 335 are entailments between
a sentence and a clause (1V+TE, example 2), 1 019 between two complex sentences (2V+TE,
example 3) and 1 622 are non-entailments (V-TE, example 4).

(2) T1: John likes the book that Mary put on the table.
T2: John likes a book
Annotations: 1V+TE, TRUE

(3) T1: John likes the book that Mary put on the table.
T2: The book which is put on the table by Mary, is liked by John
Annotations: 2V+TE, TRUE

(4) T1: John likes the book that Mary put on the table.
T2: John likes a table
Annotations: V-TE, FALSE

Checking for entailment. For each testsuite item, we then checked for entailment by translat-
ing LSDs into FOL formulae and checking entailment between the first five LSDs derived from
the parser output for the sentences contained in the testsuite item.

The translation of a LSD into a FOL formula is done as follows. Each node is associated with
an existentially quantified variable and a predication over that variable where the predicate used
is the word labelling the node. Each edge translates to a binary relation between the source and
the target node variables. The overall formula associated with an LSD is then the conjunction
of the predications introduced by each node. For instance, for the LSD given in Figure 1, the
resulting formula is ∃x, y, z : love(x) ∧ john(y) ∧mary(z) ∧ arg0(x, y) ∧ arg1(x, z).

This translation procedure is of course very basic. Nonetheless, because the testsuite builds
on a restricted syntax and vocabulary, it suffices to check how well the normalisation process
succeeds in assigning syntactic variants the same semantic representation.

Results. The test procedure just described is applied to the LSD graphs produced by the nor-
malisation module on the testsuite items. Table 5 gives the results. For each class of testsuite
items (1V+TE, 2V+TE, V-TE), we list the percentage of cases recognised by the system as en-
tailment (+TE) and non entailment (-TE). Because FOL is only semi-decidable, the reasoners do
not always return an answer. The Failure line gives the number of cases for which the reasoners
fail.

The results on positive entailments (1V+TE,2V+TE) show that the proposed normalisation
method is generally successful in recognising syntax based entailments with an overall average
precision of 86.3% (and a breakdown of 94.9% for 1V+TE and 66.6% for 2V+TE cases). Im-
portantly, the results on negative entailments (99.2% overall precision) show that the method

6Available at http://www.loria.fr/˜bedaride/publications/taln08-bedgar/index.
html.

8



family ans 1V+TE 2V+TE V-TE
+TE 585 (98.2%) 212 (72.4%) 0 (0.0%)

Tnx0Vnx1 -TE 11 (1.8%) 79 (27.0%) 57 (100.0%)
Failure 0 (0.0%) 2 (0.6%) 0 (0.0%)

+TE 513 (89.2%) 131 (55.7%) 3 (0.4%)
Tnx0Vnx2nx1 -TE 61 (10.6%) 103 (43.8%) 703 (99.6%)

Failure 1 (0.2%) 1 (0.5%) 0 (0.0%)
+TE 567 (95.5%) 169 (67.9%) 0 (0.0%)

Tnx0Vplnx1 -TE 27 (4.5%) 79 (31.7%) 198 (100.0%)
Failure 0 (0.0%) 1 (0.4%) 0 (0.0%)

+TE 550 (96.5%) 167 (69.0%) 10 (1.5%)
Tnx0Vnx1pnx2 -TE 16 (2.8%) 69 (28.5%) 651 (98.5%)

Failure 4 (0.7%) 6 (2.5%) 0 (0.0%)
+TE 2215 (94.9%) 679 (66.6%) 13 (0.8%)

all -TE 115 (4.9%) 330 (32.4%) 1609 (99.2%)
Failure 5 (0.2%) 10 (1.0%) 0 (0.0%)

Figure 5: Precision on constructed examples. Each cell gives the proportion of cases recognised
as entailment by the system. Bold face figures give the precision i.e., the proportion of answers
given by the system that are correct.

is not overly permissive and does not conflate semantically distinct structures. Finally, it can
be seen that the results degrade for the Tnx0Vnx2nx1 class (John gave Mary a book). This is
due mainly to genuine syntactic ambiguities which cannot be resolved without further semantic
(usually ontological) knowledge. For instance, both The book which John gave the woman and
The woman whom John gave the book are assigned the same dependency structures by the Stan-
ford parser. Hence the same rewrite rule applies to both structures and necessarily assigns one
of them the wrong labelling. Other sources of errors are cases where the DIFF patch used to de-
rive a new rule fail to adequately generalise to the target structure. In such cases, the erroneous
rewrite rule can be modified manually.

4.2 Evaluation on the PropBank

The PropBank (Proposition Bank) was created by semantic annotation of the Wall Street Journal
section of Treebank-2. Each verb occurring in the Treebank has been treated as a semantic pred-
icate and the surrounding text has been annotated for arguments and adjuncts of the predicate as
illustrated in (5).

(5) [A0 He ] [AM-MOD would ] [AM-NEG n’t ] [V accept ] [A1 anything of value ] from
[A2 those he was writing about ] .

The labels used for the core and adjunct-like arguments are the following7. The labels A0 ..
A5 designate arguments associated with a verb predicate as defined in the PropBank Frames

7This is in fact simplified. The PropBank corpus additionally provide information about R-* arguments (a ref-
erence such as a trace to some other argument of A* type) and C-* arguments (a continuation phrase in a split
argument).

9



scheme. A0 is the agent, A1 the patient or the theme. For A2 to A5 no consistent generalisation
can be made and the annotation reflects the decisions made when defining the PropBank Frames
scheme. Further, the AM-T label describes adjunct like arguments of various sorts, where T is
the type of the adjunct. Types include locative, temporal, manner, etc.

We used the PropBank to evaluate our normalisation procedure on free text. As in the
CoNLL (Conference on Natural Language Learning) shared task for SRL, the evaluation metrics
used are precision, recall and F measure. An argument is said to be correctly recognised if
the words spanning the argument as well as its semantic role match the PropBank annotation.
Precision is the proportion of arguments predicted by a system which are correct. Recall is the
proportion of correct arguments which are predicted by a system. F-measure is the harmonic
mean of precision and recall. The results are given below.

args 0 1 2 3 4 5 a m total
recall 68.4% 68.2% 62.4% 47.2% 57.6% 5.3% 0.0% 64.4% 66.1%

precision 88.0% 80.2% 76.4% 83.1% 83.3% 50.0% — 75.0% 80.6%
f-mesure 77.0% 73.7% 68.7% 60.2% 68.1% 9.5% — 69.3% 72.6%

Precision (78.9%) is comparable to the results obtained in the ConLL 2005 SRL shared task
where the top 8 systems have an average precision ranging from 76.55% to 82.28%. Recall
is generally a little low (the ConLL05 recall ranged from 64.99% to 76.78%) for mainly two
reasons: either the Stanford parser, did not deliver the correct analysis or the required rewrite
rule was not present. The missing rewrite rules mainly involve verbs which in the PropBank
are annotated as having 4 or 5 arguments. Since XTAG maximally assigns 3 arguments to a
verb, our rewrite rules fail to capture these cases. We are currently working on integrating the
additional needed rules.

5 Conclusion

Our approach is akin to so-called semantic role labelling (SRL) approaches [CM05] and to
several rewriting approaches developed to modify parsing output in RTE systems [Ass07]. It
differs from the SRL approaches in that unlike most SRLs systems, it is based on a hybrid,
statistic and symbolic, framework. As a result, improving or extending the system can be done
independently of the availability of an appropriately annotated corpus. However, the quality,
performance and coverage of the system remains dependent on those of the Standford parser8,

Our approach also differs from approaches that use the lambda calculus to normalise syn-
tactic variation. In such approaches, a compositional semantics module associates words and
grammar rules or derivation structures with lambda terms which in effect normalise variations
such as for instance, the active/passive variation. One important advantage of lambda based
approaches is that the rewriting system is confluent. The drawback however is that the specifi-
cation of the appropriate lambda terms requires expert linguistic skills. In contrast, the rewrite
rule approach is comparatively easier to handle (the rules presented here were developed by a
computer scientist) and its use is supported by sophisticated developing environments such as

8[KM03] report a label F-mesure of 86.3% on section 23 of the Penn Treebank.

10



GrGen which provides strong notational expressivity (the rewrite rules can include conditions,
can operate on graphs of arbitrary depth, etc. ), a good debugging environment and good pro-
cessing times. In short although, the lambda calculus approach is undoubtly more principled,
the rewrite rule approach is arguably easier to handle and easier to understand.

Normalisation of linguistic representations is not new. It is used in particular, in [BCC+07,
DBBT07, RTF07] for dealing with entailment detection in the RTE (Recognising Textual En-
tailment) challenge. The approach we present here differs from these approaches both by its
systematic treatment of syntactic variation and by its use of GrGen as a framework for spec-
ifying transformations. More generally, our approach emphasises the following three points
namely (i) the systematic testing of all possible syntactic variations (based on the information
contained in XTAG); (ii) the use of an expressive, efficient and well-understood graph rewriting
system for defining transformations; and (iii) the development of a methodology for automati-
cally deriving new rewrite rules from existing ones.

By providing a well-defined framework for specifying, deriving and evaluating rewrite rules,
we strive to develop a system that normalises NLP representations in a way that best supports
semantic processing. The emphasis is on aligning Predicate/Argument structures that diverge
in the surface text but that are semantically similar (e.g., John buy a car from Peter/Peter sells
a car to John). In particular, we plan to extend the system to normalise nominal dependencies
(using NomBank) and converse constructions.

References

[Ass07] Association for Computational Linguistics. Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing, Prague, Czech Republic,
2007.

[BCC+07] D. G. Bobrow, C. Condoravdi, R. S. Crouch, V. de Paiva, L. Karttunen, T. H.
King, R. Nairn, L. Price, and A. Zaenen. Precision-focused textual inference. In
ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Prague, Czech
Republic, 2007.

[BCS+07] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew Broadhead,
and Oren Etzioni. Open information extraction from the web. In Manuela M.
Veloso and Manuela M. Veloso, editors, IJCAI, pages 2670–2676, 2007.

[CM05] Xavier Carreras and Lluis Marquez. Introduction to the conll-2005 shared task:
Semantic role labeling. In Proceeding of the CoNLL-2005 Shared Task: Semantic
Role Labeling, 2005.

[CMB99] J. Carroll, G. Minnen, and T. Briscoe. Corpus annotation for parser evaluation. In
”EACL workshop on Linguistically Interpreted Corpora”, 1999.

[CS07] Andrew B. Clegg and Adrian J. Shepherd. Benchmarking natural-language parsers
for biological applications using dependency graphs. BMC Bioinformatics, 8:24+,
January 2007.

11



[DBBT07] Rodolfo Delmonte, Antonella Bristot, Marco Aldo Piccolino Boniforti, and Sara
Tonelli. Entailment and anaphora resolution in rte3. In ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing, Prague, Czech Republic, 2007.

[dMM08] Marie-Catherine de Marneffe and Christopher D. Manning. The stanford typed
dependencies representations. In COLING’08 Workshop on Cross-framework and
Cross-domain Parser Evaluation, 2008.

[dMMM06] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.
Generating typed dependency parses from phrase structure parses. In LREC-06,
2006.

[EHK+99] H. Ehrig, R. Heckel, M. Korff, Loewe M., L. Ribeiro, A. Wagner, and A. Corra-
dini. Handbook of Graph Grammars and Computing by Graph Transformation.,
volume 1, chapter Algebraic Approaches to Graph Transformation - Part II: Sin-
gle Pushout A. and Comparison with Double Pushout A, pages 247–312. World
Scientific, 1999.

[EOR07] Gunes Erkan, Arzucan Ozgur, and Dragomir R. Radev. Semi-supervised clas-
sification for extracting protein interaction sentences using dependency parsing.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 228–237, Prague, Czech Republic, June 2007. Association for
Computational Linguistics.

[Gro01] XTAG Research Group. A lexicalized tree adjoining grammar for english. Tech-
nical Report IRCS-01-03, IRCS, University of Pennsylvania, 2001.

[KCR+03] T. King, R. Crouch, S. Riezler, M. Dalrymple, and R. Kaplan. The parc 700
dependency bank. In ”EACL workshop on Linguistically Interpreted Corpora”,
2003.

[KG07] Moritz Kroll and Rubino Geis̈. Developing graph transformations with grgen.net.
In Applications of Graph Transformation with Industrial releVancE - AGTIVE
2007, 2007. preliminary version, submitted to AGTIVE 2007.

[KM03] D. Klein and C. Manning. Accurate Unlexicalized Parsing, 2003.

[MP07] Arun Meena and T. V. Prabhakar. Sentence level sentiment analysis in the presence
of conjuncts using linguistic analysis. In ECIR, pages 573–580, 2007.

[RTF07] Aljoscha Burchardtand Nils Reiter, Stefan Thater, and Anette Frank. A semantic
approach to textual entailment: System evaluation and task analysis. In ACL-
PASCAL Workshop on Textual Entailment and Paraphrasing, Prague, Czech Re-
public, 2007.

[SJM+08] Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluı́s Màrquez, and Joakim
Nivre. The CoNLL-2008 shared task on joint parsing of syntactic and semantic

12



dependencies. In Proceedings of the 12th Conference on Computational Natural
Language Learning (CoNLL), Manchester, UK, 2008.

[ZJZ06] Li Zhuang, Feng Jing, and Xiao-Yan Zhu. Movie review mining and summa-
rization. In CIKM ’06: Proceedings of the 15th ACM international conference
on Information and knowledge management, pages 43–50, New York, NY, USA,
2006. ACM.

13


