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Abstract

In this paper, we propose a fine grained
classification of english adjectives geared
at modeling the distinct inference patterns
licensed by each adjective class. We show
how it can be implemented in description
logic and illustrate the predictions made
by a series of examples. The proposal has
been implemented using Description logic
as a semantic representation language and
the prediction verified using the DL theo-
rem prover RACER.

Topics: Textual Entailment, Adjectival Semantics

1 Introduction

Understanding a text is one of the ultimate goals
of computational linguistics. To achieve this goal,
systems need to be developed which can construct
a meaning representation for any given text and
which furthermore, can reason about the meaning
of a text. As is convincingly argued in (rte, 2005),
one of the major inference task involved in that
reasoning is the entailment recognition task:

Does text T1 entail text T2?

Indeed entailment recognition can be used to
determine whether a text fragment answers a
question (e.g., in question answering application),
whether a query is entailed by a relevant document
(in information retrieval), whether a text fragment
entails a specific information nugget (in informa-
tion extraction), etc.

Because the Pascal RTE challenge focuses on
real text, the participating systems must be robust
that is, they must be able to handle unconstrained
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input. Most systems therefore are based on sta-
tistical methods (e.g., stochastic parsing and lex-
ical distance or word overlap for semantic simi-
larity) and few provide for a principled integra-
tion of lexical and compositional semantics. On
the other hand, one of the participant teams has
shown that roughly 50% of the RTE cases could
be handled correctly by a system that would ade-
quately cover semantic entailments that are either
syntax based (e.g., active/passive) or lexical se-
mantics based (e.g., bicycle/bike). Given that the
overall system accuracies hovered between 50 and
60 percent with a baseline of 50 %1, this suggests
that a better integration of syntax, compositional
and lexical semantics might improve entailment
recognition accuracy.

In this paper, we focus on the case of adjec-
tives and explore the entailment patterns that are
supported by the interaction of their lexical and of
their compositional semantics. We start by defin-
ing a classification schema for adjectives based on
their syntactic and semantic properties. We then
associate with each class a set of axioms schemas
and of semantic construction rules and we show
that these correctly predicts the observed entail-
ment patterns. For instance, the approach will ac-
count for the following (non)-entailment cases:

(1) a. John frightened the child
|= The child is afraid

b. John is an alledged murderer
|= Peter claims that John is a murderer
6|= John is a murderer

c. This is a fake bicycle
|= This is a false bike
|= This is not a real bike
6|= This is a bike

150% of the cases were true entailment and 50% were
false ones, hence tossing a coin would get half of the cases
right.



d. John is not awake
|= John sleeps
6|= John does not sleep

The approach is implemented using Description
Logic as a semantic representation language and
tested on a hand-built semantic test suite of ap-
proximately 1 000 items. In the latter part of the
paper we discuss this testsuite and the philosophy
behind it.

2 A fine grained classification for
adjectives

As mentioned above, we semantically classify ad-
jectives based on their lexical, their model theo-
retic and their morpho-derivational properties. To
facilitate the link with compositional semantics
(the construction of a meaning representation for
sentences containing adjectives), we also take into
account syntactic properties such as the predica-
tive/attributive or the static/dynamic distinction.
We now detail each of these properties. The over-
all categorisation system is given in Figure 1.

2.1 Model theoretic properties

The main criteria for classification are given by
(Kamp, 1975; Kamp and Partee, 1995) semantic
classification of adjectives which is based on
whether it is possible to infer from the Adj+N
combination the Adj or the N denotation.

Intersective adjectives (e.g., red) licence the
following inference inference patterns:

A + N |= A

A + N |= N

For instance, if X is a red car then X is a car and
X is red

Subsective adjectives (e.g., big) licence the
following inference pattern:

A + N |= N

For instance, if X is a big mouse, then X is a
mouse but it is not necessarily true X is big

Privative adjectives licence the inference pattern:

A + N |= ¬N

For instance, if X is a fake gun then X is not a gun

Plain non-subsective adjectives (e.g., alledged)
do not licence any inference
For instance, if X is an alleged murderer then it is
unknown whether X is a murderer or not

2.2 Lexical semantics

From the lexical semantics literature, we take
one additional classification criterion namely
antonymy. This term covers different kinds of
opposite polarity relations between adjectives
namly, binary opposition, contraries and multiple
oppositions.

Binary oppositions covers pairs such as wet/dry
which license the following inference pattern:

A1 ≡ ¬A2 ∧ ¬A1 ≡ A2

So that in particular:

wet ≡ ¬dry ∧ ¬wet ≡ dry

Contraries are pairs such as long/short where the
implication is unidirectional:

A1 |= ¬A2 ∧ ¬A1 6|= A2

A2 |= ¬A1 ∧ ¬A2 6|= A1

and in particular:

long |= ¬short ∧ ¬long 6|= short

short |= ¬long ∧ ¬short 6|= long

Multiple oppositions involve a finite set of adjec-
tives (e.g., linguistic/economic/mathematical/... )
which are pairwise mutually exclusive. For a set
of opposed adjectives A1 . . . An, the following ax-
ioms schemas will be licensed:

∀i, j s.t. 1 ≤ i, j ≤ and i 6= j

Ai |= ¬Aj and ¬Ai 6|= Aj

2.2.1 Derivational morphology

We also take into account related forms that is,
whether there exists a noun or a verb that is se-
mantically related to the adjectives being consid-
ered. Moreover, for nominalizations we distin-
guish whether the morphologically related noun is
an event noun or a noun denoting a theta role of
the related verb.

As we shall see, this permits capturing entail-
ment relations between sentences containing mor-
phoderivational variants such as for instance :



(2) a. John is asleep (Adjective → Verb)
|= John sleeps

b. John is absent (Adj. → θ−role Noun)
|= John is the absentee

c. John is deeply asleep (Adj. → evt N.)
|= John’s sleep is deep

2.2.2 Syntactic properties

To better support the syntax/semantic interface,
we refine the semantic classes distinguishable on
the basis of the above criteria with the following
syntactic ones taken from (Quirk et al., 1985).

Attributiveness/Predicativeness. English adjec-
tives can be divided in adjectives which can be
used only predicatively (such as alone), adjectives
which can be used only attributively (such as me-
chanical in mechanical enginner) and adjectives
which can be used in both constructions such as
red.

Modifiability by very. We distinguish between
adjectives such as nice which can be modified by
very (i.e. very nice) and adjectives such as alleged
which cannot (*very alleged).

Staticity/Dynamicity. Dynamic adjectives can be
used in imperative constructions and in the pro-
gressive form (Be reasonable, He is being reason-
able), static adjectives cannot (*Be short, He is be-
ing short).

3 Semantic Classes and textual
entailment recognition

As Figure 1 shows, the proposed classification in-
cludes 15 adjective classes, each with distinct syn-
tactic and semantic properties.

To account for these differences, we define for
each class a set of axiom schemas capturing the
model theoretic, lexical semantics and morpho-
derivational properties of that class. Based on
some basic syntactic patterns, we then show that
these axioms predict the observed textual entail-
ment patterns for that class.

Before we illustrate this approach by means of
an example, we first show how we capture logical
entailment between NL semantic representations
in a description logic setting.

3.1 Using description logic to check
entailment between NL sentences

As argued in (Gardent and Jacquey, 2003), de-
scription logic (DL) is an intuitive framework
within which to perform lexical reasoning: it is
efficient (basic versions of description logics are
decidable), it is tailored to reason about complex
taxonomies (taxonomies of descriptions) and it
is equipped with powerful, freely available auto-
mated provers (such as RACER, (Volker Haarslev,
2001)). For these reasons, we are here exploring a
DL encoding of the entailment recognition task for
the set of examples we are considering.The partic-
ular language we assume has the following syntax.

C, D → A|>|⊥|¬A | C u D | C t D | ∀R.C | ∃R.C

The semantics of this language is given be-
low with ∆ the domain of interpretation and I

the interpretation function which assigns to every
atomic concept A, a set AI ⊆ ∆ and to every
atomic role R a binary relation RI ⊆ ∆ × ∆.

>I = ∆
⊥I = ∅

(¬A)I = ∆\AI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆ | ∀b(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ ∆ | ∃b ∈ CI ∧ (a, b) ∈ RIn}

Now one basic problem with using DL to check
entailment between NL expressions, is that DL
formulae are “directional” in that they refer to a
given set of individuals. For instance the sentence
The boat is floating might be represented by either
of the two formulae given in 3 but these two for-
mulae do not stand in an entailment relation (since
they refer to different kind of objects namely float-
ing event of a boat in 3a and boats that float in 3b).

(3) a. float u∃theme.boat

b. boat u∃theme−1.float

To remedy this shortcoming, we introduce the
notion of a rotation. Given a DL formula which
only contains conjunction (disjunction is trans-
lated in DL as different formulas)
Φ = ui=1,n Eventi uj=1,m ∃Rj.Typej

a rotation of this formula is defined as:

1. Φ

2. ∀j ∈ {1, ..., m} :

Typej u ∃R−1

j .(ui=1,nEventi u1<k<j,j<k<m

∃Rk.Typek)



Adjective Class Predicative/Attributive Modifiable by very static/dynamic Antonymy Related forms Semantic class
Class 1: afloat predicative-only - static multi-opposition Va , Ne , Nθ intersective
Class 2: asleep predicative-only + static binary-opposition Va , Ne , Nθ intersective
Class 3: polite both + dynamic contraries Na intersective
Class 4: dry both + static binary-opposition Va , Ne , Nθ intersective
Class 5: open both - dynamic binary-opposition Va , Ne , Nθ intersective
Class 6: male both - static multi-opposition Na , Ne , intersective
Class 7: authentic both + static binary-opposition Ne intersective
Class 8: big both + static contraries Ne subsective
Class 9: good both + dynamic contraries Ne subsective
Class 10: cultural attributive-only - static multi-opposition Na subsective
Class 11: recent attributive-only + static multi-opposition Ne subsective
Class 12: fake both - static binary-opposition Va ,Ne privative
Class 13: former attributive-only - static multi-opposition privative
Class 14: questionable both + static contraries Va , Ne plain non-subsective
Class 15: alleged attributive-only - static contraries Va plain non-subsective

Figure 1: Classes of Adjectives (in column 6, Ne indicates a related noun that denotes an event and Nθ

noun denoting a theta role of a related verb).

so that the formula:
Event1u Event2 u ...u Eventn u∃R1.Type1

u∃R2.Type2 ... u∃Rn.Typen

corresponds to the following n Rotations each of
which describe the same situation from the point
of view of a particular type

0. Event u∃R1.Type1 u∃R2.Type2 ... u∃Rn.Typen

⊆ Event

1. Type1 u∃R−1

1
.(Event u∃R2.Type2 ... u∃Rn.Typen)

⊆ Type1

2. Type2 u∃R−1

2
.(Event u∃R1.Type1 ... u∃Rn.Typen)

⊆ Type2

...

n. Typen u∃R−1

n .(Event u∃R1.Type1 ... u∃Rn−1.Typen−1)

⊆ Typen

So for example, the sentence Mary knows that
John is the inventor of the radio will be repre-
sented as a predicate logic formula
∃x1mary(x1) ∧ ∃x2john(x2) ∧ ∃x3radio(x3) ∧ ∃e1know(e1) ∧

∃agent(e1 , x1)∧∃topic(e1, e2)∧∃e2invent(e2)∧agent(e2 , x2)∧

patient(e2 , x3)

the denotation of this PL formula corresponds
to the set of individual {x1, x2, x3} ∪ {e1, e2}.
The corresponding DL representation will be the
underspecified representation
know u∃ agent.mary u∃ topic.( invent u∃agent.john u∃

patient.radio)

the denotation of which corresponds to the set
{e1} and all its rotations which permitt to access
the other sets of individuals asserted in the
sentence:
Rotation0: know u∃ agent.mary u∃ topic.( invent

u∃agent.john u∃ patient.radio)

Rotation1: mary u∃ agent−1.(know u∃ topic.( invent

u∃agent.john u∃ patient.radio))

Rotation2: ( invent u∃agent.john u∃ patient.radio)

u∃topic−1.(know u∃agent.mary)

Rotation3: john u∃agent−1.(invent u∃patient.radio

u∃topic−1.(know u∃agent.mary))

Rotation4: radio u∃patient−1.(invent u∃agent.john

u∃topic−1.(know u∃agent.mary))

Finally, we say that an arbitrary for-
mula/representation Φ1 implies the formula
Φ2 iff it is possible to find a rotation Rotationi of
Φ1 the denotation of which describes a subset of
the denotation of Φ2:

Definition

Φ1 |= Φ2 iff ∃i.Rotationi(Φ1) v Φ2 (1)

3.2 Example class axioms and derivations

We now illustrate our approach by looking at two
classes in more detail namely, class 1 and class 8.

3.2.1 Class 1

Syntactically, Class 1 contains adjectives like
adrift,afloat,aground which can only be used pred-
icatively, are non gradable and cannot be modified
by very. Semantically, they are intersective adjec-
tives which enter in multiple opposition relations
with other adjectives. They are furthermore mor-
phologically derived from verbs and can be nom-
inalized. To reflect these semantic properties we
use the following axioms.

Model theoretic semantics. Adjectives of class
1 are intersective adjective. They will thus li-
cence the correponding inference patterns namely:

A + N |= A (2)

A + N |= N (3)

Lexical semantics. Adjectives of class 1 enter
in multiple opposition relations. Hence For



instance:

afloat |= ¬ aground ∧¬ afloat 6|= aground
aground |= ¬ afloat ∧¬ aground 6|= afloat
sunken |= ¬ afloat ∧¬ afloat 6|= sunken
afloat |= ¬ sunken ∧¬ sunken 6|= afloat

Morpho-derivational semantics. Adjectives in
Class 1 can be related to both nouns and verbs.
This is encoded in the following axiom schemas:

MDR 1. Adj1 < ¬ Adj2 If Adj1 = Anto(Adj2)
e.g., afloat < ¬ sunken

MDR 2. Adj1 ≡ ∃ Theme−1.V1 If Adj1 is related to V1
e.g.,afloat ≡ ∃ Theme −1.float

MDR 3. V1 < ¬ V2 If V1 = Anto(V2)
e.g., float < ¬ sink

MDR 4. N1 ≡ V1 If Adj1 is related to an evt denoting N1
e.g., floating ≡ float

MDR 5. N1 < ¬ N2 If N1 is an antonym of N2
e.g., floating < ¬ sinking

MDR 6. N11 ≡ ∃ Theme−1.V1 If Adj1 is related to a
noun N11 denoting the theme role of the verb V1
e.g., floater ≡ ∃ Theme −1.float

We make the following assumptions about the
syntax/semantic interface that is, about the seman-
tic representations associated with given sentence
patterns.

SCR 1. NP toBe Adj
ADJ u NP

SCR 2. NP toBe clearly Adj
ADJ u NP

SCR 3. Ni[+event] of NP is clear
V i u ∃theme.NP

SCR 4. Nii[-event] is clear
∃theme−1.V i

SCR 5. NP toBe V[+ing].
V u ∃Theme.NP

Given the above axiom schemas and semantic
constructions rules, the following inference pat-
terns can be handled:

1. ADJ1 + N |= N
Ex. This boat is afloat. |= This is a boat.

2. ADJ1 + N |= ADJ1
Ex. This boat is afloat. |= This is afloat.

3. ADJ1 + N 6|= ¬ N
Ex. The boat is afloat. 6|= This not a boat.

4. ADJ1 + N |= ¬ ADJ2 u N
Ex. The boat is afloat. |= The boat is not
sunken.

5. ¬ ADJ1 + N 6|= ADJ2 u N
Ex. The boat is not afloat. 6|= The boat is
sunken.

6. ADJ1 + N |= N u∃theme−1.V 1
Ex. The boat is afloat. |= The boat is the
floater.

7. ADJ1 + N |= V1 u∃theme.N
Ex. The boat is afloat. |= The boat is floating.

8. ADJ1 + N |= N1 u∃theme.N
Ex. This boat is clearly afloat. |= The floating
of the boat is clear.

9. ADJ1 + N |= N u∃theme−1.N1
Ex. This boat is clearly afloat. |= The floating
of the boat is clear (or the boat is the floating
object).

10. ¬ (ADJ1 + N) |= ¬ (V1 u∃theme.N) 6|= ¬ N
Ex. This is not a floating boat. 6|= This is not
a boat.

11. ¬ (ADJ1 + N) 6|= ¬ Adj1
Ex. This is not a floating boat. 6|= This is not
afloat.

12. ¬ (ADJ1 + N) 6|= ¬ V1
Ex. This is not a floating boat. 6|= This is not
floating.

13. ¬ (ADJ1 + N) 6|= ¬ N1
Ex. This is not a floating boat. 6|= This is not
a floating.

14. ¬ (ADJ1 + N) 6|= ¬ ∃ theme−1.V1
Ex. This is not a floating boat. 6|= This is not
the floater.

15. ¬ (ADJ1 + N) 6|= ¬ ∃ theme.N
Ex. This is not a floating boat. 6|= This is not
a floating.

In the inference patterns 10 to 15, the negation
of the adjective-noun compound ¬ (ADJ1 + N) is
syntactically blocked, as the adjectives in this class
are used predicative only, however the equivalent
representation V1 u∃theme.N can be used to mo-
tivate the inferences.

The following show in more detail how the first
three of the above (non) entailments are recog-
nised.



Example 1.

(4) a. The boat is afloat.

b. |= The boat is floating.

4a ≡ Boat u Afloat (by SCR 1) A
4b ≡ Float u∃Theme.Boat (by SCR 5) B
Afloat ≡ ∃Theme −1.F loat (by MDR 2) C
1 ≡ Boat u∃Theme−1.F loat (from A and C) D

D |= B (By Defn 1) E

Example 2.

(5) a. The boat is afloat.

b. |= The boat is the floater.

5a ≡ Boat u Afloat (by SCR 1) A
5b ≡ Boat u∃Theme−1.f loat (by SCR 4) B
Afloat ≡ ∃Theme −1.F loat (by MDR 2) C

A |= B (from B und C) D

Example 3.

(6) a. The boat is afloat.

b. |= The boat is not sinking.

6a ≡ Boat u Afloat (by SCR 1) A
6b ≡ ¬ sink u∃Theme.boat (by SCR 5) B
Afloat ≡ ∃Theme −1.F loat (by MDR 2) C

Boat u∃Theme−1.F loat (from A and C) D
float u∃Theme.boat (By Defn 1) E
E |= B (by MDR 1) F

3.2.2 Class 8.

Class 8 contains adjectives like
big,fast,tall,deep which can be used attribu-
tively and predicatively, are gradable, can be
modified by very. Semantically, they are classified
as subsective adjectives and their antonyms are
contraries. They are morphologically related
to nouns which describe the particular property
denoted by the adjectives and to nouns of which
they are attributes.

Model theoretic semantics. Adjectives of
class 8 are subsective adjective. They will thus li-
cence the correponding inference patterns namely:

A + N 6|= A (4)

A + N |= N (5)

Lexical semantics. The Adjectives of class 8
enter in contrary opposition relations. Hence, the
following axioms schemas will be licensed:

Ai |= ¬Anto(Ai) and ¬Ai 6|= Anto(Ai)
(6)

For instance:

long |= ¬ small ∧¬ long 6|= small
deep |= ¬ shallow ∧¬ deep 6|= shallow

Morpho-derivational semantics. Adjectives in
Class 8 can be related to nouns but not to verbs.
This is encoded in the following axiom schemas:

MDR 1. Adj1 < ¬ Adj2 If Adj1 = Anto(Adj2)
Ex. tall < ¬ short

MDR 2. Adj1 < ∃ has property.(N1 u∃has measure.Top)
If Adj1 is related to a noun N1 denoting the property
described by Adj1
Ex. tall < ∃ has property.(tallness
u∃has measure.Top)

MDR 3. N1 < ¬ N2 If N1=Anto(N2)
Ex. tallness < ¬ shortness

MDR 4. N1 ≡ N’ u∃has value.Adj1 u∃has measure.Top
If Adj1 is an attribute of the noun N’
Ex. tallness ≡ height u∃has value.tall
∃has measure.Top

MDR 5. N2 ≡ N’ u∃has value.Adj2 u∃has measure.Top
If Adj2 is an attribute of the noun N’
Ex. shortness ≡ height u∃has value.short
∃has measure.Top

MDR 6. N1 < N’ If N1 is an hyponym of N’
Ex. tallness < height

MDR 7. N2 < N’ If N2 is an hyponym of N’
Ex. shortness < height

MDR 8. Adj11 < Adj1 If Adj1 is a
scalar attribute with value less then Adj11 (hyponymy
is not defined for adjectives)
Ex. giant < tall

We make the following assumptions about the
semantic representations associated with basic
sentence patterns.

SCR 1. NP toBe Adj
NP u∃ has property.(N1 u∃has measure.NP)

SCR 2. That toBe Det Adj NP
NP u∃ has property.(N1 u∃has measure.NP)

SCR 3. NP toBe clearly Adj
NP u∃ has property.(N1 u∃has measure.NP)

SCR 4. N1 of NP is clear
NP u∃ has property.(N1 u∃has measure.NP)

SCR 5. The Adj N’ of NP
NP u∃ has property.(N’ u∃ has value.Adj
u∃has measure.NP )



SCR 6. NP1 toBe Adj as a N
NP1 u N u∃has property.(N’ u∃ value.Adj u∃
has measure.N)

SCR 7. NP1 toBe NP2[+measure] Adj
NP1 u∃has property.(N’ u∃ value.Adj u∃
has measure.NP2)

SCR 8. NP1 toBe NP2[+measure] Adj N
NP1 u N u∃has property.(N’ u∃has value.Adj u∃
has measure.NP2)

Given the above axioms, the following infer-
ence patterns can be handled:

1. ADJ1 + N |= N
This animal is tall. |= This is an animal.

2. ADJ1 + N 6|= ADJ1
This animal is tall. 6|= This is tall.

3. ADJ1 + N 6|= ¬ N
This animal is tall. 6|= This not an animal.

4. ADJ1 + N |= ¬ ADJ2 u N
This animal is tall. |= This animal is not
small.

5. ¬ ADJ1 + N 6|= ADJ2 u N
This animal is not tall. 6|= This animal is
small.

6. ADJ1 + N |= N u∃has property.(N1
u∃has measure.N)
This animal is tall. |= This animal has
tallness.

7. ADJ1 + N 6|= ∃has property.(N1
u∃has measure.Top)
This animal is tall. |= tallness.

8. ADJ1 + N |= N u∃has property.(N’ u∃
has value.ADJ1 u∃has measure.N)
This animal is tall. |= This animal has a tall
stature.

9. ADJ1 + N 6|= ∃has property.(N’ u∃
has value.ADJ1 u∃has measure.Top)
This animal is tall. 6|= tall stature.

10. ¬ (ADJ1 + N) 6|= ¬ N
This is not a tall animal. 6|= This is not an
animal.

11. ¬ (ADJ1 + N) 6|= ¬ ADJ1
This is not a tall animal. 6|= This is not tall.

12. ¬ (ADJ1 + N) 6|= ¬ ∃ has property.(N1
u∃has measure.N)
This is not a tall animal. 6|= This animal has
not tallness.

13. ¬ (ADJ1 + N) 6|= ¬ ∃ has property.(N’ u∃
has value.Adj1 u∃has measure.N)
This is not a tall animal. 6|= This animal has
not a tall stature.

Example 1.

(7) (a) John is a 2 meter tall man. |= (b) John is
2 meter tall.

7a ≡ John u Man u∃has property.(height A
uhas value.tall uhas measure(2 meter) )

(by SCR 8)
7b |= John u∃has property.(height uhas value.tall B

uhas measure(2 meter) )
(by SCR 7 and from A)

A |= B C

(8) (a) John is a 2 meter tall man. 6|= (b) John is
a tall man.

8a ≡ John u Man u∃has property.(height A
uhas value.tall uhas measure(2 meter) )

(by SCR 8)
8b |= John u Man u∃has property.(height u B

has value.tall uhas measure(man) )
(by SCR1 and from A)

A 6|= B C

4 Implementation

For each of the 15 classes, we have specified a set
of axioms schemas, some basic semantic construc-
tion rules and a set of inference patterns which
could be deduced to follow from both of these.
The axioms schemas were implemented in De-
scription Logic using RACER and for each infer-
ence pattern identified, the corresponding Descrip-
tion Logic query was checked to verify that the
proposed axioms and semantic construction rules
did indeed correctly predict the deduced inference
patterns.

5 Further work and evaluation

The main contribution of this work is a detailed
analysis of the interactions between derivational
morphology, lexical and compositional semantics
and of their impact on the entailment patterns li-
censed by sentences containing adjective or their
related nouns/verbs.

To turn this analysis into a computational sys-
tem, its components need to be integrated into a



<pair id="1" value="TRUE" class="[CLASS1]" inference="Adj/Verb">
<t>The boat is <sn n="1"> afloat </sn>.</t>
<h>The boat is floating.</h>

</pair>
<pair id="2" value="FALSE" class="[CLASS6]" inference="Antonymy">

<t>This is not a <sn n="1"> rectangular </sn> table.</t>
<h>This is a <sn n="1"> round </sn> table </h>

</pair>
<pair id="3" value="TRUE" class="[CLASS8]" inference="Adj/Noun">

<t>The line is 2 meter <sn n="1"> long </sn>.</t>
<h>The length of the line is 2 meter.</h>

</pair>
<pair id="4" value="FALSE" class "[subs/intersective]" inference="Attr/Pred">

<t>The treasurer is <sn n="2"> present </sn>.</t>
<h>This is the <sn n="1"> present </sn> treasurer.</h>

</pair>

Figure 2: TestSuite

semantic analyser and the behaviour of that anal-
yser tested against a collection of data. We are
currently working on developing such an anal-
yser within a symbolic grammar framework. We
have also started to develop an evaluation test suite
geared towards entailment recognition between
sentence pairs containing adjectives. At the mo-
ment, the test suite contains about 1 000 inference
pairs in xml format. Each item in the TestSuite
(see fig. 2) is annotated with a judgement about
the truth of the entailment between the pair of sen-
tences, with the type of inference involved and
with the specification of adjective involved. More-
over, each adjective is annotated with the WordNet
sense corresponding to the given class.

The idea behind this test suite is similar to that
underlying the creation of the TSNLP (Test suite
for natural language processing) or the Eurotra
testsuites namely, to provide a benchmark against
which to evaluate and compare existing semantic
analyzers. Thus this test suite illustrates the se-
mantic and syntactic behaviour of adjectives and
their related verbs/nouns with respect to textual
entailment. One could imagine other test suites
illustrating the semantic behaviour of verbs, of
quantifiers, of discourse connectives, etc. Just as
the TSNLP still proves useful in supporting the
development of new symbolic parsers/grammars,
hand built test suites of artificial examples might
prove useful in improving the accuracy of seman-
tic analyser wrt textual entailment. Indeed the Pas-
cal RTE challenge has shown that existing systems

fares rather poortly at the textual entailment task.
Providing a set of hand crafted semantic test suites
might help in remedying this shortcoming.

Beside implementing and evaluating the anal-
ysis of adjectives presented in this paper, we are
also working on refining this analysis by combin-
ing it with a detailed analysis of noun semantics so
as to handle (non) entailments such as:

Lyon is the gastronomical capital of France
6|= Lyon is the capital of France
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