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Abstract

The efficient communication of structured knowledge is a longstanding challenge in Natural
Language Processing (NLP), particularly for Natural Language Generation (NLG). Structured
data, such as Resource Description Framework (RDF) graphs and Abstract Meaning Represen-
tation (AMR) graphs, enables machines to represent knowledge with clarity and consistency.
However, natural language remains the most effective medium for human understanding. This
thesis advances the Graph-to-Text (G2T) generation task by improving the fluency and semantic
faithfulness of text generated from structured graphs in both high- and low-resource languages.

The primary obstacle addressed in the following research is the scarcity of parallel graph-text
data, especially for low-resource languages, which hampers the development and evaluation of
multilingual G2T systems. To mitigate this, the thesis proposes two strategies that exploit
phylogenetic (language-family) information to guide model training. The first strategy intro-
duces monolingual denoising pre-training with phylogeny-informed soft prompts, followed by full
fine-tuning, to improve RDF-to-Text generation in low-resource Celtic languages. The second
strategy presents a multilingual framework for AMR-to-Text generation that combines synthetic
training data with a hierarchical curriculum of Quantized Low-Rank Adapters (QLoRA), also
driven by phylogenetic information. Both methods deliver consistent gains in generation quality,
particularly in languages with limited labeled data, by maximizing cross-lingual transfer while
controlling training noise.

Beyond generation, the thesis examines current evaluation methodologies. Acknowledging the
limitations of reference-based metrics, especially in under-resourced languages. In that regard,
this thesis proposes a reference-less metric for assessing RDF-to-Text generation. Leveraging
Natural Language Inference (NLI), the metric directly measures semantic faithfulness between
graphs and generated texts, providing semantic precision, recall, and F1 figures across diverse
languages.

Collectively, these contributions advance the inclusivity and reliability of multilingual G2T gen-
eration and evaluation. By addressing data scarcity through phylogenetic transfer and designing
principled evaluation frameworks, this research contributes to the democratization of language
technology and promotes equitable access to structured knowledge.

Keywords: Natural Language Generation (NLG), Graph-to-Text (G2T), Multilingual, Low-
Resource (LR) Languages, Phylogenetic Transfer, Semantic Faithfulness, Reference-less Evalua-
tion, Natural Language Inference (NLI).



Résumé

Communiquer efficacement des connaissances structurées demeure un défi majeur du traitement
automatique des langues (TAL), en particulier dans le contexte de la génération automatique
de texte (GAT). Bien que les données structurées telles que les graphes de type RDF (Resource
Description Framework) utilisés dans le Web sémantique, et les graphes de type AMR, (Abstract
Meaning Representation) utilisés pour la représentation du sens d’énoncés permettent aux ma-
chines de représenter les connaissances avec clarté et cohérence, le langage naturel reste le moyen
le plus adapté & la communication humaine. Cette thése vise a faire progresser la génération de
texte a partir de graphes ( Graph-to-Text, G2T) en améliorant la fluidité et la fidélité sémantique
des textes générés dans les langues bien ou moins bien dotées.

Le principal obstacle traité dans ce travail est celui de la rareté des données paralléles graphe-
textes, surtout pour les langues dites peu dotées, ce qui freine le développement et I’évaluation
de systémes G2T multilingues. Pour y remédier, cette thése propose deux stratégies exploitant
I'information phylogénétique (famille de langue) afin de guider I'apprentissage. La premiére
stratégie introduit un pré-apprentissage monolingue de débruitage avec des prompts "souples"
(soft prompts) incluant des informations phylogénétiques, suivi d’'un ajustement (fine-tuning)
complet, pour améliorer la génération de texte & partir de graphes RDF dans des langues cel-
tiques sous-représentées. La deuxiéme stratégie présente un cadre multilingue de génération
de texte a partir de graphes AMR reposant sur des données d’entrainement synthétiques, et
d’adaptation de faible rang quantifiée (Quantized Low-Rank Adapters, QLoRA) également guidée
par de l'information phylogénétique. Les deux approches montrent des gains constants de qual-
ité, en particulier dans les langues pour lesquelles les données annotées sont limitées, ceci grace
& un transfert interlinguistique optimisé et a une maitrise du bruit d’entrainement.

Au-dela de la génération, la thése s’intéresse également aux méthodes d’évaluation actuelles, et
cherche & dépasser les limites des métriques basées sur la référence, en particulier dans le cas des
langues sous-dotées. A cet égard, cette thése propose une métrique multilingue et sans référence
pour I’évaluation de textes générés a partir de graphes RDF. En s’appuyant sur des techniques
d’inférence en langage naturel (Natural Language Inference, NLI), celle-ci mesure directement
la fidélité sémantique entre le graphe d’entrée et le texte généré sous forme de précision, rappel
et F'1 sémantiques, pour diverses langues.

Ces contributions améliorent collectivement l'inclusivité et la fiabilité de la génération et de
Iévaluation G2T multilingues. En abordant la question de la rareté des données via le transfert
phylogénétique et en proposant des cadres d’évaluation fondés sur des principes solides, ce travail
soutient la démocratisation des technologies de traitement de la langue et un accés équitable &
la connaissance structurée.

Mots-clés: Génération automatique de texte (GAT), Génération de texte a partir de graphes,
Multilingue, Langues peu doteé, Transfert phylogénétique, Fidélité sémantique, Evaluation sans
référence, Inférence en langage naturel (NLI).
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Génération et Evaluation de Textes
Multilingues a partir de Graphes

A travers I'Histoire, les sociétés se sont appuyées sur des données structurées pour capturer,
stocker et diffuser le savoir, allant des catalogues antiques jusqu’aux vastes graphes de con-
naissances actuels. A I’ére numérique, les représentations fondées sur les graphes telles que le
Cadre de Description de Ressources (Resource Description Framework, RDF') et la Représen-
tation Sémantique Abstraite (Abstract Meaning Representation, AMR) sont devenues des outils
essentiels pour organiser I'information de facon précise, non ambigué et exploitable par les ma-
chines. Pourtant, aussi utiles soient-elles pour les systémes informatiques, ces structures ne sont
pas naturellement adaptées a l'usage humain. A linverse, le langage naturel demeure notre
mode de communication le plus expressif et accessible, bien qu’ambigu et difficile & interpréter
automatiquement.

La génération de texte a partir de graphes (Graph-to-Text, G2T) se situe a cette intersection
entre connaissances structurées et langage naturel. Elle vise & traduire la connaissance encodée
sous forme de graphes en langage naturel fluide et fidéle sur le plan sémantique (le sens de
I'information encodée dans le graphe doit étre restitué fidélement). Les enjeux sont majeurs :
alors que le volume de données structurées explose, alimenté par des initiatives comme Wikidata
ou Google Knowledge Graph, le besoin de rendre ces informations accessibles dans une grande
majorité de langues s’intensifie.

Malgré les avancées, le domaine G2T reste largement centré sur 'anglais et d’autres langues
qualifiées de bien dotées. Ce n’est pas faute de nécessité, des centaines de millions de locuteurs
de langues peu dotées restent exclus des avancées du domaine, mais en raison de la rareté de
paires graphe-texte de qualité, indispensables pour I'apprentissage et I’évaluation des systémes
de G2T. Le résultat est une fracture numérique persistante qui prive les langues peu dotées des
bénéfices de la génération automatiques de connaissances, accentuant les inégalités globales.

Cette thése s’inscrit dans la volonté de démocratiser ’accés au savoir structuré. Elle reléve
deux défis imbriqués : d’une part, la rareté des données et des méthodes pour le G2T dans les
langues peu dotées, d’autre part 'inadéquation des métriques d’évaluation actuelles, qui dépen-
dent largement de textes de référence souvent inexistants pour une majorité de langues. Répondre
a ces défis est a la fois une question technique, sociale et linguistique, afin que les progrés de
I’accessibilité aux connaissances par I'TA bénéficient a toutes les communautés linguistiques.

Xix



Génération et Evaluation de Textes Multilingues & partir de Graphes

Objectifs et questions de recherche

Pour dépasser ces limitations, ce travail exploite la phylogénie linguistique, I’étude des relations
entre langues, pour orienter I'apprentissage multilingue des modéles G2T et 1 inférence en lan-
gage naturel (Natural Language Inference, NLI) pour I’évaluation. L’objectif est d’améliorer
la génération de texte & partir de données structurées et 1’évaluation de celle-ci en facilitant
le transfert entre langues apparentées et en réduisant la dépendance aux références de qualité.
L’ambition centrale est de promouvoir un G27T inclusif, qui puisse passer & une certaine échelle
tout en restant fidéle sémantique, cela sur un spectre linguistique élargi.

Ce travail s’articule autour de trois questions de recherche principales :

QR1. La génération de texte a partir de graphes RDF dans les langues peu
dotées peut-elle étre améliorée par ’adaptation d’un modéle multilingue avec
des prompts souples (soft prompts) enrichis d’information phylogénétique ?

Cette question s’inscrit dans le contexte de la pénurie de données pour les langues peu dotées.
Elle examine si des soft prompts structurés, encodant la tache et la famille linguistique, peuvent
favoriser un transfert efficace dans trois langues celtiques : le breton, l'irlandais et le gallois.

QR2. La connaissance phylogénétique peut-elle guider I’entrainement multi-
lingue en génération de texte a partir de graphes A MR, tant pour les langues
bien que peu dotées ?

Ici, la thése étend son analyse aux entrées AMR et & douze langues indo-européennes. Elle
explore si 'apprentissage par curriculum structuré selon les relations entre langues, combiné a
une adaptation modulaire, améliore la qualité G2T dans des contextes a ressources variables.

QR3. L’Inférence en Langage Naturel (INLI) peut-elle étre utilisée pour définir
une meétrique d’évaluation sans référence, multilingue, mesurant la fidélité
sémantique en génération de texte a partir de graphes RDF'?

Cette question vise une évaluation qui puisse passer a ’échelle et qui soit indépendante de la
langue, en utilisant la NLI pour mesurer le recouvrement sémantique entre graphes et textes
générés, sans recourir a des références cotiteuses & produire.

Ces axes visent ensemble a élargir I’accés au savoir structuré via des techniques G2T plus inclu-
sives, transférables et robustes.

Plan de la thése

La thése est construite autour de plusieurs axes de recherche interconnectés, chacun répondant
a un enjeu clé de la génération et de I'évaluation G2T multilingues. Elle progresse du cadre
théorique vers les solutions concrétes.

Le Chapitre 1 présente le sujet, les questions de recherche et la structure de la thése.

Le Chapitre 2 propose un état de 'art de la génération automatique de texte (GAT), en se concen-
trant sur G2T, les représentations graphiques, les défis multilingues et les pratiques d’évaluation,
préparant le terrain pour les contributions de la thése.
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Le Chapitre 3 traite la QR1 en introduisant une nouvelle méthode pour la génération de texte a
partir de graphes RDF' dans les langues celtiques peu dotées. La méthode PI-T'ST (Phylogeny-
Inspired Task-Source-Target Soft Prompts) combine un pré-entrainement multilingue avec des
prompts structurés par relations linguistiques, permettant un transfert interlinguistique avec
peu de données.

Le Chapitre 4 répond a la QR2 en appliquant des curricula phylogénétiques et une adaptation
modulaire & la génération de texte & partir de graphes AMR. Le cadre hiérarchique d’adaptateurs
quantifiés de bas rang (Hierarchical Quantized Low-Rank Adapters, HQL), efficace en paramétres,
adapte progressivement les modéles multilingues aux contextes spécifiques a chaque langue,
évalué sur douze langues indo-européennes.

Le Chapitre 5 aborde la QR3 via une métrique d’évaluation sans référence fondée sur la NLI.
Cette métrique calcule la précision, le rappel et le F1 score sémantiques directement & partir
des graphes RDF et des textes générés, permettant une évaluation extensible, interprétable et
indépendante de la langue.

Le Chapitre 6 synthétise les résultats, discute les limites et esquisse des perspectives de recherches
complémentaires. Il réaffirme le fil conducteur de la thése : démocratiser 'accés au savoir
structuré grace a des systémes G2T multilingues fidéles, efficaces et inclusifs.

Méthodes et contributions

Cette section contient un bref résumé de la motivation, de la méthodologie et des résultats
concernant chaque question de recherche.

Avancées de la génération de texte a partir de graphes RDF pour les langues
celtiques

Le premier axe technique vise la génération de texte & partir de graphes RDF dans les langues cel-
tiques & faibles ressources. Alors que les jeux de données de grande taille et les modéles puissants
ont fait progresser le G2T pour les langues bien dotées, la rareté des données reste un obstacle
majeur pour les autres langues. Cette thése pose ’hypothése que la proximité linguistique, les
langues partageant des caractéristiques de famille ou de structure, peut soutenir le transfert in-
terlinguistique. Elle analyse si des soft prompts structurés, informés par la phylogénie, peuvent
renforcer les modéles multilingues en contexte de sous-représentation.

L’approche proposée introduit les soft prompts PI-TST : des prompts modulaires et structurés
qui codent la tache, la famille, le genre et la langue pour la source et la cible. Ceux-ci sont
associés a une base multilingue pré-entrainée (m7T54.). L’apprentissage se déroule en trois
étapes : adaptation du modéle de base par masquage sur corpus monolingue et données RDF' ;
pré-apprentissage non supervisé des prompts via des taches comme la modélisation du langage
ou le deshuffling ; et enfin réglage fin sur des petits ensembles RDF-Texte.

Les résultats expérimentaux montrent que PI-T'ST surpasse ’adaptation compléte du modéle et
des techniques de base telles que Control Prefizes, avec des gains conséquents sur les métriques
automatiques (BLEU, Google BLEU, cosinus LaBSE) et par rapport aux évaluations humaines
(lisibilité, grammaticalité, ordre des mots). Les gains les plus notables sont observés pour le
breton, langue absente du pré-entrainement, validant I’hypothése du transfert phylogénétique.
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Les études d’ablation démontrent que prompts source et cible sont nécessaires, et que la méthode
reste efficiente avec aussi peu que 1 000 exemples par langue.

Curriculum hiérarchique pour la génération de texte multilingue a partir de
graphes AMR

Le second axe aborde la génération de texte & partir de graphes AMR sur un éventail plus large
de langues indo-européennes, bien ou moins bien dotées. Le défi est double : manque de données
annotées et risque que l'entrainement multilingue introduise du bruit.

Pour gérer ce compromis entre manque de données et bruitage, la thése propose HQL, une
stratégie d’apprentissage par curriculum qui affine itérativement un modéle multilingue en mod-
¢les monolingues via des adaptations efficaces en parameétres. Sur une base mT9 4,4 quantifiée
a 4 bits, les daptateurs de bas rang (Low-Rank Adapters, LoRA) permettent un entrainement
modulaire avec de faibles cotits en mémoire et données. La hiérarchie suit : un modéle global
(LO) affiné en groupes de 6 langues (L1), puis bilingues (L2), puis monolingues (L3), chaque
adaptateur LoRA étant réutilisé et étendu a chaque étape, réduisant les cotits d’entrainement.

Deux curricula sont explorés : 'un maximisant la diversité linguistique (Distant Language Hier-
archy, DLH), autre regroupant les langues par similarité ( Phylogenetic Tree Hierarchy, PTH).
Les résultats montrent que les regroupements phylogénétiques sont souvent les plus efficaces, tout
en préservant 'effet de régularisation du mélange. Les deux curricula dépassent généralement
les modéles monolingues et multilingues de référence, ainsi qu’un pipeline Générer-et-Traduire,
surtout pour des langues peu dotées comme l'asturien ou le créole haitien, mais aussi dans
certains contextes de langues & fortes ressources.

Evaluation sans référence : fidélité sémantique multilingue via NLI

Le troisiéme axe concerne la problématique de ’évaluation. La plupart des métriques G2T
(BLEU, ChrF++) dépendent de références de qualité, rares hors de quelques langues. Méme les
métriques sans référence récentes (Data-QuestEval, Factspotter) restent trés centrées sur I'anglais
et d’'utilité diagnostique limitée.

La thése propose une métrique sans référence basée sur la NLI. A partir d’'un modéle mDeBERTa-
v8 multilingue adapté a la NLI puis a la régression, la méthode estime la précision sémantique
(texte sous-entendu par le graphe), le rappel (graphe sous-entendu par le texte), et leur F1, entre
le graphe RDF d’entrée et le texte généré. Les données d’entrainement comprennent 1,77 million
de paires synthétiques graphe-texte en six langues, créées par manipulation des exemples réels
et traduction automatique, avec filtrage pour similarité sémantique et identité linguistique. Les
adaptations complétes et LoRA sont évaluées.

Les résultats montrent une forte corrélation entre la métrique proposée, les jugements humains
et les métriques de référence, bien qu’aucune référence dorée (gold-standard) ne soit requise. La
version LoRA monolingue surpasse les métriques sans référence dans toutes les langues, atteignant
des corrélations de Spearman jusqu’a 0,70 en anglais et 0,67 en russe. La décomposition en scores
de précision et de rappel permet un diagnostic précis de la sur- ou sous-génération, précieux pour
les langues peu dotées et les développements futurs.
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Limites et perspectives

Malgré les avancées, certaines limites persistent :

e La recherche s’appuie sur des données synthétiques pour les langues peu dotées, qui ne
reflétent pas la diversité linguistique ou structurelle, et peuvent introduire des biais.

e La couverture linguistique, bien qu’élargie, reste limitée aux familles indo-européennes.
L’efficacité pour des langues typologiquement différentes reste a explorer.

e La métrique sans référence ne permet pas encore une localisation fine des erreurs, ce qui
limite son utilité pour le diagnostic détaillé.

Dans ce contexte, les perspectives de travail incluent I'amélioration de la qualité et de la diversité
des ressources de données, 'extension de l'expérimentation a d’autres familles et phénoménes
linguistiques, et le développement de méthodes d’évaluation plus interprétables et granulaires.

Conclusion

Cette thése présente des méthodes robustes pour la génération et ’évaluation multilingues G2T,
notamment pour les langues a faibles ressources. En exploitant la structure linguistique et
des techniques d’apprentissage efficaces, elle fait progresser 1’état de l'art pour la génération a
partir de graphes RDF et AMR. Trois contributions majeures se distinguent : des soft prompts
phylogénétiques pour la génération de texte en langues celtiques & partir de graphes RDF, un
curriculum hiérarchique pour la génération a partir de graphes RDF en langues indo-européennes,
et une métrique sans référence basée sur la NLI pour évaluer la fidélité sémantique.

Ces méthodes illustrent comment I'expertise linguistique et I'adaptation ciblée peuvent com-
penser le manque de données et le bruit multilingue, rendant le G2T plus accessible et équitable.
Les implications dépassent la recherche : alors que les applications multilingues deviennent cen-
trales dans la société numérique, les techniques développées ici offrent une base pour des tech-
nologies linguistiques plus inclusives.

Listes de publications

Le contenu de cette thése s’appuie principalement sur les publications suivantes :
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Chapter 1

Introduction

The quest to efficiently store, catalog, and retrieve information has been a constant throughout
human history. This pursuit has fundamentally shaped how societies access, interpret, and ap-
ply knowledge across generations. From Kallimachos’ Pinakes (Blum, 1991) at the Library of
Alexandria in the 3rd century BCE through the Universal Decimal Classification bibliographic
system (Mcllwaine, 1997) from the 19th century to modern knowledge bases like Wikidata (Vran-
deci¢ and Krotzsch, 2014), humans have relied on structured data to store knowledge.

Structured representations, particularly graph-based data that presents information as networks
of concepts or entities interconnected by their relations, offer substantial advantages over un-
structured formats like plain text. The standardized nature of graphs contributes to greater
consistency across different languages, reduces ambiguity, and improves clarity. These properties
enhance their suitability for computational processing and large-scale analysis. Notable exam-
ples include Wikidata (Vrandeci¢ and Krotzsch, 2014) and Google’s Knowledge Graph (Singhal,
2012), both of which significantly facilitate information retrieval. However, while graphs are
ideal for machines, natural language remains more effective for communicating this information
to humans in accessible and engaging ways. Studies have demonstrated that presenting informa-
tion in natural language improves comprehension and decision-making compared to structured
data alone (Gkatzia et al., 2016).

To benefit from both structured graph-based representation and unstructured natural language
text, it is possible to process data in graph form and convert it into fluent natural language. This
approach can be applied in different ways to multiple tasks, it can be used in the verbalization
stage of Information Extraction (IE) systems (Koncel-Kedziorski et al., 2019), to boost question
answering (QA) by enriching the context (Han and Gardent, 2023), or in machine translation
(MT) by providing additional information to the model (Song et al., 2019). These tasks fall under
the field of Natural Language Generation (NLG), a subset of Natural Language Processing (NLP)
that focuses on producing human-readable text from diverse inputs. This thesis focuses on the
Data-to-Text (D2T) generation task, particularly the Graph-to-Text (G2T) branch, where the
input is a graph-structured representation and the output is natural language text.



Chapter 1. Introduction

As with any NLG task, G2T aims to generate fluent and grammatically correct natural language
text. However, it also introduces specific challenges. Notably, the generated text must accurately
reflect the content of the input graph, which requires both semantic precision (including only
content from the graph) and semantic recall (including all content from the graph). These
complementary goals define the broader concept of semantic faithfulness, which is central to
evaluating G2T systems.

While progress has been made in G2T generation for several graph types, challenges persist in
multilingual generation, particularly regarding data availability. Although there are thousands
of languages in the world, and hundreds with over a million speakers, available resources tend
to concentrate on a few (Ruder, 2022). For example, from the 65 million existing Wikipedia
articles, a common source for G2T data, almost half of them belong to just 10 of the 342
supported languages (Wikimedia Foundation, 2025). Furthermore, human-written and validated
(gold-quality) graph-text pairs are scarce even in English, given the time and expertise required
to collect them. This lack of training and evaluation data directly impacts the performance of
G2T systems across all languages, especially in low-resource (LR) ones.

To address these limitations, this thesis proposes methods that leverage phylogenetic informa-
tion (linguistic knowledge about the relationships between languages) to guide multilingual G2T
model training. By incorporating this information, the study aims to enhance performance in
settings with limited data, using multilingual transfer learning for both efficiency and regular-
ization, while mitigating the noise often associated with multilingual training.

Equally important is the challenge of evaluation. Most current G2T evaluation practices rely on
reference-based metrics, which assess similarity between generated outputs and gold-standard
texts. However, these metrics often fail to capture semantic faithfulness and are challenging to
scale across languages that lack high-quality references. To overcome this, the thesis also explores
referenceless evaluation approaches applicable to multiple languages.

1.1 Research Questions

The primary motivation behind this work is to enhance G2T generation and evaluation across
multiple languages, with a particular focus on low-resource languages. Enhancing G2T in this
context can help extend its communicative and informational benefits to a broader population,
contributing to the democratization of language technologies.

To this end, this thesis focuses on two specific structured semantic representations commonly
used in NLP: the Resource Description Framework (RDF) graphs, widely employed in knowledge
bases and linked data applications, and the Abstract Meaning Representation (AMR) graphs,
utilized in language processing tasks. Both formalisms offer structured and language-independent
meaning representations, making them particularly suitable for multilingual G2T tasks.

Building on this context, the thesis examines how to improve text generation and evaluation from
structured semantic representations in multilingual settings, with a special focus on low-resource
settings. Focusing on RDF and AMR as input formats, it explores the impact of language
phylogeny, model adaptation, and referenceless evaluation. The following research questions
guide this investigation.



1.2. Thesis Outline

RQ1l. Can text generation from Resource Description Framework (RDF)
graphs be improved in low-resource languages with limited training examples
by fully fine-tuning a model with soft prompts enriched with phylogenetic
information?

G2T systems in low-resource languages often underperform due to the scarcity of training data.
This question investigates whether combining multilingual knowledge and structured prompt-
ing can compensate for this scarcity in RDF-to-Text generation. The approach is intuitively
motivated by linguistic proximity: related languages often share structural and lexical features,
making it plausible for models to transfer knowledge from high-resource counterparts. By incor-
porating phylogenetically informed soft prompts into training, the model can potentially exploit
cross-lingual similarities while minimizing transfer noise, thereby improving generation quality
even with minimal supervision. The question focuses on three Celtic languages (Breton, Irish,
and Welsh) where resources, while limited, are available.

RQ2. Can text generation from Abstract Meaning Representation (AMR)
graphs be improved using phylogenetic information to guide a model’s training
process in high- and low-resource languages?

This question is also motivated by linguistic proximity, specifically exploring whether a hierar-
chical curriculum learning strategy structured around language family relationships might be a
viable way to facilitate cross-lingual transfer while reducing training noise. This question expands
the scope to a new type of input graph and twelve Indo-European languages: six HR languages
(Dutch, English, French, German, Italian, Spanish) and six related LR languages (Limburgish,
Tok Pisin, Haitian Creole, Luxembourgish, Sicilian, Asturian).

RQ3. Can Natural Language Inference (NLI) be used as the base to de-
velop a referenceless multilingual evaluation metric for multiple facets of se-
mantic faithfulness in RDF-to-Text generation across high- and low-resource
languages?

The widespread use of reference-based metrics, coupled with the limited or outright lack of gold-
quality references in most languages, complicates the evaluation of multilingual G2T systems.
While referenceless metrics exist to address this dependence on gold-quality data, they are mostly
English-centric and only provide a limited coverage of the complex evaluation process. This
question inquires whether an NLI-based approach can assess semantic precision, recall, and
F1 directly between RDF graphs and generated texts. The motivation behind it stems from
independent advances in multilingual NLI and referenceless NLI-based metrics.

1.2 Thesis Outline

Following a foundational overview, the remainder of the thesis is structured around the three
research questions described above, each explored in its dedicated chapter, and concluding with
a synthesis chapter.

Chapter 2 (Background) lays the conceptual groundwork by surveying the evolution of Natural
Language Generation (NLG), with emphasis on model architectures, training strategies, and
adaptation techniques. It then narrows the scope to the Graph-to-Text (G2T) task, discussing the
characteristics of input graphs, such as RDF and AMR, their corresponding datasets, modeling
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approaches, and standard evaluation practices. This chapter situates the thesis within existing
work and highlights current gaps in multilingual and low-resource scenarios.

Chapter 3 (RDF-to-Text Generation of Celtic Languages) addresses RQ1, investigating whether
RDF-to-Text generation in low-resource languages can be improved using a structured soft
prompting method informed by phylogenetic relationships. Focusing on Irish (Gl1), Welsh
(Cym), and Breton (Bre), the chapter details the proposed Phylogeny-Inspired Task-Source-
Target (PI-TST) prompt design, based on monolingual unsupervised pretraining and supervised
fine-tuning. It also presents ablation and data-size experiments, analyzed through both auto-
matic and human evaluations.

Chapter 4 (AMR-to-Text Generation of High- and Low-resource Languages) expands the mul-
tilingual scope to twelve Indo-European languages and shifts the input format from RDF to
AMR, targeting RQ2. This chapter introduces the Hierarchical QLoRA (HQL) framework, a
curriculum-based, multilingual training strategy that utilizes parameter-efficient fine-tuning and
language family hierarchies. It systematically examines how phylogenetic relations and language
grouping impact cross-lingual transfer, particularly in low-resource settings.

Chapter 5 (Referenceless Evaluation of Multilingual RDF-to-Text) responds to RQ3 by propos-
ing a multilingual evaluation metric based on Natural Language Inference (NLI), designed to
function without reference texts. This chapter details the construction of synthetic training
data, the adaptation of an NLI model for regression-based scoring, and the development of a
metric that quantifies semantic precision, recall, and F1. Correlation analyses against both tradi-
tional metrics and human judgments demonstrate its effectiveness across high- and low-resource
languages.

Finally, Chapter 6 (Conclusion) consolidates the key findings of the thesis, reflecting on the
strengths and limitations of the proposed methods. It outlines avenues for future research in
multilingual G2T, particularly regarding linguistic inclusivity, model scalability, and evaluation
interpretability.

1.3 List of Publications

The content of this thesis is primarily based on the following peer-reviewed publications:

e William Soto Martinez, Yannick Parmentier, and Claire Gardent. 2023. Phylogeny-inspired
soft prompts for data-to-text generation in low-resource languages. In Proceedings of the
13th International Joint Conference on Natural Language Processing and the 3rd Confer-
ence of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume
1: Long Papers), pages 186-198, Nusa Dua, Bali. Association for Computational Linguis-
tics.

e William Soto Martinez, Yannick Parmentier, and Claire Gardent. 2024. Generating from
AMRs into high and low-resource languages using phylogenetic knowledge and hierarchical
QLoRA training (HQL). In Proceedings of the 17th International Natural Language Gener-
ation Conference, pages 70-81, Tokyo, Japan. Association for Computational Linguistics.

e William Soto Martinez, Yannick Parmentier, and Claire Gardent. 2025. Semantic Evalua-
tion of Multilingual Data-to-Text Generation via NLI Fine-Tuning: Precision, Recall, and
F1 Scores. In Findings of the 63rd Annual Meeting of the Association for Computational
Linguistics, Vienna, Austria. Association for Computational Linguistics. (To appear).
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This chapter presents a series of concepts, tools, and materials that help situate this thesis within
the extensive body of existing literature. In particular, it covers some basics of current NLG
technology and a more specific overview of different G2T tasks. The information presented in
this chapter helps to understand better the specific research conducted in this thesis, which is
explained in detail in Chapters 3, 4, and 5.

2.1 Basics of NLG

Natural Language Generation (NLG) is a field that studies the production of fluent and gram-
matically correct natural language text. This broad definition encompasses any input the sys-
tem receives, including text, sound, images, video, tables, or graphs. It also allows for various
tasks depending on the relationship between the system’s input and the generated text, such as
translation (Macdonald, 1954), story writing (Meehan, 1977), speech-to-text (Bahl et al., 1983),
simplification (Chandrasekar et al., 1996), summarization (Knight and Marcu, 2000), paraphras-
ing (Barzilay and Lee, 2003), or image captioning (Mason and Charniak, 2014).

While every type of input and its associated tasks have unique characteristics and requirements,
multiple techniques have become standard in the NLG domain because of their efficacy. The
rest of this sub-chapter explores some of the most prominent methods currently in use.



Chapter 2. Background

2.1.1 Brief History

This section outlines relevant developments in the field of Natural Language Generation (NLG),
tracing its evolution from the early symbolic approaches of the mid-20th century to the contem-
porary Neural methods that are the current standard.

Symbolic NLG approaches emerged in the mid-20th century, characterized by the use of explicit,
handcrafted rules to manipulate symbols representing linguistic information. These systems op-
erated on the premise that language generation could be achieved through logical inference and
structured representations. Early applications included machine translation (MT), as demon-
strated by the Georgetown-IBM experiment in 1954 (Macdonald, 1954), and conversational
agents like ELIZA (Weizenbaum, 1966) and SHRDLU (Winograd, 1972). The incorporation
of world knowledge (structured information about the world used to inform the system’s output)
enabled rudimentary inference capabilities, leading to advances in story understanding (Schank
et al., 1973; Cullingford, 1979) and question answering (McKeown, 1982). By the late 1980s
and early 1990s, linguistically motivated systems utilizing grammars (Kasper, 1989) and tem-
plates (Reiter et al., 1995) became prevalent. These systems typically employed a modular
pipeline architecture, dividing the generation process into sub-tasks such as content determina-
tion, text structuring, sentence aggregation, lexicalization, referring expression generation, and
linguistic realization (Reiter and Dale, 2000; Gatt and Krahmer, 2018). While this modular-
ity allowed for fine-grained control and interpretability, it also introduced multiple points of
failure. Errors in one module could propagate through the pipeline, leading to incoherent or
ungrammatical outputs (Meteer, 1991; Robin and McKeown, 1996).

Starting in the late 1970s and gaining prominence in the early 1990s, statistical natural language
generation (NLG) benefited from the increasing availability of computational power and larger
corpora. Unlike symbolic approaches, statistical methods rely on probabilistic models to learn
language patterns from data, reducing the need for manual rule creation. Hidden Markov Models
(HMM), a stochastic technique to model systems, were initially applied to the Speech-to-Text
task (Jelinek, 1976) and later substituted by n-gram models (Bahl et al., 1983). Similar n-gram
models were also used for machine translation (Brown et al., 1990). These data-driven approaches
extended to generating text from structured input like graphs (Langkilde and Knight, 1998a),
numerical data files (Belz, 2005), and database records (Konstas and Lapata, 2013). While
statistical models improved scalability and robustness, they often struggled with maintaining
global coherence and fluency, as their reliance on local context limited their ability to capture
long-range dependencies in language.

Neural NLG emerged in the early 2000s with the introduction of models based on neural networks.
Bengio et al. (2003) proposed a Feedforward Neural Network (FNN) for language modeling,
marking a shift towards distributed representations of words. Subsequent advancements included
the use of Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks
for sequence modeling. Sutskever et al. (2014) introduced the Sequence-to-Sequence (Seq2Seq)
framework using LSTMs for machine translation. Around the same time, also for machine trans-
lation, Cho et al. (2014) proposed the RNN encoder-decoder architecture for machine translation,
where an encoder processes the input sequence into a fixed-length vector, and a decoder gen-
erates the output sequence based on this vector. However, the fixed-length context vector was
identified as a bottleneck, limiting the model’s ability to handle long sequences. To address this,
Bahdanau et al. (2014) introduced an attention mechanism, allowing the decoder to access all
encoder states and focus on relevant parts of the input during generation.
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Finally, Vaswani et al. (2017) further explored the concept of attention in their seminal paper
Attention is All You Need, which proposed the transformer architecture: a model relying solely
on attention mechanisms, eliminating recurrence. The transformer architecture has since be-
come the foundation for state-of-the-art NLG systems, including the ones used in this research.
Given its prominence, the following section offers a more detailed examination of the transformer
architecture.

2.1.2 Transformers

The transformer architecture, shown in Figure 2.1, was introduced by Vaswani et al. (2017).
It was developed at Google Brain and Google Research and was initially proposed for machine
translation. Since then, it has become the standard for many Natural Language Processing and
Natural Language Generation tasks. This section summarizes its core innovations, as it is the
primary architecture employed in this thesis.
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malization layers are not shown for simplicity.



Chapter 2. Background

The main contribution of Vaswani et al. (2017) was the introduction of a novel encoder-decoder
architecture: the transformer. This architecture relies solely on attention mechanisms, eliminat-
ing the need for recurrence or convolutions. The traditional Bidirectional RNN (BiRNN) encoder
is replaced by a transformer encoder composed of a multi-head self-attention mechanism, which
computes contextualized representations by attending to all positions in the input sequence. The
self-attention is followed by a position-wise Feedforward Neural Network (FNN). Similarly, the
Autoregressive RNN decoder is replaced by a transformer decoder, which includes a masked
multi-head self-attention mechanism that ensures each position only attends to earlier positions
in the output sequence, enforcing the autoregressive behavior. This self-attention is followed by
a cross-attention mechanism, where the decoder attends to the encoder’s output representations,
and another position-wise FNN. Each sub-layer in both the encoder and decoder is wrapped
with residual connections and followed by layer normalization, which stabilizes training. These
innovations eliminate the sequential processing constraints of RNNs, enabling parallel processing
during training and thereby improving efficiency. Moreover, the cross-attention mechanism en-
ables the decoder to access all encoder outputs at each decoding step, rather than relying solely
on the final hidden state as in traditional RNN architectures. This design facilitates the stacking
of multiple transformer blocks, resulting in deeper models with increased capacity.

The architecture is centered around the Scaled Dot-Product attention mechanism, shown in Fig-
ure 2.2. This attention mechanism improved upon previous attention methods such as additive
attention (Bahdanau et al., 2014) and multiplicative (dot-product) attention (Luong et al., 2015).
The additive attention mechanism computes attention weights using an FNN that combines the
decoder’s current hidden state with each encoder hidden state. This approach is practical for
variable-length input sequences and performs well at low dimension but suffers from a high
computational cost due to the complexity of the FNN. A more efficient variant of the multiplica-
tive attention mechanism was later proposed, based on the dot product between the decoder
and encoder hidden states. Despite the gains in computational efficiency, it was consistently
outperformed by the additive approach (Britz et al., 2017).
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Vaswani et al. (2017) noted that as vector dimensionality increases, the magnitude of their
dot products also increases, potentially pushing the softmax to produce vanishing gradients.
To address this, they introduced a scaling factor that divides the dot product by the square
root of the input dimension before applying the softmax. Using that scaling maintains stable
gradients during training and preserves the computational advantages of dot-product similarity
without sacrificing performance. Furthermore, since the attention mechanism is parallelizable,
all pairwise dot products can be computed as a matrix multiplication. This type of operation
benefits from highly optimized implementations on modern hardware, particularly in Graphics
Processing Units (GPUs).

A notable innovation of this attention mechanism is the use of separate projection matrices
for Queries (Q), Keys (K), and Values (V). Prior approaches often used the same vectors for
computing attention weights and transferring information. By using distinct linear projections,
the transformer allows input sequences to be projected into multiple representation subspaces:
@ and K are used to compute attention weights, and V' defines the transferred information.

The attention mechanism also supports an optional masking step, applied before the softmax
operation, which sets certain positions to negative infinity, which turn to zero after the softmax.
This masking prevents the model from attending to future tokens during training for autore-
gressive tasks such as language modeling, thus enabling the architecture to operate in either
bidirectional or unidirectional modes.

In summary, if ), K, and V are matrices derived from the input embeddings through learned
transformations, M is the mask matrix, and dj is the dimension of the K vectors, the scaled
dot-product attention mechanism can be described by Equation 2.1.

QK"
vy,

While the scaled dot-product attention mechanism enables parallel modeling of dependencies,
a single attention head operates in only one representation subspace. Relying on a unique
representation can limit the model’s ability to capture diverse features across the input. To
overcome this, the scaled dot-product attention of transformers has multi-head attention, which
employs multiple attention heads, each with its own @, K, and V projections. These heads attend
to information from different subspaces and positions in parallel. The outputs are concatenated
and projected through another linear transformation to produce a final representation. In a
setup with h attention heads, where WiQ, VVZ-K , and VViV are the projection matrices for the i-th
attention head, and W is an output projection matrix, each attention head can be described
by Equation 2.2, and the multi-head attention can be defined by Equation 2.3.

Attention(Q, K, V') = softmax < + M) |4 (2.1)

head; = Attention(QWiQ, KwE vw)) (2.2)

MultiHead(Q, K, V) = Concat(heady, . .., head;,) W (2.3)



Chapter 2. Background

At the start of both the encoder and decoder, token embeddings are passed through an embedding
layer that maps them into a continuous vector space. As the model does not encode sequence
order by default, a positional encoding is added to these embeddings. This encoding enables the
model to capture both the relative and absolute positions of tokens within a sequence. Finally, the
decoder output is passed through a linear transformation and softmax to generate a probability
distribution over the vocabulary.

Although the transformer was initially presented in an encoder-decoder configuration, it quickly
evolved into decoder-only and encoder-only variants. The decoder-only configuration, popular-
ized by the Generative Pre-trained Transformer (GPT) from (Radford et al., 2018), uses only
the decoder and omits the cross-attention mechanism. It employs masked self-attention and is
optimized for autoregressive generation. Its streamlined design allows faster training, making
it well-suited for large-scale language modeling. In contrast, the encoder-only configuration,
famously started with the Bidirectional Encoder Representations from Transformers (BERT)
by Devlin et al. (2019). This configuration retains only the encoder and has been highly suc-
cessful for Natural Language Understanding (NLU) tasks, such as Natural Language Inference
(NLI), Part-of-Speech (POS) tagging, sentiment analysis, and text embeddings. Figure 2.3 shows
simplified diagrams of both configurations.
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F1a. 2.3: Encoder-only and decoder-only transformer architectures simplified. Positional encod-
ings and normalization layers are not shown for simplicity.
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Despite the emergence of these variants, the encoder-decoder configuration remains central in
NLG, especially in Sequence-to-Sequence (Seq2Seq) tasks, such as machine translation and
Graph-to-Text, where full access to the input is essential. While the decoder-only models often
excel in zero-shot and transfer learning settings, studies have shown that encoder-decoder models
typically outperform them after supervised fine-tuning (Raffel et al., 2020; Wang et al., 2022;
Zhang et al., 2022). Furthermore, encoder-decoder architectures offer efficiency advantages in
low-parameter settings and are particularly well-suited for asymmetric tasks where input and
output distributions differ (Elfeki et al., 2025).

2.1.3 Training Strategies

Natural Language Generation (NLG) training strategies have evolved significantly, encompassing
various approaches to optimize model performance. This section covers the most predominant
strategies, starting with basic early techniques, such as pre-training and fine-tuning, and pro-
gressing to more specialized concepts, including multilingual training and curriculum learning.

Initially, neural models for supervised tasks were trained from scratch, with random weight
initialization. However, this often led to suboptimal solutions, especially in deep architectures,
due to challenges like vanishing gradients and poor local minima. To address this, Hinton
et al. (2006) introduced a greedy layer-wise unsupervised pre-training method for deep belief
networks. This approach significantly improved convergence during subsequent supervised fine-
tuning. Erhan et al. (2010) further demonstrated that unsupervised pre-training acts as a form
of regularization, guiding the optimization process towards regions in the parameter space that
support better generalization. In essence, pre-training enhances model performance by leveraging
the abundance of unlabeled data, which is typically more accessible than labeled datasets.

Various transformation-based objectives have been employed to pre-train transformer models
using unlabeled text, to instill general linguistic knowledge before task-specific fine-tuning.
BERT (Devlin et al., 2019) utilized the Masked Language Modeling (MLM) objective, where
a subset of input tokens is replaced with a [MASK] token, and the model learns to predict these
masked tokens. GPT (Radford et al., 2018) and its successors (Radford et al., 2019; Brown et al.,
2020) adopted the Causal Language Modeling (CLM) objective, training the model to predict
the next token in a sequence, thereby enabling left-to-right text generation. The Text-to-Text
Transfer Transformer (T5) by Raffel et al. (2020) introduced a span corruption objective, where
contiguous spans of tokens are replaced with unique sentinel tokens, and the model is trained
only to reconstruct the missing spans, facilitating a text-to-text framework. The Bidirectional
and Auto-Regressive Transformer (BART) from Lewis et al. (2020) employs a denoising autoen-
coder approach. First, they applied a combination of noise functions like token masking, token
deletion, text infilling, sentence permutation, and document rotation to corrupt the input text.
Then, they pre-trained the model to reconstruct the original text from the corrupted version. All
these objectives differ in their approach to capturing inherent language knowledge from unlabeled
data. Table 2.1, on the next page, shows examples of these pre-training objectives.
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L Pre-training Objective L Input L Output J

Masked Language Modeling | The [MASK] sleeps. cat

Causal Language Modeling [BOS| The cat The cat sleeps.

Span Corruption The [X] sleeps. [X] cat [Y]

Text Infilling/Maskingt [MASK] sleeps. The cat sleeps.
Token Maskingf The [MASK] sleeps. The cat sleeps.
Token Deletiont The sleeps. The cat sleeps.
Document Rotationf sleeps. The cat The cat sleeps.

TAB. 2.1: Pre-training objectives examples applied to "The cat sleeps."
TThese are some of the BART corruption objectives.

After pre-training to acquire general language knowledge, a model can be fine-tuned for specific
tasks. Multiple versions of the same pre-trained model, such as BERT or GPT, can be fine-tuned
on different datasets to specialize in various applications. In this case, all that is required is a
labeled dataset consisting of specific inputs and associated outputs. Table 2.2 shows examples
of some of those tasks.

L Task L Input L Output J
Translation The cat sleeps. Le chat dort.
Text Classification The cat sleeps. Animals
POS Tagging The cat sleeps. DET NOUN VERB
Question Answering The cat sleeps. Who sleeps? The cat
Natural Language Inference | Cats are mammals. Cats are animals. | Entailment

TAB. 2.2: Fine-tuning tasks examples.

Alternatively, fine-tuning can target multiple tasks simultaneously, as exemplified by the T5
model. This approach increases the amount of available supervision, which helps mitigate over-
fitting (where a model performs well on training data but poorly on unseen data), enhances
generalization, and facilitates transfer learning (where knowledge learned from one task bene-
fits another). However, fine-tuning carries the risk of catastrophic forgetting, particularly when
moving from general-purpose to particular tasks.

There are two common strategies when fine-tuning on multiple tasks: 1) Supplementary Training
on Intermediate Labeled data Tasks (STILTs), where a model is first fine-tuned on an auxiliary
task before the main task, and 2) Multi-Task Learning (MTL), where several tasks are fine-tuned
jointly. Weller et al. (2022) found that MTL performs better for target tasks with fewer training
examples than the supporting task, whereas STILTs are more advantageous when the target task
has more data than the supporting task.

Similar to training a single model to perform multiple tasks simultaneously, it is also possible to
train a single model to process or generate various languages concurrently. This approach offers
benefits, including increased efficiency by reducing the number of models required for diverse
use cases and facilitating knowledge transfer across different languages. However, it is essential
to acknowledge potential challenges, including negative transfer effects across languages or the
risk of overfitting to high-resource languages if data sampling is not balanced correctly. Aharoni
et al. (2019) introduced the first multilingual MT transformer.

12
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Subsequent models like mBART (Liu et al., 2020) based on BARTS’s denoising approach, M2M-
100 (Fan et al., 2021) that uses language-specific sparse parameters, or NLLB (NLLB Team
et al., 2022) which makes use of Mixture of Experts. Beyond MT, general-purpose multilingual
pre-trained models, such as mT5 Xue et al. (2021), which uses T5’s span corruption objective,
have also been developed.

Finally, inspired by human learning processes, curriculum learning presents training data in a
meaningful order rather than randomly. Bengio et al. (2009) proposed this approach, where
the training data is ordered according to a predefined criterion (the curriculum) to guide the
model toward better optima during training progressively. Similar to pre-training, applying
an adequate curriculum provides a regularizing effect that enhances the model’s generalization
capabilities. In its original formulation, the curriculum started with texts containing frequent
words and progressively introduced rarer vocabulary.

Subsequent work has explored alternative curricula. Xu et al. (2020) proposed a dynamic strate-
gies that adjust sample difficulty based on training loss improvements. NLLB Team et al. (2022)
adopted an approach that initially focuses on high-resource languages and gradually incorporates
low-resource languages based on scarcity. Kuwanto et al. (2023) proposed a method that first
trains on monolingual and code-switching data before introducing direct translation.

2.1.4 Model Adaptation

Since the early days of statistical NLG, researchers have been aware of the trade-offs when
training on different data sources. While more data generally improves generalization, it often
diminishes performance in domain-specific tasks. Model adaptation techniques emerged to ad-
dress this challenge, aiming to optimize both data efficiency and computational resources while
still enabling specialization across domains. These methods typically involve training a large
base model on broad data and subsequently adapting it to specific domains or tasks without the
need to retrain the entire model again.

In pre-neural NLG systems, model adaptation techniques such as weight mixing were employed.
These techniques involved interpolating model parameters from domain-specific and general-
purpose models. A standard statistical approach was maximum a posteriori (MAP) adaptation,
which updated model parameters by combining prior estimates with evidence from the target
domain. This approach was successfully applied to text-to-speech (Bacchiani and Roark, 2003).
Another family of techniques, discriminative training, directly optimizes decision boundaries
using task-specific objectives rather than generative likelihoods. This approach was applied to
tasks like Kana-to-Kanji conversion (Gao et al., 2006) and machine translation (Eidelman et al.,
2012).

As neural models became mainstream, adaptation approaches evolved. Early methods involved
fine-tuning only specific components of a model, such as the prediction heads, by freezing the
remaining parameters. Similar approaches consisted of inserting additional trainable layers.
These methods proved to be useful in text-to-speech (Ma et al., 2017). Another methodology
used at the time was cost weighting, which emphasized in-domain examples during training and
was successfully tried on machine translation (Chen et al., 2017).

With the rise of transformer-based architectures, which have led to a sharp increase in both
parameter counts and data diversity requirements, the demand for more efficient adaptation
techniques has intensified. Researchers began developing methods that reduced the number
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Chapter 2. Background

of trainable parameters and enabled faster, modular adaptation without compromising model
performance.

One prominent approach is the use of Adapter modules. Initially applied to visual (Rebuffi
et al., 2017) and textual (Ma et al., 2017) neural models, adapters were later introduced into the
transformer architecture by Houlsby et al. (2019). They proposed inserting lightweight bottleneck
adapter layers after each transformer’s attention and feedforward layers. During fine-tuning, only
these adapter layers, the layer normalization parameters, and the prediction head were updated.
The remaining weights remained unchanged during training (frozen). This approach enabled
efficient transfer learning by preserving the general knowledge of the base model, thereby facili-
tating effective adaptation. The modular nature of adapters also facilitated dynamic switching
between tasks, domains, or languages without requiring full fine-tuning. Though initially de-
signed for encoder-only models, adapter modules were successfully extended to encoder-decoder
setups in multilingual machine translation (Bapna and Firat, 2019). Figure 2.4 shows a simplified
representation of a bottleneck adapter layer and its position inside a transformer layer.
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(a) Bottleneck adapter layer (b) Transformer layer with adapters

F1G. 2.4: Bottleneck adapter simplified and its position inside a transformer layer. Normalization
layers are not shown for simplicity.

As language models grew larger, it became possible to condition a frozen model toward specific
tasks by crafting suitable prompts (Brown et al., 2020; Zhao et al., 2023). However, since finding
optimal prompts is nontrivial, prompt-based adaptations gained traction. One such technique
is Prefix-Tuning, introduced by Li and Liang (2021). The technique consists of prepending
learnable vectors (called prefixes) to the input embeddings and the Key (K) and Value (V)
matrices of the attention mechanism. This technique enables more precise control over the
model’s output while requiring only a small number of trainable parameters, thereby increasing
memory efficiency and reducing the risk of overfitting. Building on this, Lester et al. (2021)
proposed prompt-tuning, also called soft prompts: trainable vectors added only to the input
embeddings, without modifying any other layer. This approach further enhanced parameter
efficiency and modularity by isolating the adaptation to a single swappable component. Figure 2.5
shows these two methods, which only differ in the learnable weight of the attention layer.
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F1G. 2.5: Prefix-Tuning and Prompt-Tuning simplified. Positional encodings and normalization
layers are not shown for simplicity.

Despite their advantages, early adapter and prompt-based methods came with a trade-off.
Adding new layers or vectors can sometimes increase inference latency or reduce the available in-
put length. Moreover, these methods often underperformed when compared with full fine-tuning
(FFT), requiring the finding of a balance between efficiency and task performance.

To mitigate these issues, Hu et al. (2022) proposed the Low-Rank Adapters(LoRA) architecture.
Motivated by findings from Aghajanyan et al. (2021), they hypothesized that the weight updates
in fine-tuning reside in a low-dimensional subspace. Consequently, they decomposed the weight
update matrix into the product of two low-rank matrices and focused on only learning those
matrices. In doing so, they were able to significantly reduce the number of trainable parameters
while preserving and even outperforming full fine-tuning.

In transformer models, LoRA is typically applied to both attention and feedforward layers.
During training, these low-rank matrices are learned separately and can later be merged into
the original model weights. By merging the LoRA, the inference overhead of the additional
parameters is eliminated without compromising performance quality. This modularity enables
quick domain switching by swapping in different LoRA modules without affecting the rest of the
model.

Mathematically, given an input vector x and a pre-trained weights matrix Wy, the LoRA repre-
sents weight update as the product AW = BA, where B and A are low-rank matrices of rank r
learned during fine-tuning. The update output is then represented by Equation 2.4.

h=Wor + AWz = Wyz + BAx (2.4)
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Alternatively, Figure 2.6 shows a schematic of the architecture.
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F1G. 2.6: Low-Rank Adapters (LoRA) simplified.

Finally, the growing size of transformer models made even LoRA fine-tuning increasingly com-
plex. While quantization, the technique of using lower-precision representations to reduce mem-
ory usage, helped during inference (Hubara et al., 2018), it often caused instability during
training. To overcome this, Dettmers et al. (2023) introduced Quantized LoRA (QLoRA), which
performs low-rank fine-tuning on quantized base models while keeping the LoRA modules in full
precision. This approach allowed efficient fine-tuning of very large models under limited resource
constraints.

2.2  Graph-to-Text

Having covered several relevant NLG concepts, the following sub-chapter deals with the specific
task addressed in this research: Graph-to-Text (G2T) generation.

As previously discussed, graph-structured data offers a clear and less ambiguous representation
of information, facilitating both human understanding and computational processing. Moreover,
graph structures promote cross-lingual consistency, as the same underlying graph can represent
equivalent information across multiple languages. However, while graphs excel at structuring
knowledge, natural language remains the most effective medium for communicating this infor-
mation to humans in an accessible and engaging manner (Gkatzia et al., 2016). In this context,
he aim of G2T generation is to combine the computational advantages of graph-based data with
the communicative richness of natural language text.

This section provides an overview of the types of graphs commonly used as input for G2T
systems, including existing datasets categorized by input type and language coverage, prevalent
approaches to the task, and evaluation strategies. The nature of the input graph determines
the structure and semantics that the model must handle; the dataset composition affects both
training and generalization; and the evaluation metrics shape the understanding of how a model
performs.
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2.2.1 Types of Inputs

Just like there are many possible inputs to NLG systems, there are many possible inputs to G2T
systems. This section introduces the two types of graphs studied during this research: Resource
Description Framework (RDF) graphs and Abstract Meaning Representation (AMR) graphs.
Additionally, a brief discussion is provided on other input formats that can be rendered as graph
structures and have been investigated in the context of G2T before.

Resource Description Framework

According to the original RDF specification (Lassila and Swick, 1999), proposed by the World
Wide Web Consortium (W3C), most data available on the web was machine-readable, but not
machine-understandable. RDF was introduced to address this gap by enriching web data with
metadata, enabling automatic systems to perform tasks such as resource discovery, cataloging,
and content rating. It provided a standardized model for representing, encoding, and transferring
such metadata through a graph-based structure.

Over time, graph structures proved helpful not only for metadata but for a wide variety of infor-
mation types. As early as 2007, the DBpedia project (Auer et al., 2007) built an RDF knowledge
graph from Wikipedia, with structured data extracted with relational databases and unstruc-
tured sources like infoboxes. Later, in 2012, Google introduced the concept of the Knowledge
Graph to enhance search results with structured semantic content (Singhal, 2012). Following
this trend, the Wikimedia Foundation launched Wikidata (Vrandeci¢ and Krotzsch, 2014), a
collaborative, multilingual, and constantly updated knowledge base. Wikidata adopted the RDF
format (Erxleben et al., 2014) and, when possible, included links to DBpedia, thus reinforcing
the importance of RDF in structured knowledge representation.

ALAN BEAN ALAN BEAN
|
MISSION MISSION

APOLLO 12 APOLLO 12
Fmmmmm———m———— - —— — — \ COMMANDER OPERATOR
I Alan Bean was on the crew of Apollo 12. |
| _________ J

DAVID SCOTT NASA
Fm—m————————— - _

Alan Bean was under commander David !
| _ Scott on Nasa's Apollo 12 mission. _ !

(a) RDF triple. (b) RDF graph.

Fi1G. 2.7: RDF triple and graph. Subjects are shown in blue, Predicates in green, and Objects
in red. Some nodes can be simultaneously both the Subject and the Object.
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As shown in Figure 2.7, graphs consist of a collection of RDF triples. Each triple contains a
Subject node (the resource), a Predicate edge (the property or relationship), and an Object node
(either a literal value or another resource). The Predicate forms a directed link from Subject to
Object, resulting in labeled, directed graphs ideal for encoding complex knowledge in a machine-
interpretable form. These properties make RDF a foundational input format in G2T systems,
especially for tasks that require grounded, fact-based generation.

Abstract Meaning Representation

An early version of AMR was introduced by Langkilde and KnightLangkilde and Knight (1998b),
inspired by the Penman Sentence Plan Language (Kasper, 1989). These rooted, labeled, directed
graphs encoded semantics where nodes denote concepts and edges encode relations. The formu-
lation was built on the SENSUS knowledge base (Knight and Luk, 1994) and integrated lexical
resources such as WordNet (Miller et al., 1990). At the time, the central goal was to create a
unified semantic representation in which semantically equivalent sentences would yield identical
graph structures, abstracting away syntactic variability.

This idea was later formalized by Banarescu et al. (2013), who based predicate representations
on PropBank framesets (Kingsbury and Palmer, 2002), defined around 100 relation types, and
introduced methods for encoding named entities and coreference. This standardization made
AMR broadly applicable to both semantic parsing and generation tasks. Figure 2.8 illustrates a
standardized AMR graph with multiple possible lexicalizations.

POSSIBLE-01
I
ARG 1
HELP-01

ARG 0 ARG 1

POLICE VICTIM
r—- """ T -~~~ - - - ----- |
I The police could help the victim. |
l (o e e e o o e e e e e - — 4
r-- """~ - - - - ------ |

FiG. 2.8: AMR graph.

Recent variants, such as Minimal Recursion Semantics (MRS) by Hajdik et al. (2019), Uniform
Meaning Representation (UMR) by Van Gysel et al. (2021), or BabelNet Meaning Representation
(BMR) by Martinez Lorenzo et al. (2022), have been proposed to improve AMR’s cross-linguistic
applicability. However, the limited availability of high-quality annotated datasets and parsers
for these variants has constrained their broader adoption.
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Other Inputs

Besides RDF and AMR graphs, other structured data inputs have been explored in G2T gen-
eration. For instance, the Web Ontology Language (OWL) (Bechhofer et al., 2004) provides
rich expressive constructs derived from Description Logic, enabling the representation of com-
plex hierarchies and constraints. In addition, various knowledge graph structures do not follow
a standardized framework (Koncel-Kedziorski et al., 2019). Similarly, entity-centric key—value
paired datasets, where each record comprises attribute—value pairs for a single subject, serve
as lightweight knowledge graph analogues (Novikova et al., 2017). These types of non-standard
knowledge graphs can also be extracted from Table-to-Text data, usually after performing some
content selection (Lebret et al., 2016).

Moving away from knowledge graphs, other graph structures like Universal Dependency trees,
that display grammatical relations, can be used as the basis of syntax-driven G2T systems (Mille
et al., 2017a). Finally, collections of predicate logic formulas, which model information as logical
predicates and arguments, can also be represented as graphs (Chen and Mooney, 2008).

In summary, while RDF and AMR remain some of the major graph representations in G2T
research due to their standardized format and data availability, a rich variety of alternative
input structures continues to expand the field’s boundaries.

2.2.2 Datasets and Languages

Transformers can perform across multiple tasks; however, like other deep neural networks, they
require substantial training data to achieve optimal results. Moreover, gold standard datasets
(those verified by humans) are generally required to evaluate generation quality (more on this
in Subsection 2.2.4). As a result, the development of G2T systems is highly dependent on the
availability and quality of datasets in each target language.

This section presents standard datasets used in RDF-to-Text, AMR-to-Text, and other related
G2T tasks. Table 2.3, on the next page, summarizes some punctual information about these
datasets. Afterwards, a more detailed description of each dataset is provided.
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L Input Type L Dataset l Year Languagest Size} J
2017 Eng 25K
2018  Deu 25K
WebNLG 2020 Eng, Por, Rus 4K-45K
2023 Bre, Cym, Gle, Mlt 3K
2024 Xho 5K
RDF Graphs 2025 Spa 45K
WITA 2020 Eng 55K
KGTEXT 2020 Eng 16M
GenWiki 2020 Eng 1.3M
TekGen 2021 Eng 57K
KELM 2021 Eng 15M
2014 Eng 13K
AMR 2017 Eng 39K
2020 Eng, Deu, Ita, Spa, Zho 39K-59K
2014 Eng 1.5K
TLP-AMR 2016  Zho 1.5K
2024 Hrv, Kor 1.5K
BIO-AMR 2017 Eng 6K
Bul, Ces, Dan, Deu, Ell, Eng,
Est, Fin, Fra, Hun, Ita, Lav, Lit,
Europarl-AMR 2020 NId. Pol, Por, Ron, SIk, Slv, Spa. 400K-8M
Swe
AMR Graphs Afr, Amh, Ara, Aze, Ben,
Cym, Dan, Deu, Ell, Eng,
Fas, Fin, Fra, Heb, Hin,
Hun, Hye, Ind, Isl, Ita, Jpn,
Jav, Kat, Khm, Kan, Kor,
Lav, Mal, Mon, Msa, Mya,
MASSIVE-AMR | 2024 Nob, NId, Pol, Por, Ron, 1.6K
Rus, Slv, Spa, Sqi, Swe, Swa,
Tam, Tel, Tgl, Tha, Tur,
Urd, Vie, Zho
MOSAICo 2024  Deu, Eng, Fra, Ita, Spa 5M-17TM
AGENDA 2019 Eng 40K
Non-RDF KGs =53 mT 2021 Eng 82K
. E2E 2017 Eng 51K
Key-Value Pairs |==4 356 2020 Eng, NId 10k
WikiBio 2016  Eng 728K
RotoWire 2017 Eng 5K
Tables WikiGen 2018 Eng 200K
ToTTo 2020 Eng 136K
Logic Formulas RoboCup 2008 Eng 1.9K
WEATHERGOV | 2009 Eng 22K

TAB. 2.3: Available datasets by type of input. TBold languages have gold-quality. {Approximate
size per language, when it differs by language, the lower and upper bounds are presented.
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RDF Graphs

The 2017 WebNLG Challenge (Gardent et al., 2017) consisted of mapping sets of RDF triples
to text. Along with the challenge, the largest existing gold-quality RDF-to-Text dataset was
released. This dataset consisted of multiple RDF graphs, each paired with multiple English
lexicalizations, similar to Figure 2.7b. The graphs were constructed from RDF triples extracted
from DBPedia (Auer et al., 2007) across 15 distinct categories, five of which were exclusive to
the test split and therefore unseen in the training split. The lexicalizations were obtained via
crowdsourcing and then filtered and post-edited in the same way.

Following this, the 2020 WebNLG Challenge (Castro Ferreira et al., 2020)! extended the task
to both G2T and semantic parsing in English and Russian. A new and unseen test split was
created, and a new unseen category was added to it. Additionally, many lexicalizations were im-
proved, and new information regarding the tree shape of the graphs was provided. For Russian,
a subset of nine categories was selected, and the lexicalizations were translated using machine
translation (Sennrich et al., 2017a). These translations were then post-edited via crowdsourc-
ing Shimorina et al. (2019).

The 2023 WebNLG Challenge (Cripwell et al., 2023)? expanded support to under-resource lan-
guages. It introduced three low-resource (LR) Celtic languages (Breton, Irish, and Welsh) and
Maltese. Professional translators translated the English development and test sets from 2020
into these languages. However, the training data was generated via machine translation (MT)
and not post-edited, given the high costs of annotating low-resource (LR) languages.

Beyond the datasets associated with the official WebNLG Challenges, several versions of the
dataset have been released by other authors. Castro Ferreira et al. (2018) created a German
version® via MT but without post-editing. Almeida Costa et al. (2020) released a Portuguese
version? of the test split using MT followed by human post-editing. Meyer and Buys (2024)
translated all single-triple graphs into Xhosa® with native speaker assistance. Ramon-Ferrer
et al. (2025) produced a full Spanish version® of the dataset, using MT and post-editing of
low-quality translations.

Other RDF-based datasets exist; however, none of them is of gold quality since they rely on
unsupervised alignment or synthetic generation. Furthermore, they are only available in English.
Fu et al. (2020) created WITA", a partially aligned dataset. They extracted the first sentence
of Wikipedia articles and aligned them with RDF triples from Wikidata. To find the triples,
they used named entity recognition (NER) to extract entities and then retrieve RDF triples
that contained them. Chen et al. (2020) created KGTEXT® by collecting Wikipedia sentence
containing two or more hyperlinks. Instead of using NER to find entities, they used the hyperlinks
to retrieve RDF triples from Wikidata. Jin et al. (2020) created GenWiki® by also collecting
text from Wikipedia and using article titles and hyperlinks to find related RDF triples. However,
they queried DBpedia instead of Wikidata.

'https://github.com/WebNLG/challenge-2020
*https://github.com/WebNLG/2023-Challenge
3https://github.com/ThiagoCF05/webnlg
‘https://github.com/ThiagoCFO5/webnlg-pt
Shttps://github.com/francois-meyer/t2x
Shttps://github.com/virginia-r99/Spanish_WebNLG_triples-to-text/
"https://github.com/fuzihaofzh/distant_supervision_nlg
8https://github.com/wenhuchen/KGPT

“https://github.com/zhijing- jin/genwiki

21


https://github.com/WebNLG/challenge-2020
https://github.com/WebNLG/2023-Challenge
https://github.com/ThiagoCF05/webnlg
https://github.com/ThiagoCF05/webnlg-pt
https://github.com/francois-meyer/t2x
https://github.com/virginia-r99/Spanish_WebNLG_triples-to-text/
https://github.com/fuzihaofzh/distant_supervision_nlg
https://github.com/wenhuchen/KGPT
https://github.com/zhijing-jin/genwiki

Chapter 2. Background

Finally, Agarwal et al. (2021) introduced two datasets: the Text from KG Generator(TekGen)
dataset and the Knowledge Enhanced Language Model (KELM )'° Pre-training corpus. TekGen
pairs Wikipedia opening sentences with Wikidata RDF triples using distant supervision. In
contrast, KELM is a large-scale corpus generated by a model trained on TekGen and fine-tuned
on WebNLG.

AMR Graphs

AMR datasets form another primary class of graph-to-text resources. The 2014 AMR Annotation
Release (Knight et al., 2014)!! initially consisted of English sentences from news wires, weblogs,
and web discussion forums, parsed into AMR by professional annotators. A 2017 version (Knight
et al., 2017)'? expanded the dataset by incorporating data from broadcast conversations and
doubled its size. Damonte and Cohen (2020)!? later translated this version into Chinese, German,
Italian, and Spanish. Finally, the 2020 version of the dataset (Knight et al., 2020)'* further
enlarged the dataset with new domains, including fiction and Wikipedia.

Besides the AMR Annotation Release, there are other AMR-Text datasets with both gold-quality
text and graphs. In the literary domain, TLP-AMR (Banarescu et al., 2013) provides AMR
annotations for every sentence from "The Little Prince". It was subsequently translated into
Chinese (Li et al., 2016)'7, as well as Croatian and Korean (Kang et al., 2024)'6. In the medical
domain, BIO-AMR (May and Priyadarshi, 2017)'7 consists of AMR graphs for sentences from
three full PubMed papers and 46 results sections. This resource remains English-only.

Finally, MASSIVE-AMR Regan et al. (2024)'® took advantage of the multilingual parallel cor-
pora of the MASSIVE dataset (FitzGerald et al., 2023)'°. First, they tasked professional anno-
tators to parse the 1685 English sentences of MASSIVE into AMR graphs. Then, to expand to
other languages, they paired the lexicalizations in different languages with the parsed graph and
substituted its entity nodes with the corresponding language-specific version from MASSIVE. In
this way, they obtained gold-quality pairs for 50 languages.

As with RDF, some AMR-Text datasets lack gold-quality, in this case due to their reliance on
synthetic data. Fan and Gardent (2020) created an Europarl-AMR dataset? by automatically
parsing into AMR the English portion of the Europarl dataset (Koehn, 2005)?! using the JAMR
parser (Flanigan et al., 2014). These synthetic AMRs were then paired with corresponding
human translations in up to 21 European languages.

https://github. com/google-research-datasets/KELM- corpus

"https://catalog.ldc.upenn.edu/LDC2014T12

2https://catalog.ldc.upenn.edu/LDC2017T10

Bhttps://catalog.ldc.upenn.edu/LDC2020T07

Yhttps://catalog.ldc.upenn. edu/LDC2020T02

https://web.archive.org/web/20230602223634/https://amr.isi.edu/download/amr-bank-struct-vi.
6.txt

https://zenodo.org/records/14008284

"https://web.archive.org/web/20231207164411/https://amr.isi.edu/download/2018-01-25/
amr-release-bio-v3.0.txt

Bhttps://github.com/amazon-science/MASSIVE- AMR

https://github.com/alexa/massive

2Onttp://github. com/facebookresearch/m-amr2text

https://www.statmt . org/europarl/
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Finally, Conia et al. (2024) built MOSAICo-AMR?? a multilingual AMR, dataset from Wikipedia
in five languages: English, French, German, Italian, and Spanish. They collected Wikipedia sen-
tences and generated synthetic AMR graphs. For English, they used the LeakDistill parser (Va-
sylenko et al., 2023), and for the other languages, they used their implementation of the CLAP
parser (Martinez Lorenzo and Navigli, 2024) trained on synthetic data.

Non-RDF KGs

Some KG-to-Text datasets use non-standard representations instead of following defined frame-
works, such as RDF. However, they are still structurally similar and can be interpreted as triples.
The AGENDA dataset (Koncel-Kedziorski et al., 2019)* paired titles and abstracts of English
scientific papers taken from the Semantic Scholar Corpus with knowledge graphs obtained by
applying IE techniques on each scientific paper, particularly the ScilE system (Luan et al.,
2018). DART (Nan et al., 2021)?* was built from open-domain tables where entity-attribute-
value triples were derived using a parent-child ontology, and humans generated lexicalizations
for these extracted triples. Both of these datasets are only available in English.

Key-Value Pairs

Some datasets use key-value lists as inputs, which can be transformed into triple-style inputs by
extrapolating the entity. The E2E dataset (Novikova et al., 2017)?° linked key-value restaurant
descriptions with human-written English reviews. The CACAPO dataset van der Lee et al.
(2020)26 aligned key-value pairs with human news reports in domains such as weather, sports,
stocks, and incidents. This dataset supports English and Dutch.

Tables

Several datasets use structured tables as input, which can be transformed into triples after
applying content selection. RotoWire (Wiseman et al., 2017)27 collected professionally written,
medium-length basketball game summaries and paired them with multiple tables of information
about the game, including team and player statistics. WikiBio (Lebret et al., 2016)%® paired the
first sentence of Wikipedia Biography pages with the infobox table of the corresponding article.
WikiGen (Perez-Beltrachini and Lapata, 2018)?° expanded on WikiBio by using the entire first
paragraph of the biographies instead of the first sentence. Additionally, they applied filtering
to remove examples based on the number of properties in the infobox. ToTTo (Parikh et al.,
2020)3° first collected Wikipedia tables, excluding infoboxes, to avoid overlap with WikiBio and
WikiGen. Then, selected sentences from the articles were retained that matched at least three
table cells. All these datasets are only available in English.

*2https://github.com/SapienzaNLP/mosaico

Bhttps://github. com/rikdz/GraphWriter
Znttps://github.com/Yale-LILY/dart
*https://github.com/tuetschek/e2e-dataset
*Shttps://github.com/TallChris91/CACAPO-Dataset
https://github.com/harvardnlp/boxscore-data
Znttps://github. com/DavidGrangier/wikipedia-biography-dataset
nttps://github. com/EdinburghNLP/wikigen
3%https://github.com/google-research-datasets/ToTTo
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Logic Formulas

Inputs in some datasets take the form of atomic predicate logic formulas. These can also be
structured as triples. RoboCup (Chen and Mooney, 2008)3! aligned soccer game commentary
with logical event descriptions. WEATHERGOV (Liang et al., 2009)32 paired weather forecasts
with logical representations of meteorological data. Both are English-only.

2.2.3 Approaches

The following section covers some of the most relevant milestones in RDF-to-Text and AMR-to-
Text, the specific G2T tasks studied during this thesis.

RDF-to-Text

Over the past decade, a wide range of methods have been proposed for the RDF-to-Text task,
reflecting broader shifts in the field of natural language generation (NLG). These methods vary
significantly in terms of architectural complexity, reliance on training data, and degree of linguis-
tic control. This subsection categorizes and reviews the primary families of approaches that have
influenced the development of RDF-to-Text generation, ranging from early rule-based systems to
contemporary prompting techniques utilizing large language models. This organization not only
highlights key milestones but also reveals underlying trends in the evolution of G2T modeling.

Symbolic Approaches

As discussed in Section 2.1, Symbolic NLG systems rely on handcrafted rules, templates, and
structured linguistic resources. Below are some noteworthy symbolic systems used for RDF-to-
Text generation.

In 2017, several symbolic approaches were proposed. UITVNU-HCM extracted rules from the
typed dependency structure of the training text, allowing more syntactically informed rule cre-
ation. At generation time, WordNet (Miller et al., 1990) was used to compute predicate simi-
larity and guide rule selection. UTILBURG-PIPELINE applied delexicalization to both triples
and texts, extracted rules mapping triple structures to delexicalized outputs, and then generated
text by matching input structures to rules. Then, a referring expression generation module (Cas-
tro Ferreira et al., 2016) filled in missing entities. UPF-FORGE employed handcrafted predicate-
argument templates, which were then realized using the graph transducer FORGe system (Mille
et al., 2017b).

In 2020, more symbolic systems emerged. RALI (Lapalme, 2020b) proposed a system that first
grouped input triples into sentence-sized sets, mapped them to text using 200 manually defined
templates, and produced a final output with the jsRealB surface realizer (Molins and Lapalme,
2015). DANGNT-SGU (Tran and Nguyen, 2020) used template extraction by replacing RDF
subjects and objects with placeholders. During generation, templates were selected using the
Jaro-Winkler similarity metric (Jaro, 1989) and applied to the input triples.

3'https://www.cs.utexas.edu/ ml/clamp/sportscasting/#data
32https://link.zhihu.com/?target=https://cs.stanford.edu/ pliang/data/weather-data.zip
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Despite the broader shift toward neural models, symbolic systems remain in use. DCU/TCD-
FORGe (Mille et al., 2023) applied fully rule-based approach to RDF-to-Text generation into
Irish. It was based on the graph transducer FORGe system (Mille et al., 2017b) and consisted of
a 4-step pipeline: 1) triple lexicalization, 2) generation of non-inflected Irish text, 3) inflection
generation, and 4) post-processing. RDFpyrealb (Lapalme, 2024) adopted a symbolic approach
with a microplanning step using handmade rules followed by the use of the jsRealB surface
realizer (Lapalme, 2020a) to generate the final text.

Statistical Machine Translation (SMT)

Before the rise of neural models, statistical approaches were the dominant method. UTILBURG-
SMT utilized the Moses toolkit (Koehn et al., 2007) to train a model on a delexicalized version
of the WebNLG 2017 dataset. Outputs were later relexicalized using alignment strategies and a
6-gram language model trained on Gigaword for ranking.

Graph-aware LMs

These models explicitly encode graph structure in their architecture to better capture the se-
mantic relationships between components. GTR-LSTM (Trisedya et al., 2018) used a triple-level
encoder followed by an LSTM decoder, where each RDF triple was encoded separately to pre-
serve its internal structure. DualEnc (Zhao et al., 2020) used two Graph Convolutional Networks
(GCN) (Kipf and Welling, 2017) as encoders: one to plan the content and the other to encode
the information. Their outputs were combined and passed to an LSTM decoder to generate the
final text. Graformer (Schmitt et al., 2021) enhanced the transformer architecture with a special
encoder with graph-based attention layers. This encoder allowed the model to focus on graph
topology during generation. JointGT (Ke et al., 2021) introduced a structure-aware semantic
aggregation module. This module could be attached to the encoder layers of an existing PLM
to help it preserve graph structure information. Additionally, they experimented with new pre-
training objectives like graph-enhanced text reconstruction, text-enhanced graph reconstruction,
and graph-text embedding alignment.

Wang et al. (2021) proposed a Stage-wise strategy that introduced two new position embeddings
to the encoder of existing PLMs so they could learn information about the graph structure. One
of the new embeddings encoded whether a sequence was a Subject, Predicate, or Object, while
the other embedding encoded the position of a sequence within the graph structure.

Fully Trained LMs

Several systems trained encoder-decoder architectures end-to-end on linearized triple sequences,
avoiding intermediate planning steps. UTILBURG-NMT adapted Edinburgh’s WMT16 neural
MT system (Sennrich et al., 2016), using delexicalized input-output pairs and a referring expres-
sion generator for post-processing. ADAPTCENTRE used the Nematus toolkit (Sennrich et al.,
2017b) with byte-pair encoding subword tokenization and special tokens for triple separation.

PKUWRITER introduced a composite framework comprising a classic encoder-decoder architec-
ture with attention mechanism, a ranker trained on synthetic data, and a reinforcement learning
(RL) objective to improve content fidelity. The framework also used hand-crafted fallbacks to
handle specific failure cases. UMELBOURNE enriched inputs by appending DBpedia entity
types during delexicalization and used n-gram alignment to optimize target sequence matching.
A standard attention-based encoder-decoder model generated outputs.
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Moryossef et al. (2019) introduced Step-by-Step, a generation system that split RDF-to-Text into
planning and realization. First, a content planner selected sentence structures; then a neural MT
model (Gulcehre et al., 2016) generated the text. Castro Ferreira et al. (2019) proposed a more
Pipeline Transformer approach leveraging neural models. While they experimented with multiple
configurations, the best results were obtained with a 5-step pipeline of transformers: 1) discourse
ordering, 2) text structuring, 3) lexicalization, 4) referring expression generation, and 5) textual
realization.

Huawei Noah’s Ark Lab (Zhou and Lampouras, 2020) used LASER embeddings (Schwenk and
Douze, 2017) to guide guide template selection and delexicalization. UPC-POE (Bergés et al.,
2020) generated additional silver-quality training pairs using back-translation (Domingo et al.,
2020). Blinov (2020) proposed med. that started as a Russian GPT-2 model (Radford et al.,
2019) later fine-tuned on Russian RDF-to-Text. They created silver-quality training data by
machine translating the Chinese Baidu SKE dataset.

Fine-tuned PLMs

For a while, pre-trained models like BART (Lewis et al., 2020) and T5 (Raffel et al., 2020)
have become the backbone of most recent systems. In their PLMs for G2T study (Ribeiro
et al., 2021b), they tried both approaches across several domains. Their approach consisted of
first performing pre-training with related unlabeled corpora, followed by fine-tuning for different
D2T tasks.

NILC (Sobrevilla Cabezudo and Pardo, 2020) fine-tuned BART directly on WebNLG 2020.
ORANGE-NLG (Montella et al., 2020) applied noisy pretraining on RDF-text pairs extracted
with the Stanford Open Information Extraction (Angeli et al., 2015) and used curriculum learning
to improve robustness. FBConvAl (Yang et al., 2020) pre-trained BART on DocRED (Yao et al.,
2019), a noisy parallel corpus sentences and automatically extracted relations. HTLM: (Agha-
janyan et al., 2022) pre-trained BART on HTML documents to leverage the markup language’s
structured nature. They tested it on Zero- and One-shot experiments on multiple G2T datasets.

The T2T Pre-Training for G2T approach (Kale and Rastogi, 2020) tested different sizes of T5
on various G2T datasets CycleGT (Guo et al., 2020b) paired generation and parsing models
in a back-translation loop to augment training data. T'Gen (Kertkeidkachorn and Takamura,
2020) ordered triples using position heuristics and then fine-tuned T5 for text generation. NUIG-
DSI (Pasricha et al., 2020) pre-trained T5 on DBpedia abstracts before fine-tuning. Amazon
Al (Shanghai) (Guo et al., 2020a) used a relational GCN for planning (Zhao et al., 2020) and
a fine-tuned T5 model to lexicalize the plans. Clive et al. (2022) introduced Control Prefizes to
steer generation via domain/task-specific embeddings. Interno (Kazakov et al., 2023) fine-tuned
FRED-T5 on Russian RDF corpora, adding translation metadata to boost multilinguality.

The cuni-ufal model (Kasner and Dusek, 2020) was an mBART (Liu et al., 2020) fine-tuned on
either English or Russian splits of the WebNLG dataset. OSU Neural NLG (Li et al., 2020) also
fine-tuned mBART (Liu et al., 2020) on the Russian WebNLG and T5 (Raffel et al., 2020) on
the English WebNLG. bT5 (Agarwal et al., 2020) relied on multi-task fine-tuning using either
T5 or mT5 (Xue et al., 2021) in a mixture of G2T, T2G, and MT data. [REL (Aditya Hari
et al., 2023) and CUNI-Wue (Kumar et al., 2023) finetuned T5 to generate into English and then
applied machine translation to the generated text.
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DCU-NLG-Small Mille et al. (2024) consisted of a compact system with three main components:
the FORGe system from Mille et al. (2023) for RDF-to-English, a T5 fine-tuned to paraphrase
FORGe outputs into more fluent texts, and NLLB (NLLB Team et al., 2022) to translate the
English outputs to other target languages.

DipInfo-UniTo Oliverio et al. (2024) introduce a pipeline approach with three steps: an algorithm
to split the graph into subsets of no more than three triples, a Mistral (Jiang et al., 2023) or
Llama-2 (Touvron et al., 2023) fine-tuned with QLoRAs (Dettmers et al., 2023) to lexicalize every
subset individually, and the same LLM without fine-tuning to aggregate the independent texts.
DCU-ADAPT-modPB Osuji et al. (2024) proposed a pipeline architecture using a fine-tuned
Flan-T5 (Chung et al., 2024) for content ordering and content structuring, and Large Language
Models (LLMS) like Mistral 7B (Jiang et al., 2023) for surface realization. The LLMs were either
fine-tuned via LoRAs (Hu et al., 2022) or used zero-shot.

LLM prompting

These approaches involve various methods of utilizing LLMs off-the-shelf and without specialized
fine-tuning for G2T.

For the 2023 WebNGL Challenge in low-resource languages, DCU-NLG-PBN (Lorandi and Belz,
2023) tried Zero-shot and Few-shot on GPT-3.5 to generate English text from an input graph.
Afterwards, they translated the text to the target languages using the Google Translate API.
Later, for the 2024 GEM Challenge, they applied a similar approach on Mistral 7B (Jiang et al.,
2023) and Falcon-40B(Almazrouei et al., 2023). Additionally, they tried fine-tuning those models
with LoRAs (Hu et al., 2022).

Also at the 2024 GEM Challenge, SaarLST (Jobanputra and Demberg, 2024) proposed using
a symbolic retrieval system to find examples similar to the input graph. Then, they provide
these examples as few-shot to Mixtral 8x7B (Jiang et al., 2024) or Command-R (Cohere, 2024)
to generate the final text. Finally, OSU CompLing (Allen et al., 2024) tested three different
approaches: Zero-shot GPT-4 (OpenAl et al., 2024) and fine-tuning Llama-2(Touvron et al.,
2023) on synthetic data generated with GPT-4.

Table 2.4 summarizes some details about these approaches. It illustrates the evolution over time
from symbolic approaches and models trained from scratch to fine-tuning and, more recently,
prompting approaches. The table also highlights the strong bias towards English on RDF-to-Text
models and the minimal number of systems tried in other languages.
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L Type L Year L Approach Languages
UITVNU-HCM Eng
2017 | UTILBURG-pipeline Eng
UPF-Forge Eng
Symbolic RALI Eng
2020 | DANGNT-SGU Eng
2023 | DCU/TCD-Forge Gle
2024 | RDFpyrelab Eng
Statistical MT 2017 | UTILBURG-SMT Eng
2018 | GTR-LSTM Eng
2020 | DualEnc Eng
Graph-aware LMs Graformer Eng
2021 | JointGT Eng
Stage-wise Eng
ADAPTCENTRE Eng
92017 UTILBURG-NMT Eng
PKUWRITER Eng
UMELBOURNE Eng
Trained LMs 92019 Step-by-Step Eng
Pipeline Transformer Eng
UPC-POE Eng
2020 | med. Rus
Huawei Noahs Ark Lab Eng, Rus
T2T Pretraining for G2T Eng
NILC Eng
CycleGT Eng
ORANGE-NLG Eng
TGen Eng
2020 | NUIG-DSI Eng
Amazon Al Eng
Cuni-ufal Eng, Rus
FBConvAl Eng, Rus
Fine-tuned PLMs OSU Neural NLG Eng, Rus
bT5H Eng, Rus
2021 | PLMS for G2T Eng
HTLM Eng
2022 Control Prefixes Eng
Interno Rus
2023 | IREL Rus, Mlt, Gle, Cym
CUNI-Wue Rus, Mlt, Gle, Cym, Bre
9024 DiplInfo-UniTo Eng
DCU-NLG-Small Ara, Deu, Eng, Hin, Kor, Rus, Spa, Swa, Zho
DCU-NLG-PBN(2023) Mlt, Gle, Cym
SaarLST Eng
LLM prompting 9024 OSU ComplLing Eng, Spa
DCU-Adapt-modPB Eng, Hin, Kor, Swa
DCU-NLG-PBN(2024) Ara, Deu, Eng, Hin, Kor, Rus, Spa, Swa, Zho
TaB. 2.4: RDF-to-Text approaches by type and year.
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AMR-to-Text

Since their inception, even before being formalized, AMR graphs have been directly related to
the NLG task (Langkilde and Knight, 1998b). However, for many years, progress in the field
was hindered by the lack of a sufficiently large dataset. This situation changed with the 2014
AMR Annotation Release (Knight et al., 2014), which led to the emergence of multiple new
approaches. This subsection categorizes major approaches to AMR-to-Text generation.

Symbolic

Flanigan et al. (2016) proposed a Tree Transducer system based on two main steps: generating
an appropriate spanning tree from the AMR and then applying tree-to-string transducers to
generate the final text.

Statistical MT

Phrase-based MT (Pourdamghani et al., 2016) proposed a pipeline with two steps: a linearization
algorithm that arranged AMR nodes in English-like order, followed by a phrase-based MT system
that turned linearization into natural text.

Graph-aware LMs

To better exploit the structure of AMR, several approaches incorporated specialized graph en-
coders. Song et al. (2016) proposed a pipeline involving AMR partitioning, local text generation,
and sorting via the an Asymmetric Generalized Traveling Salesman Problem (AGTPS). In subse-
quent work, with the spread of neural models, Song et al. (2018) paired a graph encoder with an
LSTM decoder and introduced a copying mechanism to address data sparsity. Beck et al. (2018)
employed Gated Graph Neural Networks (GGNN) as encoders coupled with bidirectional RNN
decoders. Guo et al. (2019) used Densely Connected Graph Convolutional Network(DCGCN) for
their encoder paired with an LSTM decoder. Ribeiro et al. (2019) proposed DualGraph a model
that had two different Graph Neural Networks Eecoders to capture different graph information
(top-down and bottom-up). These representations were concatenated and given to a BiLSTM
decoder. Finally, Bai et al. (2020) introduced an Online Back-Parsing approach using a graph
encoder with a transformer decoder trained to generate sentences with embedded graph structure
information.

Trained LMs

Castro Ferreira et al. (2017) explored the effects of three preprocessing steps on the input graph:
delexicalization, compression, and linearization. They then trained both Phrase and Neural
MT on the distinct preprocessed data. Konstas et al. (2017) also experimented with graph
preprocessing in their Neural AMR-to-Text. In particular, the applied anonymization of named
entities and linearizations was followed by training a neural machine translation (NMT) model
to generate English sentences.

Other trained language models (LMs) focused on multilingual generation. Fan and Gardent
(2020) trained a transformer encoder enriched with graph embeddings on a large synthetic AMR
dataset based on Furoparl and multiple transformer decoders trained on a large multilingual
dataset. They then utilized cross-lingual sentence embeddings to connect the two elements.
XLPT-AMR (Xu et al., 2021) was a transformer encoder-decoder model trained on a mixture of
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real and synthetic data. The model was trained on a combination of tasks, including G2T, T2G,
and MT for multiple languages.

Fine-tuned PLMs

Finally, as PLMs became widely available, some systems relied on them as the basis for fine-
tuning. GPT-Too Mager et al. (2020) was a fine-tuned GPT-2 (Radford et al., 2019) where
cycle consistency was reinforced by choosing the best generations during training. They train
the model to reconstruct the graph before generating the output text. DataTuner Harkous et al.
(2020) was also a fine-tuned GPT-2. It used a special semantic fidelity classifier to guide the
sampling of the output text.

Also discussed in the RDF-to-Text section, the PLMs for G2T study by Ribeiro et al. (2021b)
also experimented with AMR-to-Text. They further pre-trained T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020) on text from similar domains before fine-tuning on task-specific
datasets.

Ribeiro et al. (2021a) proposed the Smelting Gold and Silver approach, where they produced a
large multilingual synthetic dataset leveraging AMR-parsing and MT. They performed multi-task
fine-tuning on mT5 (Xue et al., 2021) using different combinations of their synthetic data.

SPRING Bevilacqua et al. (2021) tackled both G2T and T2G generation by finding the best
linearization approach and fine-tuning BART (Lewis et al., 2020) on both tasks. A Multilingual
SPRING model was trained on machine-translated data by Martinez Lorenzo et al. (2022).

AMR-BART Bai et al. (2022) also experimented with BART. They further pre-trained it for
both G2T and T2G by giving the model a masked concatenation of linearized graph and text.
In this way, the model learned to generate either the reconstructed graph or the reconstructed
text. They fine-tuned it by masking only the tokens from the element to be generated. Finally,
BiBl Cheng et al. (2022) was also a fine-tuned BART on G2T, T2G, and a reconstruction task
where a masked concatenation of text and graph must be reconstructed entirely.

The development of AMR-to-Text generation has evolved significantly over the past decade,
progressing from early symbolic systems to sophisticated, multilingual, fine-tuned models. Each
paradigm reflects broader shifts in the field of Natural Language Generation, providing unique
insights into the trade-offs between linguistic fidelity, scalability, and model complexity.

Table 2.5 below provides a concise overview of the major AMR-to-Text approaches categorized by
type and year. The table illustrates the increasing trend towards leveraging pre-trained language
models, while highlighting the scarcity of multilingual approaches.
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L Type L Year L Approach Languages ‘

Symbolic 2016 | Tree Transducer Eng
Statistical MT 2016 | Phrase-based MT Eng
2016 | AGTSP Eng

2018 | GGNN Eng

Graph-aware LMs DCGCN Eng
2019 DualGraph Eng

2020 | Online Back-Parsing Eng

92017 Phrase and Neural MT Eng

Neural AMR-to-Text Eng

Bul, Ces, Dan, Deu, Ell, Eng, Est, Fin, Fra,

Trained LMs 9020 | Puroparl Hun, Tta, Lav, Lit, N1d, Pol, Por, Ron, Slk,
Slv, Spa, Swe
2021 | XLPT-AMR Deu, Eng, Ita, Spa
GPT-too Eng
2020 DataTuner Eng
PLMs for G2T Eng
. 2021 | SPRING Eng
Fine-tuned PLMs Smelting Gold and Silver Deu, Ita, Spa, Zho
AMR-BART Eng
2022 | BiBl Eng

Multilingual SPRING Deu, Eng, Ita, Spa

TaB. 2.5: AMR-to-Text approaches by type and year.

2.2.4 Evaluation

A sound and reliable evaluation methodology is essential for correctly assessing the performance
of any G2T system. Such methodologies ensure that the outputs of generation models are
judged consistently and meaningfully across different datasets. Without a reliable evaluation
framework, it becomes challenging to draw valid conclusions about model performance, resulting
in misleading comparisons and ultimately, stagnation in progress due to a lack of actionable
insights.

The following section examines some of the most common methods for evaluating G2T genera-
tion.

Human Evaluation

As discussed in Chapter 1, the goal of G2T is to produce text that can be easily communicated
and understood by humans. Because of that, the best way to evaluate Natural Language Gen-
eration (NLG) is to test it on that exact task through performing human evaluations. However,
if the instructions given to the evaluators are confusing or the descriptions reported in studies
are unclear, the results of human evaluation might be unreliable (Belz et al., 2020; Howcroft
et al., 2020). A possible way to address this problem is by using an established taxonomy for
annotations, like the Quality Criteria for Evaluation of Text (Belz et al., 2024), or QCET, which
describes in detail each type of evaluation. Below is a small and non-exhaustive selection of hu-
man evaluations generally used when evaluating G2T generations, along with their corresponding
QCET taxonomy code.
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Some metrics can be assessed by an evaluator simply by examining the generated text alone.
These metrics generally provide an overall understanding of the quality of the language generated.
Some of the most relevant metrics of this type are Grammaticality (TQCO-f-1) which refers to
the degree to which a text is free of grammatical errors, Fluency (QGO-b-2) which describes
the degree to which a text flows well, and Readability (QGO-b-1) which indicates the degree to
which an output is easy to read.

Other metrics contrast the generated text with the provided input and generally provide infor-
mation about the success with which the task was performed (besides language quality). For
this research, the most relevant is Correctness of outputs relative to input content (QCI-c), which
describes the degree to which the content of a text is correct relative to the input and is closely
related to semantic Faithfulness. This metric in turn can be split into two more specific metrics:
Absence of Omissions (QCI-c-1) which meassures the degree to which the content of a text ex-
presses the content of the input (related to semantic recall), and Absence of Additions (QCI-c-2)
which is the degree to which the content of a text expresses only content present in the input
(related to semantic precision).

Table 2.6 shows examples of good and bad text according to all the discussed metrics.

Input Triples
Alan Bean, mission, Apollo 12
Apollo 12, commander, David Scott
Apollo 12, operator, NASA

God Generation
Alan Bean was under commander David Scott on NASA’s Apollo 12 mission.

Metric ‘ Bad Example ‘

Alan Bean were under commander david scott on nasas
Apollo 12 mission
Alan Beam was on the crew of the Apollo 12. The Apollo
Fluency (QGO-b-2) 12 was under commander David Scott. The Apollo 12 was
operated by NASA.
NASA’s mission Apollo 12, under commander David Scott,
had as a member of its crew Alan Bean .
Alan Bean, born on March 15, 1932, was on NASA’s Apollo
12 mission.
Absence of Omissions (QCI-c-1) | Alan Bean was on NASA’s Apollo 12 mission.

.. Alan Bean, born on March 15, 1932, was under Commander
Absence of Additions (QCI-c-2) David Scott on NASA’s Apollo 12 mission.

Grammaticality (TQCO-f-1)

Readability (QGO-b-1)

Content Correctness (QCI-c)

TAB. 2.6: Human evaluation examples of good and bad text according to different metrics.

In addition to properly defining the characteristics to be evaluated, it is essential to define
an evaluation approach that is both informative and easy to understand by the evaluators; a
standard way of doing this is by using a Likert scale (Likert, 1932). Striking a good balance
between ease of use and level of information collected is crucial: highly detailed scales (e.g., 0-100)
might produce very fine-grained information but confuse the evaluator or make their work more
tedious, while a scale too simple (e.g., 1-3) might not provide enough information to distinguish
the generations properly.
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Once the evaluation task has been defined, evaluators need to receive adequate training and
vetting to ensure they will provide reliable evaluations. However, despite all the measures taken,
evaluators are likely to introduce their subjective biases into the evaluation process. Because of
this, it is recommended that several evaluators be used to corroborate the same generated texts.
Afterward, the inter-annotator agreement can be evaluated with different metrics like Cohen’s
k (Cohen, 1960), Fleiss’ k (Fleiss, 1971), or Krippendorft’s a (Hayes and Krippendorff, 2007).

Ethical considerations must also be assessed beyond the technical and scientific aspects of the
human evaluation process. These include factors like fair wages, privacy, and anonymity, or
psychological risks (Shmueli et al., 2021).

Automatic Evaluation

While a detailed and robust human evaluation with multiple evaluators provides a generation
with a more informative and accurate evaluation, it can be expensive and time-consuming, if
not outright impossible. Multiple automatic metrics have emerged over time to mitigate this
obstacle. Below is a non-exhaustive list of some of the most common metrics used in G2T
generation, many of which were initially proposed to evaluate machine translation (MT).

Surface-Based Reference-Based Metrics

The first metrics used to evaluate G2T generation compare the generation against one or multiple
references based on their surface representation.

Bilingual Evaluation Understudy (Papineni et al., 2002), better known as BLEU, was proposed
as a fast and effective way of evaluating MT systems. The metric primarily relies on token n-
gram precision, which is the ratio of overlapping n-grams to the total number of n-grams in the
candidate. Equation 2.5 shows how to compute the n-gram precision of a corpus for a given n,
where Countcyip is clipped by the maximum count of a given n-gram across all the references of
candidate C'.

> Countcyip (n-gram)
C € {Candidates} n-gram € C
bn = > > Count(n-gram’)
C’" € {Candidates} n-gram’ € C’

(2.5)

A final BLEU-N score can be computed, as shown in Equation 2.6, by obtaining the weighted
geometric average of all n-gram precisions p,, from n = 1 until n = N and multiplying that by
a corpus-level Brevity Penalty (BP) used to punish under-generated outputs.

N
BLEU-N = BP - exp (Z wy, log pn> (2.6)

n=1

The brevity penalty is computed at the corpus level following Equation 2.7, where ¢ is the
summed length of all the candidates in the corpus and 7 is the summed length of the corpus
references, closer to the length of their respective candidates.

life>r
BP = 2.7
{el_(r/c) fe<r (2.7)
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Thanks to its speed and ease of use, BLEU quickly became a staple in evaluating many NLG
tasks. Despite its popularity, it has drawn criticism, including its use in tasks it was not de-
signed for (Reiter, 2018), the impact of the tokenizer used, and the lack of clarity in reporting
results (Post, 2018).

Furthermore, since it was designed to be a corpus measure, BLEU can have some undesirable
properties when used for single sentences. To address this issue, Wu et al. (2016a) from Google
proposed GLEU, which is the minimum score between precision and recall of tokens. According
to their experiments, it correlates well with BLEU on a corpus level but has its drawbacks when
evaluating individual sentences.

METEOR (Banerjee and Lavie, 2005) was another approach to mitigate some of the shortcomings
of BLEU. Instead of relying solely on strict string matching to pair n-grams from the reference
and the generation, METEOR allowed for other matching strategies, such as stemmed forms and
meaning representations.

Through a series of steps utilizing these different matching mechanisms, METEOR identifies the
largest one-to-one unigram alignment between the reference and the generation. Then, precision
and recall are computed based on that alignment, and a weighted F score is produced with
emphasis on recall, as shown by Equation 2.8.

10PR
R+9P

Fmean =

(2.8)
To account for word order and n-grams of n bigger than one, the authors group the matched
uni-grams in the smallest possible number of chunks so that, within each chunk, uni-grams have

the same order on both reference and generation. With this information, they compute a penalty
score as per Equation 2.9.

# chunks 3
Penalty = 0.5 - 2.9
enatty = o <#matchedum' — grams (29)
The final score is then computed following Equation 2.10.
METEOR = Fmean - (1 — Penalty) (2.10)

Translation Edit Rate (Snover et al., 2006), also known as TER, takes a different approach than
BLEU. In this case, the score is based on the number of required edits that need to be applied
to a candidate generation so it matches its closest references, as shown in Equation 2.11. The
list of possible edits includes insertion, deletion, and substitution of single words and shifts of
word sequences (a shift moves a contiguous sequence of words within the candidate to a different
position).

TER — # of edits tot he closest reference

2.11
average # of reference words ( )
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Character n-gram F-score (Popovi¢, 2015), or ChrF, works with character n-grams. By acting
at the character level, this metric disentangles itself from tokenization’s impact, making it par-
ticularly useful for multilingual evaluation (especially in LR languages). The score is computed
following Equation 2.12, where ChrP is the character n-gram precision (percentage of n-grams in
the candidate that has a match in the reference), ChrR is the character n-gram recall (percentage
of n-grams in the reference that have a match in the candidate), and /8 is a parameter which
assigns [ times more importance to recall than to precision.

ChrP - ChrR
(8?2 - ChrP) + ChrR

ChrFg = (1 + 8%) (2.12)

Further research on this metric (Popovi¢, 2017) suggested § = 2 as the best parametrization.
That research also discovered that enriching the score by counting word unigrams (ChrF+) and
bigrams (ChrF++) also improved its performance.

Model-Based Reference-Based Metrics

With the emergence of the transformer architecture and its strong capabilities for NLU, new
automatic metrics have been developed that rely on this new technology.

Reimers and Gurevych (2019) proposed Sentence-BERT, better known as SBERT, to compute
Semantic Textual Similarity (STS) efficiently. This approach consisted of a modified training
strategy for the BERT (Devlin et al., 2019) architecture. While BERT excels at various natural
language processing tasks, it processes sentence pairs jointly, which can be computationally
intensive for tasks like semantic similarity search and clustering.

To address this, SBERT proposed the use of a Siamese network architecture, where two iden-
tical BERT models with shared weights encoded sentences independently. Each sentence was
then transformed into fixed-size vector representations through a pooling operation. Then, the
similarity between sentences was computed using cosine similarity between their embeddings.
This approach enabled rapid comparison of sentence embeddings, significantly reducing compu-
tational overhead compared to traditional BERT models. Figure 2.9 shows a simplified version
of the configuration.

SENTENCE 1 SENTENCE 2
BERT == BERT
A 2 A\ 2
POOLING POOLING
Y A4
S1 EMBEDDING S2 EMBEDDING
[ |
COS. SIM.
SCORE

F1G. 2.9: Sentence-BERT (SBERT)simplified representation.
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This type of Semantic Textual Similarity can be used to evaluate how closely the meaning of a
candidate sentence aligns with its reference by obtaining the embeddings of both and measuring
their cosine similarity. However, this requires an encoding model capable of generating sentence
embeddings in the language being evaluated. For example, Language-agnostic BERT Sentence
Embeddings (Feng et al., 2022), or LABSE, obtained with a model pre-trained and fine-tuned
to measure the STS on texts across more than 100 languages.

Taking advantage of the contextual token embeddings from BERT, Zhang et al. (2020b) pro-
posed BERTScore. With this approach, instead of pooling token embeddings into a unique
sentence embedding and computing similarity at that scale, the authors computed a pairwise
cosine similarity at the token level. They then computed precision, recall, and F scores by taking
into consideration the pairs with the highest similarity. Equations 2.13, 2.14, and 2.15, show
those computations, where C' and R are the lists of pre-normalized contextual token embeddings
of the candidate and reference texts, respectively, and z 'y is the inner product of two token
embeddings.

1 T
PBERT = W Trjnzg}c%cz T3 (2.13)
Ci
RBERT = L E max TTC‘ (2.14)
|R‘ c Cj cc v
T

PRerT - RBERT
Fpprr = 2 2.15
PerT + RBERT (2.15)

Sellam et al. (2020) proposed BLEURT by instead focusing on the regression capabilities of BERT
when used as a cross-encoder. This approach means that, given two concatenated sentences
(reference and generation), the model can directly output a score. Instead of relying on cosine
similarity, precision, or recall, BLEURT aimed to directly learn a scoring policy to differentiate
good generations from bad ones.

The model was trained on three steps: 1) The standard BERT pre-training, 2) Further pre-
training on synthetic reference-generation score pairs, where the generations are obtained by
corrupting correct texts and the scores are obtained with automatic metrics like BLEU or
BERTScore, and 3) Fine-tuning the model on real reference-generation score pairs, where the
generations are real systems submissions to WMT and WebNLG Challenges and the scores are
the public results of human evaluations. Later, Pu et al. (2021) introduced BLEURT-20, ex-
panding the support to up to 20 languages.

Model-Based Referenceless Metrics

All the automatic metrics discussed until now require at least one reference to compare candidate
generations against them. While they have all been proven to be valuable metrics in developing
and assessing new NLG models, their reliance on gold-quality references can be an obstacle given
the cost of producing such references, particularly in multilingual settings and when dealing with
low-resource languages. Referenceless metrics that evaluate the generation independently or in
comparison to the input text have been proposed to overcome this limitation.
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Lau et al. (2017) found that the Syntactic Log-Odds Ratio (Pauls and Klein, 2012) or SLOR
correlates well with acceptability judgments at the sentence level. The SLOR is a normalized
log-probability score that adjusts a sentence’s likelihood by accounting for its length and the
frequencies of its words. Later, Kann et al. (2018) empirically proved that it can be used as an
automatic proxy for fluency, and proposed a WordPiece variation (WPSLOR), which works with
a smaller model.

To evaluate AMR-to-Text generation, Manning and Schneider (2021) proposed a parsing-based
referenceless approach. It consisted of parsing the generated text back into AMR format and
computing the similarity between the input AMR and the parsed output. They found that AMR
parsers are still too noisy to perform the task correctly, but performance improves significantly
when manual annotations are used.

To evaluate the semantic accuracy in RDF-to-Text generation, Dusek and Kasner (2020) pro-
posed an off-the-shelf NLI approach. They used existing NLI models to compare generated texts
against input graphs. First, they converted the graph’s triples into natural language text by
applying a template. Then, to check for omissions, the generated text was used as the premise,
and each triple was individually tested as a hypothesis. If a given test was not marked as an
entailment, the triple was considered omitted in the candidate text. Similarly, to check for addi-
tions, the candidate was used as the premise, and the entire graph as the hypothesis. If the test
is not marked as an entailment, an addition is detected.

Zhang et al. (2023) proposed FactSpotter, which also relies on NLI models to compare generated
texts with input graphs. However, this approach only focused on spotting omissions in the gen-
erated text. They followed a similar approach to Dusek and Kasner (2020), using the generation
as the premise and the individual triples as the hypothesis. The main difference is that they did
not reformat the triples; instead, they fine-tuned their model on synthetic data.

Finally, Le Scao and Gardent (2023) proposed EREDAT. This approach drew inspiration from
SBERT but addressed the issue of reference scarcity. Instead of encoding a reference and a gen-
eration, they trained a model on graph-text pairs so they could directly compare the embeddings
of generations and input graphs.

2.3 Conclusion

The current chapter provided the foundational concepts and background necessary to frame this
thesis. Essential advancements in the general natural language generation (NLG) domain were
reviewed, with an emphasis on the transformer architecture, its training, and related model
adaptations. An overview of the Graph-to-Text task was then provided, with an emphasis on
RDF- and AMR-to-Text generation. The chapter explored existing datasets and the languages
they cover, common modeling approaches over time, and standard evaluation methods. In doing
so0, it highlighted the limitations of current approaches concerning low-resource languages.

The following chapters describe the research performed to address these limitations. Chapter 3
focuses on RDF-to-Text generation in low-resource Celtic languages using monolingual denois-
ing and structured Soft Prompts. Chapter 4 deals with AMR-to-Text generation across both
high- and low-resource languages through hierarchical fine-tuning and phylogeny-based language
grouping. Chapter 5 proposes a referenceless multilingual evaluation framework based on Natural
Language Inference.
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RDF-to-Text Generation of Celtic
Languages

Contents
3.1 Imtroduction . . . . . . . . . . .. 39
3.2 Method . . . . . . . e 40
3.3 Data . ... e e 42
3.4 Experiments . . . . . . . e 43
3.4.1 Training Process . . . . . . . . ... 43
3.4.2 Models . . . . . . e 44
3.4.3 Ablation Experiments . . . . . .. ... ... 0oL 45
3.4.4 Training Data Experiments . . . . . .. .. ... .. ... ... .... 46
3.5 Evaluation . . . . . .. . .. 46
3.5.1 Automatic Evaluation . ... ... ... ... ... ... ...... 46
3.5.2  Human Evaluation . . . ... ... ... ... ... ... . ....... 46
3.6 Results . . . . . . e e 47
3.6.1 Automatic Evaluation Results . . . . . . ... .. ... ... ...... 47
3.6.2 Human Evaluation Results . . . . . ... ... ... .. ......... 50
3.7 Conclusion . . . . . . . . . e e 52

As previously discussed, most G2T research has focused exclusively on English, with a notable
lack of parallel corpora in other languages being one of the main issues. This chapter addresses
the first research question: Can RDF-to-Text generation be improved in low-resource languages
with limited training examples by fine-tuning a model with phylogeny-inspired Soft Prompts?

3.1 Introduction

While subsection 2.2.3 presented the steady progress that has been made on the G2T generation
task, it also highlighted how most of the progress has been made exclusively in English, with a
few advances taking place in other high-resource languages like Russian. However, little research
has been conducted on low-resource languages, which the data-intensive nature of the best-
performing G2T approaches can partially explain.
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Recent work in machine translation (Conneau et al., 2020; Lin et al., 2020) shows that fine-
tuning large language models pre-trained on multiple languages helps compensate for data spar-
sity. Other studies have shown that lightweight fine-tuning techniques allow preserving language
knowledge obtained from high-resource languages while transferring to low-resource languages.
In particular, phylogenetic information (that is, information about how languages relate to each
other based on their origins) has shown promising results in transfer learning for related lan-
guages in classification tasks like POS tagging, Named Entity Recognition, or Natural Language
Inference (Faisal and Anastasopoulos, 2022). At the same time, Factorized Soft Prompts have
demonstrated a good performance in transfer learning to low-resource languages in text gener-
ation tasks like summarization (Vu et al., 2022). Finally, some studies indicate that combining
adaptation techniques with full fine-tuning might help mitigate the challenges of multilingual
training (Pfeiffer et al., 2022).

This chapter focuses on G2T generation, where the input is a knowledge graph in RDF (Lassila
and Swick, 1999) format and the output is a text verbalizing the graph in several languages from
the Celtic family, including Irish (Gle), Welsh (Cym), and Breton (Bre). The method described
here consists of two elements: a multilingual pre-trained language model, which is expected to
provide general linguistic knowledge, and a task and phylogenetically informed factorized soft
prompt, designed to learn language-specific weights. To train the model, two different strategies
are employed: monolingual unsupervised denoising pre-training, which leverages the benefits of
unlabeled data (essential for low-resource languages), and fine-tuning on a limited number of
RDF-to-Text instances.

Leveraging the data made available by the WebNLG Challenge 2023 (Cripwell et al., 2023),
the approach described in this chapter outperforms simple full fine-tuning and factorized soft
prompts full fine-tuning without phylogeny information, both in terms of automatic metrics and
human evaluation. Additionally, to analyze the impact of various components of the soft prompt,
an ablation study was performed. Finally, an experiment was conducted to examine how the
size of the RDF-to-Text fine-tuning data (from 0 to 1.5K) impacts generation performance.

3.2 Method

At the heart of this approach is a highly structured soft prompt that can be decomposed into
multiple sub-prompts, each focused on a different aspect.

Inspired partly by the structure of the original T5 translation prompts (Raffel et al., 2020) (e.g.,
Translate English to German), the soft prompts are first divided into three main components:
Task, Source, and Target. This selection of components is similar to a standard practice in
Machine Translation architectures, such as mBART (Liu et al., 2020), M2M100 (Fan et al.,
2021), and NLLB (NLLB Team et al., 2022), where both the Source and Target languages are
specified to improve Zero-Shot performance.
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The Source and Target components are further decomposed using phylogenetic language informa-
tion. Each of them is split into Family, Genus, and Language sub-prompts to model phylogeny
information. The resulting soft prompt is called Phylogeny-Inspired Task-Source-Target (PI-
TST) soft prompt. The intuition is that using this prompt allows less-resourced languages to
benefit from the training data of their related languages while mitigating the introduction of
noise caused by the mixture of training data. Figure 3.1 shows the simplified phylogenetic tree
used during training. The linearized RDF graphs are paired with the English language since the
subjects, objects, and predicates of the RDF graphs are in English.

Celtic Germanic
| |
\/ v
Goidelic Brythonic West .
Germanic
I I I
\/ v \/ v v ~ v o
. Scottish . English
Irish Gaelic Breton Welsh English _ RDF

F1G. 3.1: Soft prompt phylogeny tree used during training.

To train and use this Soft Prompt, multiple steps are applied on a pre-trained multilingual model:

Step 0: Language Model Adaptation. Sometimes, the pre-training objective of a Model
is not aligned with the natural text generation objective. For example, models based on T5 are
generally pre-trained on the Span Corruption objective, which generates spans of text separated
by sentinel tokens instead of plain natural text. This behavior is soon corrected when performing
full model fine-tuning; however, lightweight approaches, such as Soft Prompts, can be more
challenging to overcome. Lester et al. (2021) proved that further pre-training the base model on
a language modeling task, like Prefix Language Modeling, benefits performance. Based on the
better performance reported for the Masked Language Modeling (MLM) objective over causal
language modeling by Raffel et al. (2020), particularly on the translation downstream tasks.
In this research, the BERT-style MLM pre-training task from Raffel et al. (2020) is employed,
rather than the Prefix Language Modeling (PLM) approach.

Step 1: Unsupervised Pre-training of the Soft Prompt. This step aims to train the
language components of the soft prompt so that each of them captures as much language infor-
mation relevant to their assigned language. Specifically, the whole soft prompt is trained on a
mixture of unsupervised, monolingual tasks (Masked LM, Prefix LM, Suffix LM, Generation, and
Deshuffling). The parameters used for each component are substituted based on the language of
the training sample. Instances that belong to the same language family share the same Family
sub-prompt but have different Genus and Language sub-prompts. Table 3.1 shows the possible
values of each component, and Figure 3.2 shows an example input batch for this step.
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{ Component | Possible Values
Task Masked LM, Prefix LM, Suffix LM, Deshuffling, Open Generation, Data-to-Text
Family Germanic, Celtic
Genus West Germanic, Goidelic, Britonic
Language English, RDF, Irish, Scottish Gaelic, Breton, Welsh

TaB. 3.1: Soft prompt possible values for each factorized component.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Task | Source Target ! Original Input Sequences
[T T P o v .
| Family | Genus | Lang. | Family | Genus ; Lang.
Masked LM Germanic et . RDF  Germanic s A RDF <S> Einstein <P> <mask> <p> Poland
Germanic Germanic
Prefix LM Germanic ML English  Germanic A English Thank 0 for <mask> <pad> <pad>
5 Germanic 8 Germanic e yos P P
<
2 Suffix LM Celtic | Britonic = Welsh Celtic | Britonic | Welsh | <mask> | honno ? <pad> <pad> <pad>
g
= Deshuffling Celtc Britonic = Breton Celtic Britonic | Breton skuizh ? out Ha <pad> <pad>
Generate Celtc Goidelic Irish Celtic | Goidelic Irish Seo <mask> | <pad> <pad> <pad> <pad>

F1G. 3.2: Soft prompt example batch for step 1 (Unsupervised Pre-training of the Soft Prompt).

Step 2: Downstream Task Fine-tuning of the Soft Prompt. Once the language compo-
nents of the Soft Prompt have learned to perform the unsupervised tasks, the Task sub-prompt
is trained on the downstream task (RDF-to-Text generation). Following Vu et al. (2022), one of
the unsupervised task Soft Prompt components is used to initialize the new task Soft Prompt
component. In this case, the Masked LM component is used since it is the closest one to the
RDF-to-Text task. In this step, language components of the soft prompt continue being changed
“based on the language of each training instance.

Inference. At inference time, the task and language sub-prompts are combined as required by
the specific inference task (i.e., generating into Breton, Irish, or Welsh).

3.3 Data

For unsupervised training, Celtic and English monolingual data was extracted from multiple
datasets available in the Huggingface Hub 33. Specifically, data was collected from different
OPUS corpora (Tiedemann, 2012) (Bible Corpus (Christodouloupoulos and Steedman, 2015),
DGT, EUConst, GNOME, KDE4, OfisPublik (Tyers, 2009), OpenSubtitles (Lison and Tiede-
mann, 2016), Opus-100 (Zhang et al., 2020a), ParaCrawl, QED (Abdelali et al., 2014), Tatoeba,
and Ubuntu), CC-100 (Conneau et al., 2020), CC-Aligned (El-Kishky et al., 2020), CC-Matrix
(Schwenk et al., 2021), ECDC Steinberger et al. (2014), mC4, OSCAR (Suérez et al., 2019),
TaPACo (Scherrer, 2020), TedTalks (Cettolo et al., 2012), UDHR, and Wikipedia.

To process the text, it is first split into sentences using SentenceSplitter 3* with the default
English settings. Then, each sentence was normalized using TextaCy>°, by applying bullet
point normalization, hyphenated words normalization, quotation marks normalization, Unicode

33nttps://huggingface.co/datasets
3https://github. com/mediacloud/sentence-splitter
3https://textacy.readthedocs.io/en/latest/
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normalization, white space normalization, and HTML tag removal. Finally, the sentences were
filtered using FastText Language Identification (Joulin et al., 2016b,a)3, keeping only those
above a 0.5 threshold. For the Celtic languages, as many samples as possible were collected,
while for English, the number was limited to prevent it from overshadowing the other languages.
Table 3.2 shows the number of samples available on each dataset used.

L Version Train Validation Test
Monolingual
Bre 1206 546 250 250
Cym 12993 205 250 250
Eng 7959035 250 250
Gle 7996 721 250 250
Gla 1019593 250 250
WebNLG
RDF-to-Bre — 1399 2280
RDF-to-Cym - 1665 1779
RDF-to-Eng 35426* 4464 5150
RDF-to-Gle - 1665 1779

TAB. 3.2: Soft prompt collected dataset for the experiments with number of instances per set.
Although a large dataset of monolingual data was collected, only a small portion is used during
training. *The English training WebNLG data was only used during the Zero-Shot ablation
experiment.

3.4 Experiments

3.4.1 Training Process

The specific details of the training process are the following:

Step 0: Language Model Adaptation. mT5, (Xue et al., 2021) was used as the base
model®” since it has been pre-trained in several languages, including English, Irish, Scottish
Gaelic, and Welsh. Before training the Phylogeny-Inspired Soft Prompt, language model adap-
tation was performed for 30000 steps on monolingual data for English, Breton, Irish, Scottish
Gaelic, and Welsh as well as RDF triples from WebNLG. Once the LM Adaptation was com-
pleted, the Phylogeny-Inspired Soft Prompts were trained in two steps as follows.

Step 1: Unsupervised Pre-training of the Soft Prompt. This step takes 30000 steps
over the monolingual data for English, Breton, Irish, Scottish Gaelic, and Welsh, as well as the
RDF triples from WebNLG.

Step 2: Downstream Task Fine-tuning of the Soft Prompt. The Task sub-prompt is
further fine-tuned on the WebNLG task using the validation split of the English WebNLG dataset
(Gardent et al., 2017) and human-written translations in Breton, Irish, and Welsh. This process
takes five epochs or around 4 500 steps, keeping the best checkpoint every 500 steps.

30nttps://fasttext.cc/docs/en/language-identification.html
3"https://huggingface.co/google/mt5-1large
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To account for the unbalanced distribution of samples in the datasets, the sampling strategy
described in Devlin et al. (2019) was applied with o = 0.3, which has been shown to perform
best (NLLB Team et al., 2022). Table 3.3 accounts for that and other relevant hyperparameters
used. The batch size was chosen to optimize the use of the GPUs. The learning rate was selected
after a small exploratory experiment. The Soft Prompt size follows Vu et al. (2022), using around
50 tokens for the task and 50 for each language. Finally, the training steps follow Lester et al.
(2021).

L Hyperparameter Value J
Base Model mT5H-Large
Vocabulary Size ~250K Tokens
Embedding Dimensions 1024
Base Model Parameters ~1.22B
Total Prompt Parameters ~T47TK
Inference Prompt Parameters ~143
Learning Rate 0.0001
Batch Size per GPU 8
Available GPUS 2 Nvidia A40
Sampling Temperature 0.3
ML Adaptation Steps 30000
ML Adaptation Training Hours ~12
Soft Prompt Pre-training Steps 30000
Soft Prompt Pre-training Training Hours ~12
Soft Prompt Fine-tuning Steps ~4 500
Soft Prompt Fine-tuning Training Hours ~4

TAB. 3.3: Soft prompt hyperparameters.

3.4.2 Models

The proposed models are compared to a baseline obtained by applying simple full fine-tuning
on mT5, one previous work with high performance in English, and two MT-based, upper-bound
models.

Simple Full Model Fine-tuning. simple full fine-tuning on mT5 is performed. First, the
language model adaptation is performed to attune the model to the target languages. It is then
further fine-tuned for the downstream task.

Control Prefixes. The Control Prefixes model presented by Clive et al. (2022) is currently
one of the best-performing strategies for the English WebNLG benchmark. This lightweight fine-
tuning approach incorporates attribute-level parameters in various layers of T5, which indicate
the semantic category of the input WebNLG RDF graph to enhance performance. For the
baseline, a Control Prefixes variation is trained on the WebNLG validation data of all languages
(Celtic and English).

Machine Translation (MT). Machine Translation is studied in two scenarios: a generate-
and-translate scenario (NLG+MT), where the output of the best RDF-to-English generation sys-
tem from the WebNLG Challenge 2020 (Guo et al., 2020a) is translated into the Celtic languages
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using Machine Translation, and a translation-only scenario (Gold+MT), where the translation
takes as input the references of the WebNLG dataset. These models serve as upper bounds, as
they are trained on a much larger collection of parallel English-Celtic data, unlike the proposed
models, which are trained on around 1.5K examples of aligned data per language. Furthermore,
the Gold+MT model does not perform RDF-to-Text generation as it simply translates the En-
glish sentences of the WebNLG test set into Celtic. To perform the translations, a version of
the system from Zhang et al. (2020a) trained only on Celtic and English data from the OPUS
Corpora (Tiedemann, 2012) was used. It is worth noting that NLG+MT and the Gold+MT
models require significantly more parallel data for training than the proposed method.

3.4.3 Ablation Experiments

Ablation experiments were performed to test the impact of the various sub-prompts (task, phy-
logeny data, source, and target language). The full PI-TST prompt is compared with five other
prompts: the same prompt but without phylogeny information (TST), the same prompt without
Source Language information (PI-TT), and three simplified prompts without phylogeny infor-
mation, which are either unstructured (S) or model only two factors: Task and Target Language
(TT) or Source and Target Language (ST). The size of the soft prompts is fixed at 140 tokens
for all the experiments. When a task component was present, its size was fixed at 50 tokens,
with the remaining components taking 90 tokens. All the language-related components on a soft
prompt had their size distributed uniformly. Figure 3.3 shows the various prompts that were
experimented with.

a) No Soft Prompt (No) aka. Full Model Fine Tuning

n Tokens
Input
Sequence
b) Simple Soft Prompt (S) aka. Soft Prompt
140 Tokens T T
Input
Task
Sequence
c) Task-Target Soft Prompt (TT) aka. Factorized Soft Prompt
50 Tokens 90 Tokens n Tokens
Target Input
Task
Language Sequence
d) Source-Target Soft Prompt (ST)
70 Tokens 70 Tokens n Tokens
Source Target Input
Language Language Sequence
e) Task-Source-Target Soft Prompt (TST)
45 Tokens 45 Tokens n Tokens
50 Tokens
Source Target Input
Task
Language Language Sequence
f) Phylogeny-Inspired Task-Target Soft Prompt (PI-TT)
50 Tokens 30 Tokens 30 Tokens 30 Tokens n Tokens
Target Target Target Input
Task :
Family Genus Language Sequence
f) Phylogeny-Inspired Task-Source-Target Soft Prompt (PI-TST)
15 Tokens 15 Tokens 15 Tokens |15 Tokens |15 Tokens |15 Tokens | n Tokens
50 Tokens
Task Source Source Source Target Target Target Input
as Family Genus | Language | Family Genus | Language | Sequence

F1G. 3.3: Soft prompt variants and the composition of their input embeddings.
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3.4.4 Training Data Experiments

Zero-Shot. The zero-shot capabilities of the final PI-TST model were tested by fine-tuning
the task Soft Prompt only in English (either on the validation or training data) and testing it
on Celtic languages.

Training Samples. This experiment tests the final PI-TST model by fine-tuning it using
different numbers (100, 500, 1000) of randomly sampled elements from each language on the
dataset.

3.5 Evaluation

3.5.1 Automatic Evaluation

BLEU. The corpus-level BLEU score (Papineni et al., 2002) was computed for each experiment
using SacreBLEU (Post, 2018).

Google BLEU. Additionally, for each experiment, the sentence-level Google BLEU scores
were computed(Wu et al., 2016b).

LaBSE SBERT Cosine Similarity. LaBSE (Feng et al., 2022) was used to obtain sentence
embeddings for the generated text and the human reference. Then the sentence-level cosine
similarity of both embeddings was computed as an automatic measurement of semantic accuracy.
Given its implicit goal of being language-agnostic, this model was selected over others, which
benefits experimentation on low-resource languages.

Wilcoxon signed-rank test. The Wilcoxon’s signed-rank test (Wilcoxon, 1945) was used on
the sentence-level metrics (Google BLEU and LaBSE Cosine Similarity) to evaluate whether
the differences observed in different experiments are statistically significant. This approach was
preferred over the paired Student’s t-test since the results do not follow a normal distribution.

3.5.2 Human Evaluation

To perform human evaluation, 25 random input graphs from the test set were selected, ensuring
a variety of sizes. The PI-TST model was then used to generate text from the same graphs in
all the target languages. All 25 of those generated texts were provided to human evaluators,
and they were asked to score them using readability, grammaticality, word order, and semantic
adequacy. Each criterion was scored on a 1 to 3 Likert scale, where one is bad, two is medium,
and three is good.

Readability. The evaluator was only given the model’s output and asked if the generated text
was understandable and reasonable in the language.

Grammaticality. The evaluator was only given the generated output of the model and asked if
the morphology of the generated text was correct and if agreement constraints (e.g., verb/subject,
noun/adjective) were respected.
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Word Order. The evaluator was only given the model’s generated output and asked if the
word order of the generated text was correct and if a native speaker would come up with a text
like that.

Semantic Adequacy. The evaluator was given the model’s generated output and the human-
written reference and asked if the generated text shared the same meaning as the human-written
reference.

Colleagues who grew up in regions where the evaluated language is spoken were contacted to
perform the human evaluation. Given the nature of the low-resource languages at hand, only a
small number of evaluations were collected. Appendix A.1 provides more detail on the human
evaluation process.

3.6 Results

3.6.1 Automatic Evaluation Results

Table 3.4 shows the results of the automatic evaluation.

BLEU Score 1 Google BLEU Score 1* LaBSE Cosine Similarity 1
Experiment Bre Cym Eng Gle Bre Cym Eng Gle Bre Cym Eng Gle
Machine Translation
NLG+MT 18.08  20.24  58.98 18.09 | 17.74 2749  49.64 24.86| 72.96 89.90  95.05 87.76
Gold+MT 19.81  49.04 100.00 32.09 | 23.04 51.82 100.00 36.44 | 76.23 94.80 100.00 92.56
Baselines
Control Prefixes 12.23  13.33 51.61 8.17 | 16.37 18.76  47.77 13.59 | 80.52 79.41 94.52 73.12
Full Fine-tuning 16.49 18.83  46.40 14.16 | 21.36 24.36  43.62 20.09 | 82.56 86.02 92.35 82.49
Final
PI-TST 18.15 20.60 49.15 15.64 | 22.57 25.95 46.09 21.23 | 84.09 87.72 93.65 84.68

TAB. 3.4: Soft prompts automatic evaluation results. For Google BLEU and cosine similarity,
the results without a statistically significant difference from the final PI-TST model (p > 0.05)
are underlined. The English values on the machine translation rows are the scores obtained by
the RDF-to-EN model and the gold references, i.e., in this case, translation is not used. *Since
the sentence-level Google BLEU score is used for statistical significance analysis, here the average
of the sentence-level score is presented, instead of the corpus-level one.

PI-TST Outperforms the Baselines. The PI-TST proposal outperforms simple mT5 full
fine-tuning and the state-of-the-art Control Prefixes models fine-tuned on Celtic data. For Breton
and Welsh, PI-TST even outperforms the BLEU score of the NLG+MT approach, with the
advantage that this model does not require the amount of parallel translation data that training
the MT model requires, which is not always available for low-resource languages. Furthermore,
the NLG model of the NLG+MT baseline was trained on all 32K samples of the full English
WebNLG, while PI-TST is only trained on validation data, which is significantly smaller. It
is worth noting that, for Breton, which is the most under-resourced of the Celtic languages
evaluated, the proposed method even comes close to the Gold+MT BLEU score and surpasses
its LaBSE Cosine Similarity score. As the data used to pre-train mT5 does not include any
Breton, this suggests that the fine-tuning approach produces larger improvements on languages
that were not seen during the base model’s pre-training.
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The Effect of Source Information. The ablation results in Table 3.5 show that the two
best-performing models (PI-TST, ST) include a source and target sub-prompt, which suggests
that, similar to the control tokens used in multilingual machine translation, the source and
target sub-prompts help structure the representation space and guide learning. The conjecture
is that having both Source and Target sub-prompts (rather than just Target) helps the model
differentiate between the unsupervised monolingual step (Step 1), where Source and Target
prompts refer to the same language and the second fine-tuning step where the Source and Target
prompt refers to different languages (Source: RDF, Target: Celtic). On the other hand, the
results showed that the T'ST model without PI has much lower performance than ST, likely due
to a trade-off between prompts and prompt size: 70 tokens for the Source token in ST vs. 45 in
TST.

The Effect of Phylogenetic Information. Like PI-TST, the Phylogeny-Inspired Task-
Target (PI-TT) model outperforms simple full fine-tuning in all languages, confirming the positive
impact of phylogeny information.

Languages not Seen During Pre-Training of the Original Encoder-Decoder (mT5).
For Breton, the only language not seen during the pre-training of mT5, the PI-TT model out-
performs TT, indicating that phylogeny information benefits under-resourced languages.

Source and Phylogeny Prompts. Comparing models across these two dimensions shows
that, while adding either a phylogeny or a source sub-prompt does not always improve perfor-
mance (both TST and PI-TT underperform TT), adding both does help (PI-TST outperforms
all other models).

Zero-Shot. Table 3.5 shows that using the PI-TST model in a zero-shot setting reaches equiv-
alent results on Celtic languages as a simple Soft Prompt model trained on all Celtic languages.

BLEU Score 1 Google BLEU Score 1* LaBSE Cosine Similarity 1
Experiment Bre Cym Eng Gle Bre Cym Eng Gle Bre Cym Eng Gle
Soft Prompt
S 9.63 11.01 4848 10.36 | 13.41 15.18 44.73 14.18 | 79.84 86.42 93.51 82.49
TT 1770  19.94 4830 1558 | 21.95 2532 4526 21.04 | 83.21 87.59 93.60 84.66
ST 17.89 1994 49.18 15.58 | 22.24 2534 45.73 20.88 | 83.72 87.53 93.55 84.47
TST 16.28  18.49 4729 1539 | 21.33 24.19 4482 20.94 | 82.21 86.46 93.04 84.16
PI-TT 17.43  19.41 4832 15.23 | 22.16 2528 4529 21.48 | 83.55 87.34 9290 84.35
Training Samples
100 Samples 1242 13.61 3842 10.66 | 17.12 1898 38.09 15.66 | 77.58 81.15 89.74 78.56
500 Samples 14.31 1495 43.70 12.60 | 19.08 20.68 42.12 16.99 | 79.92 8254 91.30 79.84
1000 Samples 1534  18.29 4718 1391 | 20.29 24.02 4429 19.32 | 81.99 86.44 9247 82.53
Zero-Shot
English Validation 9.81 11.85 48.36 9.69 | 13.79 16.88 45.04 13.96 | 7857 83.29 93.26 82.19
English Training 9.57 11.27 48.09 10.36 | 13.49 16.19 44.95 1458 | 79.19 83.70 9294 81.04
Final
PI-TST 18.15 20.60 49.15 15.64 | 22.57 25.95 46.09 21.23 | 84.09 87.72 93.65 84.68

TAB. 3.5: Soft prompt ablations automatic evaluation results. For Google BLEU and cosine
similarity, the results without a statistically significant difference from the final PI-TST model
(p > 0.05) are underlined. *Since the sentence-level Google BLEU score is used for statistical
significance analysis, here the average of the sentence-level score is presented, instead of the
corpus-level one.
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Size of the Training Data. Figure 3.4 shows the performance of the PI-TST models when
fine-tuned with varying amounts of graph-text data. With only 1000 samples per language,
PI-TST outperforms Full Model fine-tuning in English and performs on par with the Celtic
languages.
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Fia. 3.4: Soft prompt BLEU comparison by number of training samples per language. The x
mark indicates the score of Full Model Fine-tuning.

Statistical Significance. Table 3.6 presents the statistical significance between each experi-
ment and the final proposal, PI-TST. While some of the ablation experiments produce results
that are not statistically different from the proposed method, an argument in its favor can be
made against those other approaches, as PI-TST provides much more controllability and flexibil-
ity given its complex soft prompt. The extreme modularity of this proposal gives it an edge over
the ablation studies. It is also notable that, where the average Google BLEU score of ablation
experiments outperformed the proposal (Irish PI-TT), the difference was not statistically signif-
icant. Finally, the difference in the Google BLEU score between the proposal and the Breton
Gold+MT is not statistically significant, despite the former (and more data-intensive) approach
having a higher average.
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Google BLEU Score 1* LaBSE Cosine Similarity 1
Experiment Bre Cym Eng Gle Bre Cym Eng Gle
Machine Translation
NLG+MT 0.0000 0.0002 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
Gold+MT 0.2700 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
Baselines
Control Prefixes 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
Full Fine-tuning 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
Soft Prompt
S 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0121 0.0000
TT 0.0007 0.0089 0.0135 0.1101 | 0.0060 0.4284 0.5420 0.4962
ST 0.0249 0.0048 0.1443 0.0124 | 0.0626 0.1318 0.4616 0.0467
TST 0.0000 0.0000 0.0000 0.0089 | 0.0000 0.0000 0.0000 0.0000
PI-TT 0.0166 0.0011 0.0020 0.1358 | 0.0013 0.0003 0.0000 0.0313
Training Samples
100 Samples 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
500 Samples 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
1000 Samples 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
Zero-Shot
English Validation 0.0000 0.0000 0.0004 0.0000 | 0.0000 0.0000 0.0000 0.0000
English Training 0.0000 0.0000 0.0001 0.0000 | 0.0000 0.0000 0.0000 0.0000

TAB. 3.6: Soft prompt Wilcoxon signed-rank test p-values. For Google BLEU and cosine sim-
ilarity, the results without a statistically significant difference from the final PI-TST model (p
> 0.05) are underlined. *Since the sentence-level Google BLEU score is used for statistical
significance analysis, here the Average of the sentence-level score is presented, instead of the
corpus-level one.

3.6.2 Human Evaluation Results

When asked where they learned the language, 4 of the evaluators answered Home, 2 answered
School and Home, and 3 answered School. When asked how they considered their proficiency in
the language, 8 of the evaluators answered Good and one answered Medium. Table 3.7 shows the
results of their evaluation of the PI-TST model. This evaluation indicates that the model pro-
duces acceptable text in terms of readability, grammar, and word order for all Celtic languages.
It also shows that, for English and Irish, the quality of the semantic adequacy is past the middle
point.

L Criteria Bre Cym Eng Gle
Annotators 3 2 2 2
Readability 1 0.84 0.59 0.98 0.58
Grammaticality T 0.84 073 092 0.71
Word Order 1 0.84 0.79 097 0.65
Semantic Adequacy 1 | 0.42  0.32 0.77 0.53

TAB. 3.7: Soft prompt human evaluation results converted to a 0-to-1 scale from the original
3-point Likert scale.
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Tables 3.8 and 3.9 display generated text in a low-resource language (Welsh) and a high-resource
language (English). The examples are taken from the 1st (best), 3rd (medium), and 5th (worst)
quintiles, based on the average of the four human evaluation metrics. Appendix A.2 provides
similar examples for the other low-resource Celtic languages (Breton and Irish).

Sample | R | G |[WO[SA [ Q|
Graph:

Nie Haisheng | birthPlace| Zaoyang

Nie Haisheng | birthDate | 1964-10-13
Generation (Cym):

Ganed Ni Haisheng ar 13 Medi 1964 yn Zaoyang.
Reference (Cym): 1.00 | 1.00 | 1.00 | 0.75 || 1st
Ganwyd Nie Haisheng ar Hydref 13, 1984 yn Zaoyang.
Generation (Eng MT*):

Ni Haisheng was born on 13 September 1964 in Zaoyang.
Reference (Eng):

Ganed Ni Haisheng ar 13 Medi 1964 yn Zaoyang.

Graph:

Harold French | birthPlace | UK

Generation (Cym):

Ganed Harold French yn yr Unol Daleithiau.

Reference (Cym):

Cafodd Harold French ei eni yn y DU.

Generation (Eng MT*):

Harold French was born in the United States.

Reference (Eng):

Harold French is born in the UK.

Graph:

The Hobbit | literaryGenre | High fantasy

Generation (Cym):

Mae The Hobbit yn y genre cerddorol sydd i'w gael yn y
cyfres.

Reference (Cym):

Genre yr Hobbit yw ffantasi uchel.

Generation (Eng MT*):

The Hobbit is in the musical genre found in the series.
Reference (Eng):

The Hobbit literary genre is high fantasy.

0.75 | 1.00 | 1.00 | 0.25 || 3rd

0.00 | 0.50 | 0.25 | 0.00 || 5th

TaB. 3.8: PI-TST Welsh generation examples from the human evaluation with the average score
across evaluators. The samples were selected from the 1st (best), 3rd (medium), and 5th (worst)
(Q) based on the average of the four human evaluation metrics: readability (R), grammaticality
(G), word order(WO), and semantic adequacy (SA). *The MT model may have altered differences
in the original Welsh generation.
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| Sample | R| G |[WO[SA | Q|
Graph:

Harold French | birthPlace | UK
Generation (Eng):

Harold French was born in the UK.
Reference (Eng):

Harold French is born in the UK.

Graph:

Terence Rattigan | deathYear | 1977-01-01
Generation (Eng):

Terence Rattigan died on January 1st, 1977. 1.00 11.00 1 1.00 | 050 3rd
Reference (Eng):

Terence Rattigan died in 1977.
Graph:

Nie Haisheng | birthPlace| Zaoyang
Nie Haisheng | birthDate | 1964-10-13
Generation (Eng): 1.00 | 0.75 | 1.00 | 0.25 || 5th
Ni Haisheng was born on 10th October 1964 in Zaoyang.
Reference (Eng):

Nie Haisheng was born on October 13, 1984 in Zaoyang.

1.00 | 1.00 | 1.00 | 1.00 || 1st

TAB. 3.9: PI-TST English generation examples from the human evaluation with the average
score across evaluators. The samples were selected from the 1st (best), 3rd (medium), and 5th
(worst) quintile (Q) based on the average of the four human evaluation metrics: Readability (R),
grammaticality (G), word order(WO), and semantic adequacy (SA).

3.7 Conclusion

In this chapter, the first research question was addressed by introducing a fine-tuning strategy for
RDF-to-Text generation in low-resource Celtic languages that leverages phylogeny-informed Soft
Prompts. By integrating information about the task and details about the language family, genus,
and specific language of both the source and target languages in structured prompt components
and combining them with monolingual unsupervised pre-training, this approach demonstrated
that the Phylogeny-Inspired Task-Source-Target (PI-TST) soft prompt approach improves the
quality of generation.

The results showed that this method outperforms both a simple complete fine-tuning baseline
and the state-of-the-art Control Prefixes method, even when using a smaller number of RDF-to-
Text training examples. Notably, the model performs well in Breton, a language not seen during
the base model’s pre-training, underlining the benefits of incorporating phylogenetic structure
for transfer learning in unseen or extremely low-resource settings.

These findings validate the initial hypothesis: RDF-to-Text generation in low-resource languages
can be meaningfully improved with limited labeled data by fine-tuning with structured Soft
Prompts. These findings open up promising directions for scalable and language-aware natural
language generation (NLG) techniques, especially in underrepresented linguistic contexts.
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The promising results obtained using phylogenetic information motivated us to further explore its
application to similar problems. This chapter addresses the second research question: Can text
generation from Abstract Meaning Representation (AMR) graphs be improved using phylogenetic
information to guide a model’s training process in high- and low-resource languages?

4.1 Introduction

Abstract Meaning Representation (AMR) (Banarescu et al., 2013) is a representation language
used to encode the meaning of sentences. AMR-to-Text generation is the task of verbalizing the
meaning encoded by an AMR graph. While there has been constant progress on this task for
the English language (Hoyle et al., 2021; Ribeiro et al., 2021b,c; Bevilacqua et al., 2021) and
some other high-resource (HR) and medium-resource (MR) languages (Fan and Gardent, 2020;
Ribeiro et al., 2021a; Xu et al., 2021; Martinez Lorenzo et al., 2022; Sobrevilla Cabezudo and
Pardo, 2022), not much attention has been given to this task in low-resource (LR) languages.

Previous work on machine translation (MT) exposes a complex trade-off between high- and
low-resource languages during training. While Koehn and Knowles (2017) showed that neural
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MT models have a steep learning curve leading to poor performance in low-resource scenarios,
Lin et al. (2020) and Aharoni et al. (2019) demonstrate that multilingual training mitigates
this effect. Conversely, Conneau et al. (2020) observe that the noise resulting from multilingual
training negatively affects HR languages, while NLLB Team et al. (2022) show that curriculum
learning (Bengio et al., 2009) can help reduce over-fitting on LR languages.

Phylogenetic knowledge has sometimes been used to handle this trade-off, both in multilingual
NLU tasks such as dependency parsing, part of speech tagging, and natural language infer-
ence (Faisal and Anastasopoulos, 2022) and in NLG tasks such as G2T generation (see Chap-
ter 3). Recent work (Meng and Monz, 2024) has also shown that training on closely related
languages facilitates transfer, while training on distant languages has a regularization effect. Fi-
nally, Parameter-Efficient Fine-Tuning approaches have proven helpful in learning new tasks and
languages for text generation of LR languages (Vu et al., 2022) while keeping memory require-
ments low during training.

This chapter focuses on AMR-to-Text generation and proposes two techniques to improve transfer
from high- to low-resource languages while preserving performance in HR languages. First, iter-
atively refining a multilingual model into a set of monolingual models using Low-Rank Adapters
(LoRA) (Hu et al., 2022). With the hypothesis that this promotes cross-lingual transfer, limits
the impact of data sparsity for LR languages, and reduces over-fitting of HR languages as the
monolingual models are trained last. Second, this training curriculum relies on a tree struc-
ture whose nodes indicate which languages are included in the training data at each iteration
step. Using phylogenetic knowledge, high- and low-resource languages are grouped, either with
closely related or distant languages. In this way, the chapter investigates how using different
phylogenetic-based training strategies impacts performance.

4.2 Method

To mitigate the effects of data scarcity (over-fitting) and multilingual training (noise), this chap-
ter proposes a variation of curriculum learning that leverages both phylogenetic knowledge and
the modularity and memory efficiency of LoRAs to iteratively refine a base multilingual model
into a set of monolingual models.

Base Model. The base model is mT5jrge (Xue et al., 2021)38, a multilingual encoder-decoder
model extended with LoRAs to support modular Parameter-Efficient Fine-Tuning and 4-bit
quantization to reduce memory footprint during training.

Refining Models. The goal is to learn 12 monolingual models by iteratively fine-tuning a
model in four steps. In the first step (Level 0), the base model (mT5arge) is fine-tuned on all 12
languages using a single LoRA fine-tuning. The resulting model, which is created by merging
(mT5arge)’s weights with the LoRA, is then fine-tuned on two sets of 6 languages, yielding two 6-
language models, each trained with a separate LoRA module (Level 1). This process is repeated
twice: first, fine-tuning the two 6-language models into six bilingual models (Level 2) and then
fine-tuning each bilingual model into 12 monolingual models (Level 3). Algorithm 1 provides
more detail on this process.

38nhttps://huggingface.co/google/mt5-1large
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4.2. Method

Algorithm 1 HQL training algorithm simplified.

Load 4-bit Quantized Base Model
Load Training Hierarchy
for Level in Training Hierarchy do
for Group in Level do
Load data of all languages in Group
if Level not 0 then
Load relevant LoRAs from previous Levels
Merge LoRAs with model
end if
Add new LoRA
Train LoRA on relevant data
Save current Group LoRA
end for
end for

Choosing Language Groups. The proposed training strategy is structured as a four-level
tree, where each node determines the set of languages used for fine-tuning the parent model. The
specific languages studied are German (Deu), Luxembourgish (Ltz), English (Eng), Tok Pisin
(Tpi), Dutch (Nld), Limburghish (Lim), Spanish (Spa), Asturian (Ast), Italian (Ita), Sicilian
(Scn), French (Fra), and Haitian Creole (Hat). Based on previous works, the effect of the two
training hierarchies shown in Figure 4.1 is explored.

All Languages

/ \

Group 1 Group 2

Group la Group 1b Group lc Group 2a Group 2b Group 2c

/N /N /N /N / N\ am

German Asturian Italian Tok Pisin French Limburgish Spanish Luzembourgish Emnglish Sicilian Dutch Haitian Creole

(a) Distant Languages Hierarchy (DLH)

Indo-European

/ \

Germanic Romance

High /North Sea Weser-Rhin Iberian Ttalo Gallo

German Germanic Germanic Romance Romance Romance

/N /N / N\ /N / N\ /N

German Luzembourgish English Tok Pisin Dutch Limburgish Spanish Asturian Italian Sicilian French Haitian Creole

(b) Phylogenetic Tree Hierarchy (PTH)

F1G. 4.1: HQL training hierarchies tested. The top one (DLH) maximizes the language difference
within nodes of each level. The bottom one (PTL) minimizes the language difference within
nodes of each level. High-resource languages are in bold, low-resource languages are in italics,
and languages unseen by the pre-trained base model are underlined.
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Meng and Monz (2024) showed that balanced data from distant languages during training can be
a regularizing factor. Accordingly, the first strategy is to increase the average distance between
languages for each node in the training hierarchy. This strategy produces the Distant Languages
Hierarchy (DLH) depicted in 4.1a.

Conversely, multiple previous studies have pointed to the benefits of training multilingual models
on closely related languages. Based on this, the second training hierarchy follows the phylogenetic
tree shown in 4.1b, where at each level of the hierarchy, the corresponding LoRA module
is trained on smaller, less diverse, and more closely related groups of languages. Under this
Phylogenetic Tree Hierarchy (PTHQL) approach, the expectation is to increase the transfer
learning and reduce the noise of other languages as training progresses.

4.3 Data

4.3.1 Training Data

The 2020 AMR release 3.0 dataset (Knight et al., 2020)3°, also known as LDC2020T02, includes
55.6K gold-quality AMR-Text pairs, where a human created both the graph and the English text.
A silver-quality training dataset was created for all target languages using machine translation
and language identification filtering on the English gold-quality data. First, the English texts are
translated to a target language using a 4-bit quantized NLLB-3.3B model (NLLB Team et al.,
2022)40. Second, the machine-translated texts are filtered using the GlotLID (Kargaran et al.,
2023)*! language identification model by removing all instances with a score below 0.5. Third,
the top 31K instances are retained for each language so that the quantity of training data is the
same for all languages. This method produces a dataset of 31K (gold AMR, machine-translated
texts) for each of the target languages, except English, where texts are human-written.

Additionally, a small parallel dataset is created for all target languages where the AMRs are
silver and the texts are human-written. The text for this dataset is derived from the FLORES-
200 dataset of parallel texts (NLLB Team et al., 2022). The silver AMR graphs are obtained
by parsing the English texts of the dataset using AMR3-structbart-L (Drozdov et al., 2022)%2.
Since FLORES-200 does not include training data, the validation split was used for training, and
the test split was divided in half to create two smaller validation and test sets.

4.3.2 Test Data

English, German, Spanish, and Italian were evaluated on gold-quality AMR-Text pairs on
LDC2020T07 (Damonte and Cohen, 2018, 2020)*3, a subset of the 2020 AMR release 3.0 with
gold AMR graphs and human-translated and corrected texts. For the remaining eight languages,
the sub-test set from FLORES-200 (silver AMR, human-written text) pairs was used. The use
of silver AMR graphs paired with human-verified sentences was preferred, despite the possibility
of generating (gold AMR, machine-translated texts) pairs from the 2020 AMR release 3.0.

39nttps://catalog.ldc.upenn.edu/LDC2020T02
“nttps://huggingface.co/facebook/nllb-200-3.3B
“https://github.com/cisnlp/GlotLID
“nttps://github. com/IBM/transition-amr-parser/
“https://catalog.ldc.upenn.edu/LDC2020T07
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4.4. Ezxperiments

The rationale behind this decision was that the noise introduced by the AMR parser when pro-
ducing the silver AMR graphs would be more consistent across languages, making evaluation
fairer. In contrast, the noise of machine-translated silver sentences would vary across languages,
given the uneven performance of machine translation models. Furthermore, by comparing it
against real human-written text, the quality of the generated text can be more accurately as-
sessed. Table 4.1 summarizes the size and type of data.

Quality Instances per Language
Dataset AMR Text | Train Test Valid
FLORES-200 Silver  Gold 997 506 506
English AMR 3.0 Gold  Gold N/A 1371 N/A
Translated AMR 3.0 | Gold Silver | 30000 1000 1000

TaB. 4.1: HQL preprocessed datasets.

4.4 Experiments

4.4.1 Training Process.

All the experiments use mT9Sj,ge as the underlying base model via the transformers 44 library.
The PEFT % library was used to handle the QLoRA implementation. The model was quantized
to 4-bit precision for memory efficiency.

Following (Dettmers et al., 2023), the QLoRA was applied to all linear layers of the model, which
improves performance. Since Hu et al. (2022) suggests that new languages and tasks might require
much higher ranks, since the proposed models need to learn an entirely new task (AMR-to-Text
vs Spam Correction) and generate in scarcely seen and previously unseen languages, the Rank
and Alpha were set to 256 using Rank-Stabilized scaling. The base model contained around 1.2B
parameters, and introducing LoRA adds almost 300M new trainable parameters.

A batch size of 8 was used, selecting a power of 2, which benefits the training speed. A maximum
length per training instance of 256 tokens was selected, similar to the values chosen by Ribeiro
et al. (2021a), which implied the truncation of around 8% of tokens on the input sequence but
does not affect the output sequences.

Each model was trained on the same amount of data to factor out the impact of training data
size. Starting with 30997 distinct instances for each language and training for one epoch on each
level of the training hierarchy. Thus, L0 models are trained on 371964 (30997 x 12) unique
instances, L1 models on 185982 (30997 x 6) instances, L2 on 61994 (30997 x 2) instances,
and L3 on 30997 instances. Hence, by the end of the training, each monolingual model has
seen 650937 (30997 x 21) instances, with unique instances seen up to 4 times across models,
equivalent to training four epochs on the full dataset.

It is worth noting that, given the modularity of QLoRAs and how the intermediate levels can be
reused to train the new ones, the total number of instances used for training all 12 monolingual
models is 1487 856. In comparison, full fine-tuning 12 monolingual models that have seen 650 937
instances would require training on 7811244 (650937 x 12) instances.

“nttps://huggingface.co/docs/transformers
“https://huggingface.co/docs/peft
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This approach is used to train the Distant Languages Hierarchy (DLH) and the Phylogenetic
Tree Hierarchy (PTH). Table 4.2 includes more details about the hyperparameters.

L Hyperparameter Value ‘
Dataset AMRS3.0 + Flores200
Max sequence length 256 tokens
Batch Size 8
Unique Instances per Language 30997
Total Unique Instances 371964
Epochs per Level (L) 1
Instances (LO) 371964
Instances (L1) 185982
Instances (L2) 61994
Instances (L3) 30997
Total Seen Instances 650937
Real Total Instances 1487 856
Checkpoints Every 500 batches
Optimizer Adafactor
Scheduler Linear
Learning Rate 5e-H
Base Model google/mt5-large
Base Model Parameters 1.2B
LoRA Parameters 293M
LoRA Rank 256
LoRA Alpha 256
LoRA Dropout 0.05
LoRA Scailing Rank-Stabilized
LoRA Targets All linear layer
Quantization BnB 4-bit

TAB. 4.2: HQL hyperparameters.

4.4.2 Models

Previous Works

F&G (Fan and Gardent, 2020) is an encoder-decoder multilingual model that supports 21 high-
and medium-resource languages. The encoder includes structural embeddings, and the model
was fine-tuned on (silver AMR, gold text) pairs with data sizes ranging from 400K to 8.2M pairs,
depending on the target language.

Ribeiro (Ribeiro et al., 2021a) traine a mT5p,s model that supports 4 HR languages. It was
fine-tuned on millions of (silver AMR, gold text) and tens of thousands of (gold AMR, silver
text) pairs for each target language.

Xu (Xu et al., 2021) separately trained three transformers on three HR languages. First, they
pre-trained on six tasks (AMR-to-Eng, Eng-to-AMR, Eng-to-X, X-to-English, AMR-to-X, and
X-to-AMR) on millions of (silver AMR, gold text) pairs. Then they fine-tuned on two tasks
(AMR-to-X and Eng-to-X) using 36.5K (gold AMR, gold Eng text / silver X text).
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4.5. FEvaluation

Martinez (Martinez Lorenzo et al., 2022) trained an mBART,ee model separately on four HR
languages. In particular, the version trained on plain AMR inputs was used. This model was
trained for up to 30 epochs on 55K (gold AMR, silver text) pairs.

Baselines

Monolingual QLoRA (MonoQL). Twelve monolingual models were obtained by fine-tuning mT5jarge
on each language separately using LoRA. The expectation is that this model performs worse than
the proposed HQL model, particularly on LR languages, due to the limited training data, which
can lead to either a lack of generalization or to overfitting. Each final model of the HQL approach
has seen 650937 instances during training. To allow for a fair comparison, each Mono@QL model
is trained with that many instances.

Multilingual QLoRA (MultiQL). Fine-tuned mT5j,,ge using LoRA on data from all 12 languages.
The expectation is that this model will perform worse than the proposed HQL models, due to
the noise introduced by the language mix. Since training all the HQL models requires a total of
1487 856 instances, this multilingual model trains up to that many instances.

Generate and Translate (GenéTrans). AMR-to-English is performed using the English MonoQL.
Then, it is translated into the target languages using the same model used to generate the silver
data (4-bit quantized NLLB-3.3B). The expectation is that this model mirrors the uneven quality
of machine translation models, performing well in high-resource (HR) languages but less so in
low-resource (LR) languages.

Proposed HQLs

Distant Languages Hierarchical QLoRA (DLHQL). Multiple LoRAs trained using the proposed
iterative curriculum learning with the distant language hierarchy from 4.1a. The expectation is
that this model showcases the regularizing effect of distant languages.

Phylogenetic Tree Hierarchical QLoRA (PTHQL). Multiple LoRAs trained using the proposed
iterative curriculum learning with the phylogenetic tree from 4.1b to guide the training hierarchy.
The expectation is that this model increases transfer learning and reduces the noise of other
languages as training progresses.

4.5 Evaluation

Following NLLB Team et al. (2022), evaluation is performed with BLEU. This simple surface-
based metric does not rely on training data, which is an advantage when dealing with multiple
languages, particularly those with low resources. The scores with SacreBLEU (Post, 2018)46 and
the default settings (including 13a tokenizer) for comparability with previous works. Chrf++
and BLEURT *7 are also reported. However, the discussion of results focuses mainly on BLEU,
given its widespread use in the past and it being the only metric available on all previous works
that use the same test sets.

Statistical testing is computed via paired bootstrap resampling (Koehn, 2004) for BLEU and
ChrF++ and the Wilcoxon signed-rank test (Wilcoxon, 1945) for BLEURT-20.

“Cnttps://github. com/mjpost/sacrebleu
4"https://github.com/google-research/bleurt
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4.6 Results

Results obtained when generating from both silver and gold AMRs are reported. The proposed
HQL approach is compared with previous works and baselines, and the results are examined on
both high- and low-resource languages.

HQL outperforms or is on par with mono and multilingual baselines (silver and gold
AMRs). On silver AMRs, HQL models are consistently better than mono and multilingual
baselines, except for Tok Pisin (Figure 4.2, Table 4.3, Table 4.4, Table 4.5). This difference is
statistically significant in most cases. The results on gold AMRs are more mixed. The proposed
models outperform these baselines on Italian and German, but not on English and Spanish.
This difference might be because both of the best-performing languages are among the most
represented in the pre-training data of the base model.

HQL outperforms the Gen& Trans Baseline on all LR languages. While the Gen&Trans
baseline outperforms the HQL models on most HR languages, the proposed approach outper-
forms the Gen&Trans models on all LR languages in terms of BLEU(Figure 4.2). These results
show the benefits of HQL for LR languages. While MT yields low-quality texts, the stacked
LoRA approach seems to enhance transfer. Similar results are seen on other metrics (Table 4.4,
Table 4.5), where HQL comes ahead in most LR languages.

Notably, two of the languages previously unseen by the base model (Tok Pisin and Asturian)
benefit from the transfer effect as they perform on par with LR languages from the base model’s
pre-training data. For Limburgish and Sicilian, the conjecture is that their lower scores result
from the low quality of the machine translation, as evidenced by their particularly poor perfor-
mance in the Gen&Trans baseline.
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DEU ENG NLD SPA ITA FRA LTZ TPI* LIM* AST* SCN* HAT
I8 MonoQL B8 MultiQL BB Gen& Trans I8 MonoQL B8 MultiQL BB Gen& Trans
lo DLHQL B0 PTHQL lo DLHQL lm PTHQL
(a) High-Resource Languages (b) Low-Resource Languages

F1G. 4.2: HQL BLEU on FLORES-200 test subset. *Languages unseen by the mT5,,, base
model.
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4.6. Results

BLEU ¢
Model Deu Ltz Eng Tpi NId Lim Spa ASt Ita Scn Fra Hat
MonoQL 12.2 86 292 129 9.3 4.7 11.0 9.5 93 6.1 15.0 10.0
MultiQL 11.6 88 30.7 11.2 10.2 4.0 121 86 105 59 149 10.5
Gen&Trans® | 16.4  10.6 — 112 12.9 49 14.2 119 14.2 52 23.1 116
DLHQL 142 109 36.3 116 124 5.1 139 119 132 8.3 198 124
PTHQL 150 11.5 359 11.8 12.3 50 13,5 12.0 133 81 20.0 12.5

TaB. 4.3: HQL BLEU on FLORES-200 test subset. *English not included since no translation
is needed.

ChrF++ 1
Model Deu Ltz Eng Tpi NId Lim Spa ASt Ita Scn Fra Hat
MonoQL 39.2 37.1 585 384 368 308 371 343 370 325 422 376
MultiQL 39.8 37.0 60.7 36.6 384 30.2 391 328 379 328 423 378
Gen&Trans* | 44.0 39.5 — 350 41.8 319 41.3 47.4 42.3 30.5 49.2 395
DLHQL 42.7 39.1 64.4 357 408 32.2 41.3 370 410 35.9 47.1 39.9
PTHQL 43.1 394 64.4 357 415 320 409 376 40.6 357 47.6 39.7

TaAB. 4.4: HQL ChrF++ on FLORES-200 test subset. *English not included since no translation
is needed.

BLEURT-20 1
Model Deu Ltz Eng Tpi NId Lim Spa ASt Ita Scn Fra Hat
MonoQL 57.8 349 685 59.3 632 337 475 289 504 164 40.3 45.7
MultiQL 524 36.0 70.8 60.0 622 34.6 51.8 30.1 51.6 17.7 405 458
Gen&Trans* | 64.9 43.2 — 59.7 64.7 376 59.3 38.2 63.2 21.8 56.8 49.6
DLHQL 61.2 42.0 74.5 60.6 555 376 585 374 60.7 223 533 514
PTHQL 61.4 422 743 599 535 38.0 588 381 61.1 222 543 51.4

TaB. 4.5: HQL BLEURT-20 on FLORES-200 test subset. *English not included since no trans-
lation is needed.
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HQL optimizes faster than the three baseline models and, on average, outperforms
them all. Figure 4.3 plots the average BLEU, Chrf++, and BLEURT-20 score for all 12
languages against the number of instances seen during training. Already at level L2, the HQL
models outperform all three baselines (monolingual, multilingual, Gen&Trans ) on two metrics,
despite having fewer total training instances. The graph also shows that each new level of the
hierarchy improves performance.
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(a) BLEU (b) ChrF++ (¢) BLEURT-20

F1c. 4.3: HQL averaged scores vs training instances on FLORES-200 test subset. Average score
across all 12 languages (Y axis) vs. total instances seen during training (X axis) for three metrics
on the sub-set of FLORES-200 test data. HQL models include results on all the intermediary
levels of the hierarchy.

HQL performs on par with previous work (Gold AMRs). Table 4.6 compares the
results of the proposed models with previous works on gold AMRs. In HR Romance languages,
the HQL approach outperforms all previous works in terms of BLEU score. In English, the score
is close to the best-performing model. In German, the proposed model underperforms both Xu’s
and Martinez’s approaches, possibly due to differences in training data size and the impact of

multi-task learning.

BLEU 1 ChrF++ 7 BLEURT-20 t
Model Deu Eng Spa Ita|Deu Eng Spa Ita| Deu Eng Spa Ita
F&G 15.3 249 21.7 198 — — — — — — — —
Ribeiro 20.6 — 30.7 264 | 494 — 572 54.0 — — — —
Xu 25.7 — 314 284 — — — — — — — —
Martinez 23.2 448 346 290 | 55.8 73.4 64.0 60.7 — — — —
MonoQL 182 49.2 386 227 | 454 711 61.8 509 | 60.7 781 68.1 63.1
MultiQL 19.8 429 341 272 | 477 69.7 60.1 54.7 | 57.7 776 66.6 65.9
Gen&Trans* | 28.0 — 39.6 33.8| 549 — 63.7 59.6 | 69.4 — 719 734
DLHQL 21.2 442 374 292 | 49.0 70.5 623 569 | 623 789 713 71.0
PTHQL 22.8 434 372 29.7 | 50.6 70.1 623 571 | 63.7 79.2 70.7 714

TaAB. 4.6: HQL BLEU, ChrF++, and BLEURT-20 on LDC2020T07 test data. *English not
included since no translation is needed.
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4.7. Conclusion

HQL performs well compared to previous works despite being trained on less data.
In previous works, F&G, Ribeiro and Xu trained on anywhere from 400k to 8.9M synthetic
training pairs per language, in contrast, while the Martinez model is trained for up to 30 epochs
on close to 55K monolingual instances. In contrast, the HQL models are trained on four epochs
and fewer than 31K instances per language. Despite this, the proposed models come close to
and in some cases, outperform those previous approaches, while also enabling support for LR
languages.

Distant vs. Close Languages. Almost no significant difference between training on distant
(DLHQL) and closely related (PTHQL) languages is observed. While this could confirm the ob-
servation by Meng and Monz (2024) that both are useful in inducing transfer and regularization,
this could also be due to the restricted size of the training tree used. Due to computational con-
straints, the study was limited to a few languages, resulting in a substantial overlap of training
data between the two hierarchies: 100% on L0 and L3, 50% on L1 and L2, for a total training
overlap of 81%. To further evaluate the difference between these approaches, future studies could
reduce the overlap by selecting a larger hierarchy, starting with a reduced number of instances
and increasing their number as training progresses through the levels, or by using partial splits
of data per language on the first levels.

Tables 4.7 and 4.8 on the next pages display generated text in a low-resource language (Tok
Pisin) and its related high-resource language (English). The examples are taken from the 1st
(best), 3rd (medium), and 5th (worst) quintiles, based on the average of the three automatic
metrics used. Appendix B.1 provides similar examples for the other five low-resource languages
and their five high-resource counterparts.

4.7 Conclusion

This chapter addressed the second research question by proposing Hierarchical QLoRA (HQL),
a novel multilingual training strategy for AMR-to-Text generation that leverages phylogenetic
information and parameter-efficient fine-tuning. The experiments across 12 languages, including
both high- and low-resource settings, demonstrate that HQL consistently outperforms monolin-
gual and multilingual baselines, especially in low-resource languages. Notably, it also surpasses a
Generate-and-Translate pipeline in low-resource languages, despite relying heavily on machine-
translated training data produced with the same translation model.

Two curriculum strategies were evaluated: one based on distant language groupings and the other
on phylogenetic proximity. The differences in performance between the two were modest and,
in most cases, not statistically significant, which supports previous studies on the regularizing
effect of the first approach and the transfer learning of the second one. That being said, the
phylogenetic hierarchy typically yielded better results, which opens the door to further testing
on its suitability for distant language grouping.

These findings validate the use of structured phylogenetic information to inform multilingual
training curricula and support the effectiveness of LoRA-based modular adaptation in large-
scale, multilingual natural language generation (NLG) tasks.
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[ Sample [ B ] C [B2] Q |
Graph:
(s2 / summarize-01
:ARG1 (s / situation
:location (¢ / country
:quant 1)

:mod (p / politics))
:ARG2 (a / advise-01)
:duration (b / brief)
:mod (m / mere))

Generation (Tpi): 0.20 | 0.48 | 0.54 1st
Dispela em i wanpela liklik stori tasol bilong ol samting i kamap long wanpela
kantri.
Reference (Tpi):
Ol ’advisory’ em ol sotpela tok save long ol samting i kamap insait long politiks
bilong wanpela kantri.
Generation (Eng MT*):
This is just a brief overview of what is happening in one country.
Reference (Eng):
Advisories are merely a brief summary of the political situation in one country.
Graph:
(¢ / contrast-01
:ARG2 (t / thing
:quant (12 / lot)
:ARGO-of (1 / look-02
:ARGI1 (d / dinosaur)
:mod (s / still))
:topic (b / bird)))
Generation (Tpi):
Tasol planti samting i luk olsem ol dinosaurus.
Reference (Tpi):
Tasol i gat planti samting long ol pisin we i luk wankain olsem ol dainaso yet.
Generation (Eng MT¥*):
But a lot of things look like dinosaurs.
Reference (Eng):
But there are a lot of things about birds that still look like a dinosaur.
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARG1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Tpi):
Ol i save kisim pe bilong skul bilong ol.
Reference (Tpi):
Planti taim bai i gat skul fi long enrol long ol dispela edukesen progrem.
Generation (Eng MT*):
They get paid for their education.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.

0.07 | 0.38 | 0.57 3rd

0.04 | 0.18 | 0.49 5th

TAB. 4.7: PTHQL Tok Pisin generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Tok Pisin generation. **The graphs
were automatically parsed and may contain errors.
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L Sample

[ B | € [B20] Q |

Graph:
(¢ / contrast-01
:ARG2 (t / thing
:quant (12 / lot)
:ARGO-of (1 / look-02
:ARG1 (d / dinosaur)
:mod (s / still))
:topic (b / bird)))
Generation (Eng):
But there are a lot of things about birds that still look like dinosaurs.
Reference (Eng):
But there are a lot of things about birds that still look like a dinosaur.

0.81

0.90

0.85

1st

Graph:
(h / have-03
:ARGO (c / country
:name (n / name
:opl "Persian"))
:ARGI1 (g / grammar
:ARG1-of (r / regular-02
:mod (m / most))
:ARG1-of (e / easy-05
:ARG2-of (12 / relative-05))))
Generation (Eng):
Persian has mostly regular and relatively easy grammar.
Reference (Eng):
Persian has a relatively easy and mostly regular grammar.

0.18

0.75

0.84

3rd

Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARG1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Eng):
Entry into these education programs is a typical tuition fee.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.

0.08

0.44

0.77

5th

TaB. 4.8: PTHQL English generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).

**The graphs were automatically parsed and may contain errors.

65



Chapter 4. AMR-to-Text Generation of High- and Low-resource Languages

66



Chapter 5

Referenceless Evaluation of
Multilingual RDF-to-Text

Contents
5.1 Introduction . . . . . . . . . . .. 68
5.2 Method . . . . . . . e 68
5.3 Data . . ... e e 69
5.3.1 Training Data . . . . . . .. ... . oL o 69
5.3.2 Test Data . . . . . . . . . . .. 70
5.4 Experiments . . . . . . . e 72
5.4.1 Training Process . . . . . . . . . . o 72
542 Models . . . . . e e 73
5.5 Evaluation . . . . . . . . . e 74
5.5.1  Correlation with Automatic Metrics . . . . ... ... ... ... ... 74
5.5.2  Correlation with Human Judgments . . . . ... ... ... ... ... 74
5.5.3 Retrieval Accuracy . . . . . . ... L L 74
5.6 Results . . . . . . e 75
5.6.1  Correlation with Automatic Metrics . . . . . .. ... ... ... ... 75
5.6.2  Correlation with Human Judgments . . . . ... ... ... ... ... "
5.6.3 Retrieval Accuracy . . . . . . ... L L 81
5.7 Conclusion . . . . . . . . . . 82

While researching multilingual G2T, the limited number of informative neural evaluation metrics
that work effectively in both high- and low-resource languages became evident. This chapter
addresses the third research question: Can Natural Language Inference (NLI) be used as the
base to develop a referenceless multilingual evaluation metric for multiple facets of semantic
faithfulness in RDF-to-Text generation across high- and low-resource languages?
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5.1 Introduction

As discussed in Chapter 1, a key constraint on the G2T task is that generation should be
semantically faithful, meaning that the generated text should express only the content represented
by the input graph and represent it completely.

While G2T generation models have steadily improved over the years both in terms of performance
and range of target languages they can handle (Gardent et al., 2017; Castro Ferreira et al., 2020;
Cripwell et al., 2023), recent results indicate that semantic faithfulness is still an issue since the
generated texts can either contain information not present in the input (Additions) or, conversely,
fail to express all the information present in the input (Omissions). These issues are particularly
prevalent when generating into under-resourced languages (Cripwell et al., 2023) or out-of-domain
topics (Nikiforovskaya and Gardent, 2024).

In this chapter, a novel framework for evaluating G2T Models is proposed, aiming to support
the development of multilingual, semantically faithful G2T models. In particular, the following
contributions are made:

1) A new referenceless multilingual metric that quantifies how much a model under- (omissions)
or over- (additions) generates. This metric provides three scores: precision, recall, and F1.
Intuitively, the graph acts as a reference. Hence, precision is the ratio between correct information
in the text and total information in the text (how much of the generated text is correct), recall is
the ratio between correct information in the text and information in the input graph (how much
of the input graph does the text convey), and F1 is their harmonic mean.

2) A methodology for creating the training data necessary to train this metric.

3) Tests on both high (English, Russian) and low (Breton, Irish, Maltese, Welsh, Xhosa) re-
source languages and compute correlation with both existing reference-based metrics and human
judgments. The tests show that the correlation with reference-based metrics is fair to moderate,
indicating that the proposed metric, although referenceless, can be used to a certain extent in
place of reference-based metrics, particularly when references are unavailable. When compar-
ing with human judgments, results show that correlation with the proposed metric outperforms
the correlation obtained on the same data by other existing referenceless metrics developed for
English G2T, like Data-QuestEval Rebuffel et al. (2021) and FactSpotter Zhang et al. (2023).

5.2 Method

To learn this metric, an existing multilingual Natural Language Inference (NLI) model is further
fine-tuned by adjusting its classification head to work as a regression model instead. This fine-
tuning is performed on synthetic data created to capture various combinations of precision and
recall using Binary Cross-Entropy (BCE) loss. The intuition is the following.

Given a premise and a hypothesis, NLI models predict if the hypothesis is entailed, neutral, or
contradicted by the premise. For precision, the model checks if the text is entailed by the graph
(how much of the text can be inferred from the graph). For recall, the model checks if the graph
is entailed by the text (how much of the graph content can be inferred from the text).
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Since there is no interest in the three classes from the NLI head, only in the degree of the
entailment between the premise and the hypothesis. The NLI classifier is further fine-tuned as a
regression model by focusing solely on the entailment weights from the classification head, rather
than the three existing output classes. The model is trained simultaneously for precision and
recall by swapping the order of the graph and text and targeting the respective score.

The F1 score is computed as usual (Equation 5.1) by taking the harmonic mean of precision (p)
and recall (r). This score functions as a high-level proxy for semantic faithfulness: the higher
the F'1 score, the higher the semantic similarity between the Graph and the Text.

o7
F1:2§+T (5.1)

5.3 Data

5.3.1 Training Data

The aim is to generate a training dataset of (graph, text, precision, recall) quadruples that exhibit
a balanced and diverse distribution of precision and recall combinations.

True Graph Collection: The data creation process starts with the English WebNLG V3.0
dataset (Castro Ferreira et al., 2020)*®. This dataset contains aligned (graph g;, text ¢;) pairs.
Graph g; can also be referred to as g, meaning it is the graph aligned with ¢;. In the dataset,
the graphs were extracted from DBPedia,*?, and the texts were either automatically lexicalized
or mined from Wikipedia®® before being aligned with each other by human annotators. Since
the graph and text are aligned, the pair has precision and recall scores equal to 1, forming a
quadruple (graph g¢;,, text t;, precision=1, recall=1).

Variations of these original quadruples can be created with diverse precision and recall scores by
finding pairs (graph g;, text t;) with different levels of information overlap (o). To do so, keep
the text static and change the graph, as it is much easier to work with and manipulate data in
a graphical representation. For example, measuring o is much easier when both elements are in
graph representation since it is possible to compute the intersection between both sets of triples
(0 =|gj Ngy,|). Because of that, for most of the creation process, work is done with (graph gj,
graph g¢¢,) pairs instead of (graph g;, text ¢;) pairs. At the end of the process, g, is substituted
with the original text ;.

Starting with the graph g¢,, to obtain a variation quadruples with precision p and recall r, find
a new g; such that the following equations are true:

* oflgul =p

« oflgjl =

At first, such a g; can be searched for in the list of all original graphs from WebNLG and all its
subgraphs. If finding a matching graph is impossible, a synthetic one that satisfies the criteria
can be created.

“®nttps://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0
nttps://www.dbpedia.org/
Onttps://www.wikipedia.org/
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Synthetic Graph Creation: Given a graph g, a synthetic graph g; with precision p and
recall 7 can be created by first taking o triples from g¢;, and then adding external triples to g;
until o/|g;| = r.

The external triples can be procured by selecting a triple from some graph g that has no overlap
with g, or by corrupting real triples from ¢;, so that the information they represent does not
match the original graph.

Corrupting a real triple can be achieved by swapping the order of the elements in the triple or
substituting some or all of its elements with incorrect values. When doing so, logical substitutions
are used. For example, to corrupt the triple (Alan Bean | birthPlace | Wheeler, Texas), the object
Wheeler, Texas can be swapped with a different value. In such a case, a value that can be paired
with the property birthPlace is selected, like Miami, Florida, instead of a random value like
1932-03-15.

Multilingual Text Generation: Once a balanced English dataset has been created, it can be
extended to other languages by machine translating the text. NLLB-200-3.3B (NLLB Team et al.,
2022)5! is used to translate into five languages: Irish, Maltese, Russian, Welsh, and Xhosa. To
reduce the noise introduced by machine translation, these translations are filtered following two
criteria: Language Identification score via GlotLID Kargaran et al. (2023)°2 and LID218e (NLLB
Team et al., 2022)%%, and semantic similarity score via LaBSE (Feng et al., 2022)5%.

The resulting dataset contains approximately 1.77 million quadruples (graph, text, precision,
recall) evenly distributed across six languages. Figure 5.1 shows the distribution of precision and
recall scores in the final dataset. Appendix C.2

. 200000
350000 Lo

175000

300000 08

150000
250000

0.6 125000
200000
100000

precision

150000 04 15000

100000 50000

50000 25000

0 0.0 0

5835833333385 8883 0.0 0.2 04 0.6 0.8 10 3388833333833 35s338283

ooooooooooooooooooo
precision recall recall

F1G. 5.1: Referenceless metric synthetic dataset by number of samples according to precision
and recall.

5.3.2 Test Data

Testing relies exclusively on text generated by real models submitted to different G2T challenges
to evaluate the proposed models. Table 5.1 summarizes the datasets used to perform evaluation.

*nttps://huggingface.co/facebook/nllb-200-3.3B
*?https://huggingface.co/cis-1mu/glotlid
nttps://huggingface.co/facebook/fasttext-language-identification
*https://huggingface.co/sentence-transformers/LaBSE
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5.8. Data

L Dataset Graphs Texts | Languages Relevant Annotations J
Bre, Cym, Eng, Gle, | BLEU,  ChrF-++, TER,

7L-Auto 4461143838 | ) 1 Rus, Xho BERTScore, SBERT

2017 223 2230 | Eng Semantics

2020 288 3905 | Eng, Rus Relevance*Correctness(p),

Data Coverage(r)

2023 200 1700 | Cym, Gle, Rus, Mlt | Omissions(r), Additions(r)
4L-RP-Human 181 200 | Cym, Eng, Mlt, Rus | Precision(p) and Recall(r)

TAB. 5.1: Referenceless metric test datasets used for correlation studies. When a relevant
annotation is adjacent to precision (p) or recall (r) that is indicated, otherwise the annotation is
consider adjacent to the more general F1 score.

7L-Auto: This dataset consists of all graphs from the WebNLG test data® and all the texts
generated from these graphs by participant systems of the WebNLG 2017, 2020, and 2023 Shared
Tasks, as well as the different models trained by Meyer and Buys (2024). The models used to
generate the texts encompass a range of approaches, including grammar-based and template-
based methods, statistical machine translation models, neural models trained from scratch, and
fine-tuned pre-trained models, which cover a broad spectrum of errors and quality levels. Texts
are generated in English (Eng), Russian (Rus), Breton (Bre), Irish (Gle), Maltese (Mlt), Welsh
(Cym), and Xhosa (Xho).

WebNLG 2017. The human annotations for this challenge (Shimorina et al., 2018) consist
of 223 graphs lexicalized in English by nine different NLG systems, plus the human-written
references. The generations were scored on a 3-point Likert scale across three criteria: fluency,
grammar, and semantics. For this study, the focus was only on the semantics annotation, which
was defined as follows:

e Semantics: Does the text correctly represent the meaning in the data?

WebNLG 2020. The human annotations for this challenge (Castro Ferreira et al., 2020) con-
sist of 178 graphs lexicalized in English by 16 different NLG systems and 110 graphs lexicalized
in Russian (Rus) by seven different NLG systems; additionally, both include their human-written
references. The generations were scored on a 0-100 scale across five criteria: text structure, flu-
ency, relevance, correctness, and data coverage. For this study, the focus was on the last three,
which were defined as follows:

e Relevance: Does the text describe only such predicates (with related subjects and objects),
which are found in the data?

e Correctness: When describing predicates which are found in the data, does the text correctly
mention the objects and adequately introduce the subject for this specific predicate?

e Data Coverage: Does the text include descriptions of all predicates presented in the data?

%5 Specifically, the following graphs are used: from the WebNLG 2017 test set (1,862 graphs), from the WebNLG
2020 test set for English (1,779), from the WebNLG 2020 test set for Russian that are not present in the English
test set (732) and from the Xhosa data sets that are not in any of the other datasets (88).
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WebNLG 2023. The human annotations for this challenge (Cripwell et al., 2023) consist
of 100 graphs lexicalized in Irish by 4 NLG systems, Maltese by 3 NLG systems, Welsh by 3
NLG systems, and another 100 graphs lexicalized in Russian by 3 NLG systems. Additionally,
all of them included their human-written references. The generations were scored across four
different criteria: fluency, absence of unnecessary repetition, absence of additions, and absence
of omissions. The first was on a 5-point Likert scale, and the other three had binary Yes/No
labels. For this study, the focus was exclusively on the absence of additions and the absence of
omissions, which were defined as follows:

e Absence of Additions: Looking at the Text, is all of its content expressed in the Data
expression? (Allow duplication of content.)

e Absence of Omissions: Looking at each element of the Data expression in turn, does the
Text express all the information in all elements in full (allow synonyms and aggregation)?

4L-RP-Human. While WebNLG’s existing human judgments can, to a certain extent, be
used as proxies for precision, recall, and F1, none of them were collected to measure these
values specifically. To address this, a new dataset of human judgments called 4L.-RP-Human was
created, with graph-text pairs extracted from the 7L-Auto dataset. It contains 50 graph-text
pairs per language for four languages (English, Maltese, Russian, and Welsh) with a balanced
distribution of precision and recall scores by the best-performing model. Fine-grained human
annotations were obtained for precision and recall of this subset to test how the proposed models
correlate with human judgments that specifically target these properties. The human annotators
were provided with a text and a graph in table format and were asked to answer, using a scale
of 1 to 5 (None, Few, Half, Most, All), the following questions:

e Precision: How many Triples from the text can you find in the Table?
e Recall: How many Triples from the Table can you find in the Text?

The annotators were native speakers of the target language who were proficient in English. They
were hired via Prolific °® and paid 10£/h. To measure inter-annotator agreement, the Fleiss’
Kappa (Fleiss, 1971) was used. Appendix C.2 provides more detail on the annotation process.

5.4 Experiments

5.4.1 Training Process

The proposed models are trained by fine-tuning mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
(NB) on the new synthetic dataset to learn the metric. They are fine-tuned as a regression model
by targeting only the entailment weights of the classification head and training simultaneously
for both precision and recall. For the precision score, the graph serves as the premise, and the
text serves as the hypothesis. For the recall score, the text serves as the premise, and the graph
serves as the hypothesis.

*nttps://www.prolific.com/
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5.4.2 Models

Baselines

Data-QuestEval(DQE) is referenceless model by Rebuffel et al. (2021). It utilizes question gen-
eration and question answering to assess semantic Faithfulness. Its main limitations are being
fine-tuned only in English, the lengthy processing time of text generation, and the risk of gener-
ating questions and answers unrelated to the input.

FactSpotter(FS) is the latest model by Zhang et al. (2023)%". Its main limitations are that it is
fine-tuned only in English and produces only a recall-oriented score.

NLI Base (NB) consists on following the process from Dusek and Kasner (2020) with a different
(multilingual) off-the-shelf NLI model (Laurer et al., 2022)%® instead of an English one. Its main
limitations are being unfamiliar with the RDF graph format and not having tested all target
languages.

Proposed Models

Multilingual Full Fine-Tuning (MultiFF):
target languages simultaneously.

Full fine-tuning the NLI Base model on all

Multilingual LoRA (MultiLR):
target languages simultaneously.

LoRA fine-tuning on top of the NLI Base model on all

Monolingual LoRA (MonoLR):
target language individually.

LoRA fine-tuning on top of the NLI Base model on each

Table 5.2 provides details on the hyperparameters used to train the proposed models.

| Parameter MultiFF | MultiLR | MonoLR |
Training Hardware 132GB V100 | 132GB V100 | 1 32GB V100
Training Instances ~ 3544994 ~ 3544 994 ~ 590 832
Training Epochs 1 1 1
Training Time ~ Th ~ 11h ~ 2h
Warmup Steps 10% 10% 10%
Scheduler WarmupLinear | WarmupLinear | WarmupLinear
Optimizer AdamW AdamW AdamW
Learning Rate 2e-5 2e-5 2e-5
Loss Function BCELoss BCELoss BCELoss
Rank N/A 32 32
Total parameters 278811651 283507299 283507299
Trained parameters 278811651 5382240 5382240

TAB. 5.2: Referenceless metric hyperparameters.

*TInria- CEDAR/FactSpotter-DeBERTaV3-Base
*https://huggingface.co/MoritzLaurer/mDeBERTa- v3-base-xnli-multilingual-nli-2mil7
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5.5 Evaluation

The metric is evaluated using correlation with human judgments (in 6 languages) and with
automatic metrics (in 7 languages). Additional results are reported on a graph-text retrieval
accuracy experiment (7 languages).

5.5.1 Correlation with Automatic Metrics

For this experiment the 7L-Auto dataset is used by computing the Spearman’s Correlation (p) of
the baselines and the proposed models with five reference-based metrics: BLEU (Papineni et al.,
2002), ChrF++ (Popovié¢, 2017), TER (Snover et al., 2006), BERTScore (Zhang et al., 2020Db),
and SBERT similarity (Reimers and Gurevych, 2019). For TER, its inverse score (-TER =
1 — TER) is reported for a more uniform reading and display. Since none of these metrics
specifically targets semantic precision or semantic recall, they are compared against the semantic
F1 score. The intuition is that a good correlation with these standard metrics suggests that, in
the absence of ground truth to use them, the proposed metrics can serve as a proxy for them.

5.5.2 Correlation with Human Judgments

First, the human evaluations from all three WebNLG shared tasks were used. Since none of those
have direct fine-grained scores for semantic precision and semantic recall, they were compared
as follows:

WebNLG 2017: The only closely related annotation from this dataset is semantics. Since it
does not specify the type of error (additions, omission, etc.), it was compared against the semantic
F1 obtained by computing the harmonic mean of semantic precision and semantic recall.

WebNLG 2020: semantic recall is compared with the annotations for data coverage since
both are very similar. Semantic precision is compared with the product of the annotations of
relevance and correctness since both are related to precision. However, based on the annotation
definitions, correctness only refers to already relevant triples. For F1, the harmonic mean of the
scores for precision and recall was used.

WebNLG 2023: semantic recall is compared with the annotations for the absence of omissions,
despite the lack of granularity in that binary label. Similarly, semantic precision is compared
with the annotations for the absence of additions, keeping in mind the binary nature of those
labels. For F1, the harmonic mean of the scores for precision and recall was used.

Additionally, the newly collected 4L-RP-Human dataset is used, since it has dedicated semantic
precision and semantic recall scores, to evaluate the best-performing model.

5.5.3 Retrieval Accuracy

Finally, how well the scoring of various models discerns good pairings from bad ones using a
retrieval method was evaluated: Does the metric give higher scores to pairs where the graph and
the generation are equivalent than to pairs where they are not?

Given a subset of 100 graph-text pairs randomly selected from the WebNLG dataset for each
target language and their corresponding human references, the F1 score is computed with the
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proposed models and the score produced by each of the baselines for each of the 10K possible
(graph, text) combinations. Then, Accuracy at 1 (A@1), the proportion of cases where the
highest score is assigned to the correct graph-text pair, is computed. The size of this subset is
limited given the computational demands of scoring all 10000 possible combinations of graphs
and texts with the proposed cross-encoder approach.

5.6 Results

5.6.1 Correlation with Automatic Metrics

Table 5.3 shows the Spearman’s Correlation (p ) between the various referenceless metrics evalu-
ated and the reference-based automatic metrics on the 7L-Auto dataset (Breton, English, Irish,
Maltese, Russian, Welsh and Xhosa WebNLG generations) in terms of precision, recall, and F1
score. Figure 5.2 summarizes the F1 results.

Breton English
F1 F1
BLEU t ChrF++ 1t —-TER 1t BERTScore t SBERT 1 || BLEU ¥ ChrF++ 1 —-TER 1 BERTScore{ SBERT 1
DQE 0.24 0.30 0.18 0.31 0.35 0.51 0.60 0.50 0.62 0.68
FS 0.25 0.28 — 0.29 0.32 0.51 0.60 0.46 0.61 0.67
NB — — — -0.09 — -0.27 -0.30 -0.39 -0.36 -0.30
MultiFF 0.37 0.41 0.12 0.39 0.34 0.36 0.47 0.41 0.48 0.54
MultiLR 0.43 0.52 0.18 0.47 0.41 0.40 0.53 0.47 0.54 0.60
MonoLR 0.45 0.50 0.16 0.49 0.39 0.44 0.58 0.53 0.61 0.67
Irish Maltese
F1 F1
BLEU © ChrF++ 1t —TER 1t BERTScore T SBERT 1 | BLEU © ChrF++ 1 —-TER t BERTScore t SBERT t
DQE 0.23 0.21 0.12 0.17 0.23 0.54 0.60 0.37 0.55 0.60
FS 0.29 0.31 0.17 0.28 0.33 0.60 0.66 0.38 0.62 0.62
NB -0.12 -0.11 -0.18 -0.21 -0.07 0.08 0.10 0.02 0.14
MultiFF 0.28 0.29 0.14 0.29 0.21 0.70 0.78 0.46 0.72 0.74
MultiLR 0.38 0.40 0.20 0.39 0.27 0.72 0.80 0.49 0.74 0.78
MonoLR 0.40 0.41 0.22 0.41 0.29 0.76 0.84 0.49 0.77 0.78
Russian ‘Welsh
F1 F1
BLEU t ChrF++ 1t —-TER 1t BERTScore t SBERT 1 || BLEU 1 ChrF++ 1 —-TER 1 BERTScore{ SBERT 1
DQE -0.05 -0.07 -0.03 -0.08 -0.08 0.34 0.37 0.29 0.37 0.47
FS -0.02 0.02 0.04 0.36 0.40 0.29 0.41 0.47
NB -0.07 -0.12 -0.22 -0.22 -0.07 -0.09 -0.09 -0.16 -0.19 -0.07
MultiFF 0.13 0.19 0.11 0.18 0.23 0.46 0.49 0.32 0.49 0.44
MultiLR 0.26 0.37 0.29 0.39 0.35 0.54 0.59 0.39 0.59 0.51
MonoLR 0.25 0.36 0.28 0.38 0.34 0.53 0.58 0.37 0.59 0.51
Xhosa
F1
BLEU t ChrF++ 1t —-TER 1t BERTScore ¥ SBERT 1
DQE -0.10 -0.04 -0.14 -0.11 -0.12
FS 0.19 0.18 0.18 0.11 0.13
NB -0.25 -0.27 -0.30 -0.24 -0.26
MultiFF — -0.05 -0.11 — -0.05
MultiLR 0.19 0.32 0.15 0.22 0.21
MonoLR 0.22 0.34 0.19 0.26 0.25

TAB. 5.3: Referenceless metric correlation with automatic metrics. Spearman’s Correlation (p )
of the F1 score from different automatic metrics against classic reference-based metrics on the
7L-Auto dataset. Only results with a p-value under 0.05 are reported. NB: Since there is no
Breton training data, the MonoLR score for Breton is computed with its closest language (Welsh).

Fine-tuning matters. Models that have been fine-tuned for the task (including the FS base-
line) show a positive correlation across metrics and languages. In contrast, the NB baseline
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Breton English
DQE 0.24 0.30 0.18 0.31 0.35 DQE
FS 0.25 0.28 N/A 0.29 0.32 FS
NB N/A N/A N/A -0.09 N/A NB
MultiFF MultiFF

MultiLR

MonoLR

ChrF++

—TER

BERTScore

SBERT

MultiLR

MonoLR

—-TER

BERTScore

ChrF++

Irish Maltese
DQE 0.23 0.21 0.12 0.17 0.23 DQE
FS 0.29 0.31 0.17 0.28 0.33 FS
NB -0.12 -0.11 -0.18 -0.21 -0.07 NB
MultiFF 0.28 0.29 0.14 0.29 021 MultiFF
MultiLR MultiLR
MonoLR MonoLR

BLEU  ChrF++  -TER BERTScore SBERT ChrF++  —TER  BERTScore
Russian Welsh
DQE -0.05 -0.07 -0.03 -0.08 -0.08 DQE 0.37 0.29
FS -0.02 N/A 0.02 N/A 0.04 FS .. -
NB{ 007 0.12 022 022 0.07 NB{ 009 0.00 016
MultiFF 0.13 0.19 0.11 0.18 0.23
MultiLR 0.26 0.37 0.29 0.39 0.35
MonolR{ 025 0.36 0.28 038 034 MonoLR
BLEU  ChrF++  —-TER BERTScore SBERT BLEU  ChrF++  —TER  BERTScore
Xhosa
DQE{ -0.10 -0.04 014 011 012
FS 0.19 0.18 0.18 0.11 0.13
NB -0.25 -0.27 -0.30 -0.24 -0.26
MultiFF{ /A -0.05 011 NA 0.05
MultiLR{  0.19 032 015 0.22 021
MonoLR 0.22 0.34 0.19 0.26 0.25
BLEU  ChrF++  -TER BERTScore SBERT

F1G. 5.2: Referenceless metric correlation with automatic metrics. Spearman’s Correlation (p )
between referenceless and reference-based metrics on the 7L-Auto dataset. Only results with a
p-value under 0.05 are reported. NB: Since there is no Breton training data, the MonoLR score
for Breton is computed with its closest language (Welsh).
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produces either negative or non-significant correlations. These results highlight the limitations
of using off-the-shelf models as proposed by Dusek and Kasner (2020) and underscore the im-
portance of task-specific fine-tuning.

Strong performance in English. While trained on multilingual data, the proposed models
almost match the performance of metrics trained on English only (DQE, FS, NB). Interestingly,
the gap is smallest for semantic-based metrics (SBERT, BERTScore), suggesting that the metrics
are good at capturing paraphrases.

Good performance in other languages. The fine-tuned models, especially the small Mono-
lingual LoRA version, outperform all three baselines in all the other languages. These results
demonstrate the effectiveness of the proposed approach despite fine-tuning on synthetic, non-gold
data.

5.6.2 Correlation with Human Judgments
Indirect Precision and Recall: The WebNLG Shared Task

Figure 5.3 shows the Root Mean Squared Error (RMSE) and Spearman’s correlation (p) of the
F1 score from different automatic metrics against the WebNLG 2017, 2020, and 2023 human
annotations. Exact numbers, as well as a breakdown by precision and recall (when possible),
can be found in Table 5.4, Table 5.5, and Table 5.6

mmm DQE mmm NB . MultiLR msm DQE mmm NB s MultiLR
. FS B MultiFF MonoLR . FS mm MultiFF MonoLR
1.0 1.0
0.8 1 0.8 1
0.6 1 0.6
<
w ©
s £
o ©
[
0.4 1 & 0.4
0.2 1 0.2 1
0.0- 0.0-
~ o o m m m m ~ o o m m m mMm
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= = ) ) > < = =4 = > =) > < =
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F1G. 5.3: Referenceless metric error and correlation with WebNLG human annotations. In par-
ticular, Root Mean Squared Error (RMSE) and Spearman’s correlation (p ) of the F1 score from
different automatic metrics against the closest approximate human annotations from WebNLG
2017, 2020, and 2023 (See Table 5.1 for more details). For Spearman’s correlation scores, only
results with a p-value under 0.05 are reported.
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English
F1
RMSE | p1?
DQE 0.29 0.65
FS 0.29 0.71
NB 0.30 0.69
MultiFF 0.33 0.64
MutiLR 0.26 0.70
MonoLR 0.26 0.73

TAB. 5.4: Referenceless metric error and correlation with WebNLG 2017 human annotations.
Root Mean Squared Error (RMSE) and Spearman’s correlation (p ) of the F1 score from different
automatic metrics with the English WebNLG 2017 human annotations. Spearman’s correlation
is only reported where the p-value is less than 0.05.

English Russian
Precision Recall F1 Precision Recall F1

RMSE| p1t |[RMSE| p1t |RMSE| p1t |RMSE| p1t |RMSE| p1 |[RMSE| p1t
DQE 0.27 0.37 0.32 0.32 0.28 0.37 0.79 — 0.84 — 0.81 —
FS 0.21 0.35 0.18 0.45 0.19 0.48 0.67 — 0.79 — 0.70 —
NB 0.28 0.28 0.16 0.43 0.24 0.41 0.30 0.21 0.20 0.39 0.27 0.39
MultiFF 0.22 0.22 0.15 0.38 0.18 0.34 0.25 0.14 0.14 0.42 0.21 0.30
MultiLR 0.22 0.36 0.20 0.37 0.17 0.39 0.26 0.19 0.22 0.36 0.23 0.31
MonoLR 0.20 0.44 0.14 0.47 0.15 0.50 0.24 0.25 0.16 0.44 0.20 0.39

TAB. 5.5: Referenceless metric error and correlation with WebNLG 2020 human annotations.
Root Mean Squared Error (RMSE) and Spearman’s correlation (p ) of the precision, recall, and
F1 score from different automatic metrics with the English and Russian WebNLG 2020 human
annotations. Spearman’s correlation is only reported where the p-value is less than 0.05.

Irish Maltese
Precision Recall F1 Precision Recall F1
RMSE| p1 |[RMSE| p7 |RMSE| p7 [RMSE| p7 |[RMSE| p1 |[RMSE| p1
DQE 0.65 0.11 0.64 0.09 0.62 0.12 0.60 0.14 0.59 0.10 0.58 0.12
FS 0.62 — 0.57 0.13 0.60 0.09 0.66 0.13 0.52 0.17 0.61 0.14
NB 0.52 0.14 0.46 0.22 0.54 0.16 0.48 0.20 0.47 0.37 0.49 0.29
MultiFF 0.48 0.14 0.49 0.29 0.52 0.20 0.46 0.14 0.52 0.32 0.53 0.26
MultiLR 0.47 0.18 0.45 0.35 0.49 0.31 0.44 0.26 0.46 0.37 0.49 0.38
MonoLR 0.46 0.21 0.45 0.37 0.50 0.33 0.43 0.30 0.45 0.43 0.49 0.41
Russian ‘Welsh
Precision Recall F1 Precision Recall F1
RMSE| p1 |[RMSE| p7 |RMSE| p7 [RMSE| p7 |[RMSE| p1 |[RMSE| p1
DQE 0.85 — 0.87 — 0.82 — 0.61 — 0.58 0.11 0.56 —
FS 0.76 — 0.86 — 0.82 — 0.69 — 0.55 0.18 0.60 0.11
NB 0.45 0.17 0.34 0.28 0.45 0.25 0.54 0.13 0.53 0.24 0.58 0.13
MultiFF 0.42 0.36 0.22 0.45 0.13 0.51 0.58 0.26 0.61 0.18
MultiLR 0.39 0.24 0.35 0.28 0.42 0.28 0.49 0.18 0.54 0.29 0.58 0.26
MonoLR 0.38 0.25 0.32 0.33 0.41 0.31 0.49 0.21 0.54 0.34 0.58 0.29

TaB. 5.6: Referenceless metric error and correlation with WebNLG 2023 human annotations.
Root Mean Squared Error (RMSE) and Spearman’s correlation (p ) of the precision, recall, and
F1 score from different automatic metrics with the Irish, Maltese, Russian, and Welsh WebNLG
2028 human annotations. Spearman’s correlation is only reported where the p-value is less than
0.05. NB: Original human annotations are binary, which might explain the high RMSE.
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Correlation is highest for 2017 Data: The human judgments collected during the first
WebNLG campaigns do not directly target precision and recall: WebNLG 2017 targets semantic
faithfulness, WebNLG 2020 targets three semantic criteria related to but not identical to precision
and recall, and WebNLG 2023 focuses on omissions and additions but only return a binary score
no matter how much omission/addition occurs in the generated text. The available human scores
were used to approximate an F1 score and compute the correlation between these derived F1
scores and each evaluated metric. The hypothesis is that the higher correlation obtained for the
2017 data results from the fact that, for that campaign, the single score provided by the human
evaluation is more directly related to the unique score provided by the baseline metrics and to
the F1 score. Conversely, the lower correlation scores obtained by the proposed models on the
WebNLG 2020 and 2023 datasets are likely due to the need to "reconstruct" an F1 score from
the human judgments provided in these datasets.

An improvement over the state-of-the-art. In English, the MonoLR model outperforms
the three baselines despite these being optimized for the language. For the other four languages,
the gap with these monolingual metrics is particularly pronounced. Surprisingly, for Russian,
the NB model is on par with the MonoLLR model. These results highlight the impact of using a
multilingual model as the base model. However, the low results of the NB model on the other
languages show that using NLI only, without fine-tuning on task-specific data, does not always
suffice.

Direct Precision and Recall Fvaluation: The 4L-RP-Human

Table 5.7 reports correlation results when comparing the precision, recall, and F1 scores predicted
by the best-performing model with corresponding human judgments (4L-RP-Human dataset).
These results show a strong correlation for all three metrics for English, Russian, and Welsh,
and a moderate one for Maltese, demonstrating the effectiveness of the proposed approach in
capturing omissions (recall), additions (precision), and semantic faithfulness (F7).

Language | Annotators Precision Recall Fi
Fleiss k  p | Fleissk p 1)

English 4 0.47 0.68 0.47 0.63 | 0.70
Maltese 3 0.29 0.38 0.49 0.30 | 0.47
Russian 2 0.32 0.63 0.39 0.52 | 0.67
Welsh 4 0.37 0.60 0.50 0.81 | 0.70

TAB. 5.7: Referenceless metric human evaluation on 4L-RP-Human. In particular, Fleiss’ x of
precision and recall human annotations as well as the Spearman’s correlation (p) of their average
compared to the MonoLR model.
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Tables 5.8 and 5.9 display evaluation examples in a low-resource language (Welsh) and a high-
resource language (English). The examples are taken from the 1st (best), 3rd (medium), and
5th (worst) quintiles, based on the accuracy of MonoLR compared to the human annotation.
Appendix C.3 provides similar examples for the other languages from 4L-RP-Human (Maltese

and Russian).

Sample

Precision
H mLR

Recall
H mLR

Graph:

McVeagh of the South Seas | imdbId | 0004319

McVeagh of the South Seas | director | Cyril Bruce

McVeagh of the South Seas | director | Harry Carey (actor born 1878)
McVeagh of the South Seas | starring | Harry Carey (actor born 1878)
McVeagh of the South Seas | writer | Harry Carey (actor born 1878)
Evaluated Generation (Cym):

Ysgrifennodd Harry Carey (a anwyd yn 1878) McVeagh of the South
Seas a cyfarwyddodd Cyril Bruce. Mae gan y ddata IMDb 0004319.
Evaluated Generation (Eng MT*):

Harry Carey (born 1878) wrote McVeagh of the South Seas and Cyril
Bruce directed. The IMDb data has 0004319.

0.88  0.96

0.69  0.65

1st

Graph:

University of Burgundy | campus | Dijon

Dijon | country | France

Evaluated Generation (Cym):

Mae Prifysgol Burgundaidd yn cael ei leoli yn Dijon, Ffrainc.
Evaluated Generation (Eng MT*):

Burgundian University is located in Dijon, France.

1.00 0.76

094 0.85

3rd

Graph:

Bionico | dishVariation | Honey Bionico | country | Mexico
Evaluated Generation (Cym):

Mae Bionico yn amrywiad dysgl o Fecsico sy’n cynnwys mél.
Evaluated Generation (Eng MT*):

Bionico is a variation of a Mexican dish that includes honey.

1.00 0.36

1.00 0.34

5th

TAB. 5.8: Referenceless metric evaluation on Welsh examples from 4L-RP-Human with their
Human and MonoLR scores in a scale from 0 to 1. The samples were selected from the 1st
(best), 3rd (medium), and 5th (worst) quintile (Q) based on the accuracy of MonoLR (mLR)
compared to the human annotation (H). *The MT model may have altered differences in the

original Welsh generation.
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Precision Recall

Sample H mLR| H mLR| @

Graph:

Mermaid (Train song) |

Mermaid (Train song) | runtime | 3.16

Mermaid (Train song) | releaseDate | 2012-12-27
Mermaid (Train song) | precededBy | This’ll Be My Year 1.00 0.98 0.62  0.75 1st
Mermaid (Train song) | writer | Espen Lind

Evaluated Generation (Eng):

Mermaid is a pop rock song written by Espen Lind. It was released on
27 December 2012 and has a run time of 3.16.

Graph:

Turkey | longName | Republic of Turkey

Nurhan Atasoy | nationality | Turkish people

Nurhan Atasoy | citizenship | Turkey

Turkey | language | Turkish language 0.19 0.32 0.25  0.37 3rd
Evaluated Generation (Eng):

The Turkish language is spoken in Turkey where the leader is known
as the Republic of Turkey. The country is the location of the Ataturk
Atasoy which is a citizenship of the Turkish people.

Graph:

Ciudad Ayala | populationMetro | 1777539

Evaluated Generation (Eng):

1777539 is the population metro in the country.

genre | Pop rock

0.12  0.88 0.25  0.52 5th

TAB. 5.9: Referenceless metric evaluation on English examples from 4L-RP-Human with their
Human and MonoLR scores in a scale from 0 to 1. The samples were selected from the 1st (best),
3rd (medium), and 5th (worst) quintile (Q) based on the accuracy of MonoLR (mLR) compared
to the human annotation (H).

5.6.3 Retrieval Accuracy

Table 5.10 shows the Accuracy at 1 (A@1) for text/graph retrieval. In all languages, the proposed
fine-tuned models outperform the baselines, with the MonoLR model achieving nearly perfect
scores in most of them and even surpassing FS in English. While the retrieval corpus is admittedly
limited in size (10K possible combinations), the results demonstrate the effect of the proposed
approach on multilingual graph-text representation learning: for all languages, they successfully
identify the matching text given a graph and vice versa.

A@1
Breton English Irish Maltese Russian Welsh Xhosa
DQE 0.53 0.95 0.32 0.48 0.05 0.39 0.38
FS 0.37 0.99 0.36 0.45 0.11 0.46 0.24
NB 0.56 0.79 0.49 0.60 0.70 0.60 0.68
MultiFF 0.92 1.00 0.84 0.96 0.96 0.95 0.99
MultiLR 0.93 0.99 0.85 0.94 0.93 0.97 0.98
MonoLR 0.94 1.00 0.91 0.96 0.99 1.00 0.99

TAB. 5.10: Referenceless metric Accuracy at 1 (A@1) when using the F1 score to match graphs
with their corresponding text on 100 selected examples from the 7L-Auto dataset. NB: Since
there is no Breton training data, the MonoLR score for Breton is computed with its closest

language (Welsh).
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5.7 Conclusion

This chapter studied the third research question by introducing a novel referenceless evaluation
metric for RDF-to-Text generation based on Natural Language Inference (NLI). Unlike previous
referenceless approaches, which were primarily restricted to English and provided only coarse-
grained estimates, the proposed method enables multilingual evaluation. It decomposes semantic
faithfulness into interpretable precision, recall, and F1 components.

To support this metric, a new methodology was proposed that enables the creation of annotated
training data through automatic graph manipulation, machine translation, and filtering. This
approach enables the creation of silver data for both high- and low-resource languages. Empirical
results show that these models achieve strong correlation with human judgments of precision and
recall, and outperform existing referenceless baselines.

These findings demonstrate that NLI-based models can serve as the foundation for practical,
scalable, and interpretable evaluation of multilingual G2T generation, even in settings with
scarce resources or no gold-standard references.
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Chapter 6

Conclusion

As stated in the Chapter 1, despite continued advances, multilingual G2T remains hindered
by data scarcity, especially in low-resource settings. This limitation affects the development of
multilingual G2T systems in multiple ways. When paired with the data-hungry nature of current
training strategies, this lack of sufficient data translates into models with poor generation quality.
When paired with the reliance on reference-based and English-centric metrics, it translates into
unreliable or outright impossible evaluation settings. This final chapter synthesizes the main
findings of this thesis, contextualizes them in terms of the initial research questions, and reflects
on their collective impact on the future of multilingual G2T generation and evaluation.

6.1 Main Contributions

Below is a summary of the contributions made in the context of each research question:

RQ1l. Can text generation from Resource Description Framework (RDF)
graphs be improved in low-resource languages with limited training examples
by fully fine-tuning a model with soft prompts enriched with phylogenetic
information?

The first research question focused on generating natural language from RDF graphs in low-
resource languages. As stated before, while large-scale datasets and powerful models have ad-
vanced G2T for high-resource languages, data scarcity remains a critical barrier elsewhere. This
thesis hypothesizes that linguistic proximity, languages sharing a family or structural features,
can support cross-lingual transfer. Accordingly, it investigates whether structured soft prompts,
informed by language relationships, can bolster multilingual models for RDF-to-Text in under-
represented settings.

To address this question, the PI-TST (Phylogeny-Inspired Task-Source-Target) soft prompt was
introduced. This modular and linguistically structured prompt encodes task, family, genus, and
language information for both source and target. These prompts are combined with a multilingual
pre-trained model (mT5-large). Training proceeds in three stages: adapting the base model with
masked language modeling on monolingual and RDF-specific data, unsupervised pretraining of
the prompts using tasks such as prefix or suffix language modeling and deshuffling, and finally
fine-tuning on small RDF-to-text datasets.
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Experimental results show that PI-T'ST surpasses both simple full model fine-tuning and strong
baselines such as Control Prefixes. The experiments display robust gains on automatic met-
rics (BLEU, Google BLEU, and LaBSE cosine similarity) and in human evaluations (readability,
grammaticality, word order, and semantic adequacy). Notably, the most significant improvements
are seen in Breton, a language unseen during the backbone’s pretraining, validating the hypoth-
esis that phylogenetic structure supports transfer. Ablation studies reveal that both source and
target prompts are necessary for optimal results, and that the method remains data-efficient,
requiring as few as 1,000 samples per language to perform competitively.

RQ2. Can text generation from Abstract Meaning Representation (AMR)
graphs be improved using phylogenetic information to guide a model’s training
process in high- and low-resource languages?

The second research question focused on AMR-to-Text generation and expanded its scope to
a broader range of languages, including both high- and low-resource Indo-European languages.
Here, the challenge was twofold: limited annotated data in low-resource settings and the risk
that multilingual training, while facilitating transfer, may also introduce noise.

To navigate this trade-off, the thesis introduced Hierarchical QLoRA (HQL), a novel curricu-
lum learning strategy that iteratively refines a multilingual model into monolingual ones via
parameter-efficient fine-tuning. Building on a 4-bit quantized mT5-large model, LoRA adapters
are used to support modular training with low memory and data requirements. Training follows
a hierarchy: an all-language model (LO0) is refined into a 6-language model (L1), then a bilingual
model (L2), and finally a monolingual model (L3). LoRA adapters are reused and extended at
each stage, lowering training costs.

Two curricula were explored: one that maximizes language diversity within groups (Distant
Language Hierarchy, DLHQL) and another that clusters by linguistic similarity (Phylogenetic
Tree Hierarchy, PTHQL). The results show that phylogenetic groupings generally yield the best
results, supporting the notion that structured proximity is beneficial for transfer, while also
maintaining regularization effects seen with more diverse groups. Both curricula outperform both
monolingual and multilingual baselines, as well as a Generate-and-Translate pipeline, especially
in low-resource languages such as Asturian and Haitian Creole, but also for high-resource cases.

RQ3. Can Natural Language Inference (NLI) be used as the base to de-
velop a referenceless multilingual evaluation metric for multiple facets of se-
mantic faithfulness in RDF-to-Text generation across high- and low-resource
languages?

The third research question confronted the challenge of evaluation. Most common G2T metrics
(BLEU, ChrF++) depend on high-quality reference texts, which are scarce outside of very few
languages. At the same time, recent referenceless approaches that aim to address this data
scarcity, such as Data-QuestEval and Factspotter, are predominantly English-centric and provide
only limited diagnostic value, requiring extensive preprocessing or targeting only omissions.

To handle this issue, the thesis proposed a referenceless metric based on Natural Language In-
ference (NLI). By taking a multilingual mDeBERTa~v3 model fine-tuned on NLI and further
fine-tuning it for regression, the approach estimates semantic precision (text entailed by the
graph), recall (graph entailed by the text), and their harmonic mean (F1), between the RDF
graph and its generated text. The training data consists of 1.77 million synthetic graph-text
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pairs across six languages, constructed by manipulating overlap in WebNLG instances and ex-
panded through machine translation, with extensive filtering for semantic similarity and language
identity. Both full fine-tuning and parameter-efficient (LoRA) approaches are evaluated.

Results show a strong correlation between the metric and both human annotations and stan-
dard reference-based metrics, even though no gold references are required. The monolingual
LoRA variant outperforms previous referenceless metrics across all languages, achieving Spear-
man correlations up to 0.70 in English and 0.67 in Russian, and performing well in low-resource
languages. Critically, the metric decomposes into precision and recall scores, supporting detailed
diagnostics for over- and under-generation.

Together, these contributions answer the thesis research questions by demonstrating that phylo-
genetic information and principled, parameter-efficient training can overcome the key challenges
of data scarcity in multilingual G2T. The methods proposed (PI-TST soft prompts, Hierarchical
QLoRA, and NLI-based referenceless evaluation) not only advance the technical state of the art
but also promote greater linguistic inclusivity and transparency. In doing so, this work provides
a scalable blueprint for building and evaluating robust G2T systems across multiple languages.

6.2 Limitations

While the findings in this thesis advance multilingual G2T generation and evaluation, it is nec-
essary to acknowledge some limitations.

Much of the empirical progress relies on machine-generated data, given the nonexistence of
gold-standard data and the prohibitive cost and time required to create it. While tests were
always performed on high-quality data, the use of synthetic data introduces potential systematic
biases and limits the generalization of results. Quantifying the impact of these biases remains
challenging, yet this highlights the core problem of data scarcity addressed by the thesis.

Language coverage, though broader than in most existing work, remains focused on Indo-
European languages. Critical linguistic phenomena, such as rich inflectional morphology, ag-
glutinative structures, or non-Indo-European scripts, remain unexplored. This limitation leaves
open the question of whether the proposed techniques transfer robustly to such scenarios.

In terms of analysis and evaluation, interpretability and diagnostic utility are only partially
achieved. The thesis introduces an evaluation metric that targets both semantic precision and
recall, advancing faithfulness measurement in non-English languages; however, it does not provide
localization of errors or actionable ways for systems to address them. When omissions or additions
are detected, their specific relation with the input and output remains unclear, which limits
applicability for error analysis and user feedback.

Finally, computational and infrastructural constraints have influenced both experimental scope
and model choice. Training on larger and more diverse corpora, conducting more systematic
cross-lingual analysis, and leveraging recent large language models were all out of reach due to
resource limitations, but represent critical future directions as infrastructure evolves.

Together, these limitations shape both the interpretation of current findings and future research
aims. They underscore the need for deeper, more balanced, and precise work to advance robust
and generalizable multilingual natural language generation (NLG) and evaluation.
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6.3 Future Research

In light of the limitations above, several research directions emerge.

Reducing biases from synthetic data is crucial. Future work should investigate the improved
generation and filtering of synthetic data, as well as the creation of gold-standard resources for
more languages, particularly those with low resources.

Expanding both generation and evaluation methods to a broader spectrum of languages, espe-
cially non-Indo-European languages, remains essential. This approach would test the robustness
and universality of the thesis’s methods, especially in languages with complex morphology, ag-
glutinative structures, or underrepresented scripts.

Improving the interpretability and diagnostic value of evaluation metrics remains a significant
challenge. Developing token-level or span-level faithfulness attribution and error localization
techniques would make evaluation more transparent and actionable for model development and
user feedback.

As computational resources become more accessible, future work should revisit large-scale ex-
periments with broader datasets and newer model architectures, including recent large language
models. Further exploration of modular and parameter-efficient architectures, such as indepen-
dently trained source and target LoRA modules or adapters per task or language, may also
enhance adaptability and scalability.

In conjunction, these research paths can help create more accessible, reliable, and equitable
language technologies, ensuring that the benefits of NLG reach a broader range of language
communities and that the scientific study of language achieves a genuinely global scope.

6.4 Final Remarks

This thesis aimed to make structured knowledge more accessible and equitable through advances
in G2T generation and evaluation, with a particular focus on low-resource languages. By ad-
dressing both data scarcity and the limitations of reference-based evaluation, the work aimed to
democratize access to information across linguistic boundaries. The proposed methods tackled
core challenges in multilingual G2T. In doing so, they confirmed that these approaches enhance
both technical quality and inclusivity, supporting reliable and scalable multilingual text genera-
tion and evaluation.

Ongoing progress will depend on reducing synthetic data biases, broadening language coverage,
improving evaluation interpretability, and further analyzing model architectures. The contribu-
tions presented here represent a step towards a more reliable and equitable access to structured
knowledge for all language communities.
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A.1 RDF-to-Text Human Evaluation

v | B evaluating Short Texts x| + N (=
L > C 2; docs.google.com/forms/d/e/1FAIpQLSFrF3MRVeTIXhCE93PXNEEC5Qhhz92XC3EQ?2. .. ® Guest

Evaluating Short Texts

Human Evaluation Form

Connectez-vous & Google pour enregistrer votre progression. En savoir plus

Goal
The goal of this experiment is to assess the quality of automatically generated texts (G) as
well as its similarity to human written text (H).

Each sentence will be evaluated on 3 different criteria:
+ Readability

+ Grammaticality

* Word Order

* Semantic Adequacy

To evaluate each criteria a 3 point scale will be used:
(B) Bad / Incorrect

(M) Medium / Some Mistakes

(G) Good / Mostly Correct

Task
There are 25 sentences to evaluate.

It should take between 20 and 30 minutes (this is the time it took us to evaluate English).

Each item to evaluate includes an automatically generated (G) and a human written
(H) text.

You should evaluate G (the generated text) and then use H (the human written text) to
assess Semantic Adequacy.

General Comments and Questions

At the end of the evaluation form we provide a free form box.

If you have comments or guestions about the evaluation you performed you can include
them in that box.

ses
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A.1. RDF-to-Text Human Evaluation

v | B evaluating short Texts x | + - o x

<« = C 25 docs.google.com/forms/d/e/1FAIpQLSFrF3MRVeTIXhCE93PXNEEC5Qhhz92XC3EQ2. . ® Guest :

What is the Readability criteria?
|s the Generated text understandable ?
Is it a reasonable sentence in the language?

Examples of sentences with Bad Readability for English:
- cat ooo 2 apple

» (name) down - giee

* #2 is @@@ house

What is the Grammaticality criteria?
|s the morphology of the Generated text correct?
Are agreement constraints (e.qg., verb/subject, noun/adjective) respected?

Examples of sentences with Bad Grammiaticality for English:
- They goes.

*He go.

* A cats.

What is the Word Order criteria?
|s the word order of the Generated text correct?
Would a native speaker come up with a text like that?

Examples of sentences with Bad Word Order for English:
» John saw woman the.

» John the woman saw.

* John yesterday saw the woman.

What is the Semantic Adequacy criteria?
Does the Generated text share the same meaning as the Human written text?

Example of sentences with Bad Semantic Adequacy for English:
- Generated text: He goes to the store
Human written text: The school is open.

- Generated text: | sleep late.
Human written text: Cats are animals.

* Generated text: The house is big.
@ Human written text: | like cake.

F1Gc. A.2: Soft prompts human evaluation instructions part 2 of 2
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w

&«

B evaluating short Texts x| + = =

>

c

2; docs.google.com/forms/d/e/1FAIDQLSFF3MRVeTIXhCE93PXNEECSQhhz92XC3EQ2. .. @ Guest

English - 1 of 25

GENERATED TEXT:

1147 Stavropolis, discovered on 11th June 1929, has an absolute magnitude of 11.5 and an
orbital period of 1249.6. It has a periapsis of 260855000000.0 and an epoch date of 31 July
2016.

HUMAN WRITTEN TEXT:

1147 Stavropolis (discovered 11 June 1929) is an asteroid with an orbital period of 1249.6

and absolute magnitude of 11.5. The periapsis of this asteroid is 260855000000.0 and the
epoch date is 31 July 2016 (JD2457600.5).

READIBILITY *
Given the following Generated text:

1147 Stavropolis, discovered on 11th June 1929, has an absolute magnitude of
11.5 and an orbital period of 1249.6. It has a periapsis of 260855000000.0 and an

epoch date of 31 July 2016.

Is the Generated text understandable ?
Is it a reasonable sentence in the language?

o (B) Bad / Incorrect
O (M) Medium / Some Mistakes

O (G) Good / Mostly Correct

GRAMMATICALITY *
Given the following Generated text:
1147 Stavropolis, discovered on 11th June 1929, has an absolute magnitude of

11.5 and an orbital period of 1249.6. It has a periapsis of 260855000000.0 and an
epoch date of 31 July 2016.

s
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A.2. RDF-to-Text Generation Examples

A.2 RDF-to-Text Generation Examples

Sample | R| G |[WO[SA | Q|
Graph:

Liselotte Grschebina | deathPlace | Petah Tikva

Petah Tikva | country | Israel

Generation (Bre):

Liselotte Grschebina zo marvet e Petah Tikva en Israel.
Reference (Bre): 1.00 | 1.00 | 1.00 | 1.00 || 1st
Marvet eo Liselotte Grschebina e Petah Tikva, en Israel.
Generation (Eng MT¥*):

Liselotte Grschebina died in Petah Tikva, Israel.
Reference (Eng):

Liselotte Grschebina died in Petah Tikva, Israel.

Graph:

The Hobbit | literaryGenre | High fantasy

Generation (Bre):

The Hobbit zo un doare sonerezh kendeuz.

Reference (Bre):

Gourmoliac’h eo rumm lennegezh An Hobbit.

Generation (Eng MT*):

The Hobbit is a fusion of music.

Reference (Eng):

The Hobbit literary genre is high fantasy.

Graph:

Ciudad Ayala | country | Mexico

Mexico | leaderTitle | President of the Senate

Generation (Bre):

Ciudad Ayala zo e Mec’hiko lec’h m’eman ar Prezidant ar
Senate ar rener.

Reference (Bre):

E Bro-Vec’hiko emaii Ciudad Ayala ha Prezidant ar Sened eo || 0.66 | 0.33 | 0.50 | 0.50 || 5th
titl al leader e Bro-Vec’hiko.

Generation (Eng MT*):

Ciudad Ayala is in Mexico where the President of the Senate
is the president.

Reference (Eng):

Ciudad Ayala is in the country of Mexico and the President
of the Senate is the leader title in Mexico.

0.83 | 1.00 | 1.00 | 0.00 || 3rd

TAB. A.1: PI-TST Breton generation examples from the human evaluation with the average
score across evaluators. The samples were selected from the 1st (best), 3rd (medium), and 5th
(worst) quintile (Q) based on the average of the four human evaluation metrics: Readability (R),
grammaticality (G), word order(WO), and semantic adequacy (SA). *The MT model may have
altered differences in the original Breton generation.
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Sample | R | G |[WO|SA | Q|
Graph:

Harold French | birthPlace | UK

Generation (Gle):

Rugadh Harold French san RA.

Reference (Gle):

Rugadh Harold French sa Riocht Aontaithe.
Generation (Eng MT*):

Harold French was born in the UK.

Reference (Eng):

Harold French is born in the UK.

Graph:

Terence Rattigan | deathYear | 1977-01-01
Generation (Gle):

Ba ar an 1 Eanair 1977 a fuair Terence Rattigan béas.
Reference (Gle):

Fuair Terence Rattigan bas i 1977.

Generation (Eng MT*):

Terence Rattigan died on January 1, 1977.
Reference (Eng):

Terence Rattigan died in 1977.

Graph:

The Hobbit | literaryGenre | High fantasy
Generation (Gle):

Is é an t-alt a bhaineann The Hobbit leis an gceol miotail
ard-chreidimh.

Reference (Gle):

The article is about The Hobbit and the high-religion metal
music.

Generation (Eng MT*):

Liselotte Grschebina died in Petah Tikva, Israel.
Reference (Eng):

The Hobbit literary genre is high fantasy.

1.00 | 1.00 | 1.00 | 1.00 || 1st

0.75 1 0.50 | 0.75 | 1.00 || 3rd

0.00 | 0.50 | 0.50 | 0.25 || 5th

TaAB. A.2: PI-TST Irish generation examples from the human evaluation with the average score
across evaluators. The samples were selected from the 1st (best), 3rd (medium), and 5th (worst)
quintile (Q) based on the average of the four human evaluation metrics: Readability (R), gram-
maticality (G), word order(WO), and semantic adequacy (SA). *The MT model may have altered
differences in the original Irish generation.
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B.1 AMR-to-Text Generation Examples

[ Sample [ B ] C [B20] Q |
Graph:
(c / contrast-01
:ARG2 (t / thing
:quant (12 / lot)
:ARGO-of (1 / look-02
:ARG1 (d / dinosaur)
:mod (s / still))
:topic (b / bird)))
Generation (Ltz): 0.13 | 0.52 | 0.69 1st
Mee et gétt nach émmer vill Saachen, déi wéi Dinosaurier ausgesinn.
Reference (Ltz):
Awer et gi vill Saache bei Vullen, déi émmer nach ewéi en Dinosaurier aus-
gesinn.
Generation (Eng MT*):
But there are still many things that look like dinosaurs.
Reference (Eng):
But there are a lot of things about birds that still look like a dinosaur.
Graph:
(r / religion
:name (n / name
:opl "Orthodox"
:0p2 "Christian")
:ARG1-of (m / major-02)
:location (¢ / country
:name (n2 / name
:opl "Moldova"))) 0.06 | 0.43 | 0.69 3rd
Generation (Ltz):
D’Orthodoxesch Chréschtentum ass eng grouss Relioun an Moldawien.
Reference (Ltz):
D’Haaptrelioun a Moldawien ass Chréschtlech Orthodox.
Generation (Eng MT*):
Orthodox Christianity is a major religion in Moldova.
Reference (Eng):
The major religion in Moldova is Orthodox Christian.
Graph:
(p / possible-01
:ARG1 (n / need-01
:ARGO (y2 / you)
:ARGI1 (y / yacht)
:location (a / and
:opl (i / island)
:op2 (1 / lake))
:polarity -)) 0.06 | 0.24 | 0.41 5th
Generation (Ltz):
Dir kénnt net e Yacht op Inselen a Lanner brauchen.
Reference (Ltz):
An den Archipeler a Séie brauch een net zwéngend eng Yacht.
Generation (Eng MT¥*):
You may not need a yacht on islands and countries.
Reference (Eng):
In the archipelagos and lakes you do not necessarily need a yacht.

TaB. B.1: PTHQL Luxembourgish generation examples and their score from automatic metrics.
The samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based
on the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Luxembourgish generation. **The
graphs were automatically parsed and may contain errors.
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LSample u B L C LBZO H Q J
Graph:
(r / religion

:name (n / name

:opl "Orthodox"

:0p2 "Christian")
:ARG1-of (m / major-02)
:location (¢ / country

:name (n2 / name

:opl "Moldova"))) 0.48 | 0.61 | 0.82 1st
Generation (Deu):
Die grofite Religion in Moldawien ist die Orthodoxe.
Reference (Deu):
Die wichtigste Religion in Moldawien ist die christlich-orthodoxe.
Generation (Eng MT*):
The largest religion in Moldova is Orthodox.
Reference (Eng):
The major religion in Moldova is Orthodox Christian.
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARG1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Deu):
Die Aufnahmegebiihr fiir dieses Bildungsprogramm ist normalerweise eine Stu-
diengebiihr.
Reference (Deu):
In der Regel wird fiir die Anmeldung zu diesen Bildungsprogrammen eine
Studiengebiihr erhoben.
Generation (Eng MT*):
The admission fee for this educational program is usually a tuition fee.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.
Graph:
(p / possible-01
:ARGI1 (n / need-01

:ARGO (y2 / you)

:ARGI1 (y / yacht)

:location (a / and

:opl (i / island)

:op2 (1 / lake))

:polarity -)) 0.05 | 0.28 | 0.67 5th

Generation (Deu):
Sie brauchen keine Yachten auf Inseln und Fliissen.
Reference (Deu):
Fir die Archipele und Seen brauchen Sie nicht unbedingt eine Yacht.
Generation (Eng MT¥*):
You don’t need yachts on islands and rivers.
Reference (Eng):
In the archipelagos and lakes you do not necessarily need a yacht.

0.07 | 0.42 | 0.83 3rd

TAB. B.2: PTHQL German generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original German generation. **The graphs
were automatically parsed and may contain errors.
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LSample u B L C LB20 M Q J
Graph:
(a / and
:opl (d2 / display-01
:ARG1 (s / scene)
:ARG2 (p / pyramid))
:0p2 (1 / light-up-08
:ARG1 (p2 / pyramid
:ARG1-of (d / differ-02))))
Generation (Lim):
De scéne weurt in piramides oetgeveurd en versjéllende piramides weure 0.04 | 0.44 | 0.41 1st
opgelichte.
Reference (Lim):
De scénes weure op de piramides getoend en de aander piramides weurde
verleech.
Generation (Eng MT*):
The scene is set in pyramids and several pyramids are lit up.
Reference (Eng):
The scenes are displayed on the pyramids and the different pyramids are lit
up.
Graph:
(w / worth-02
:ARGI1 (s / stroll-01
:ARG1 (a / about
:opl (v / village
:ARGO-of (i / intrigue-01))))
:ARG2 (t / temporal-quantity
:quant 0.5
:unit (h / hour))) 0.05 | 0.29 | 0.34 || 3rd
Generation (Lim):
'n Half uur gaon door 't intrigerende dorp.
Reference (Lim):
‘t Loent ziech de meujte um e haaf oor door ‘t intrigerende dorp te wandele.
Generation (Eng MT¥*):
Half an hour walk through the intriguing village.
Reference (Eng):
It’s worth half an hour to stroll about the intriguing village.
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARG1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Lim): 0.04 | 0.21 | 0.25 5th
'n Typische studiefooi is veur 't insjrieve in dit oonderwiesprogramma.
Reference (Lim):
Miestal moot me collegegeld betaole um aongenome te weure in dees studiepro-
gramma’s.
Generation (Eng MT*):
A typical study sheet is for enrollment in this educational program.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.

TaB. B.3: PTHQL Limburgish generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Limburgish generation. **The
graphs were automatically parsed and may contain errors.
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—

Sample u B L C LB2O M Q J

Graph:
(b / build-01
:ARG1 (r / railway)
:location (¢ / country
:name (n / name
:opl "England"))
:time (d / date-entity
:century 16
:mod (e / early))) 0.18 | 0.62 | 0.63 1st
Generation (NId):
In het vroege 16e eeuw werden spoorwegen in Engeland gebouwd.
Reference (N1d):
Al in de 16e eeuw werden er in Engeland paardenspoorwegen gebouwd.
Generation (Eng MT¥*):
Railways were built in England in the early 16th century.
Reference (Eng):
Wagonways were built in England as early as the 16th Century.
Graph:
(r / religion
:name (n / name
:opl "Orthodox"
:0p2 "Christian")
:ARG1-of (m / major-02)
:location (¢ / country
:name (n2 / name
:opl "Moldova"))) 0.12 | 0.42 | 0.87 3rd
Generation (NId):
De belangrijkste religie in Moldavié is de Orthodoxe Christendom.
Reference (NId):
Orthodox-christelijk is de voornaamste godsdienst in Moldavié.
Generation (Eng MT*):
The main religion in Moldova is Orthodox Christianity.
Reference (Eng):
The major religion in Moldova is Orthodox Christian.
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARGI1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (NId):
Een typische studiekostenvergoeding is voor het inschrijven van dit onderwi- 0.03 | 0.23 | 0.53 5th
jsprogramma.
Reference (NId):
Normaliter moet er voor de inschrijving voor deze educatieve programma’s
collegegeld worden betaald.
Generation (Eng MT*):
A typical tuition fee reimbursement is for enrolling in this educational pro-
gram.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.

TAB. B.4: PTHQL Dutch generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Dutch generation. **The graphs
were automatically parsed and may contain errors.

97



Annex B. Appendices for Chapter 4

LSample u B L C LB20 M Q J
Graph:
(w / way :ARGIl-of (i / important-01)
:domain (t / this)
:manner-of (d / distinguish-01
:ARG1 (a / and
:opl (v / verb
:mod (s / some))
:0p2 (o / object
:mod (s2 / some))))) 0.33 | 0.57 | 0.67 1st
Generation (Ast):
Esta ye una forma importante de distinguir dellos verbos y oxetos.
Reference (Ast):
Ye un mou importante d’estremar ente dellos verbos y oxetos.
Generation (Eng MT*):
This is an important way to distinguish between verbs and objects.
Reference (Eng):
This is an important way to distinguish between some verbs and objects.
Graph:
(p / possible-01
:ARGI1 (t / theme
:ARG1-of (g / good-02)
:ARG2-of (b / base-02
:ARG1 (h / holiday-01)
:location (a / around))
:domain (w / waterway
:ARG1-of (1 / land-01)))) 0.14 | 0.31 | 0.37 3rd
Generation (Ast):
La ruta d’alcuerdu puede ser un bon tema pa unas vacaciones.
Reference (Ast):
Les canales d’interior son un bon tema de viaxe.
Generation (Eng MT¥*):
The route of agreement can be a good theme for a vacation.
Reference (Eng):
Inland waterways can be a good theme to base a holiday around.
Graph:
(p / possible-01
:ARG1 (n / need-01
:ARGO (y2 / you)
:ARG1 (y / yacht)
:location (a / and
:opl (i / island)
:0p2 (1 / lake))
:polarity -)) 0.04 | 0.22 | 0.36 5th
Generation (Ast):
Nun hai necesida d’un yate na islla y nel llagu.
Reference (Ast):
Nos archipiélagos y nos llagos nun ye necesario tener un yate.
Generation (Eng MT*):
There is no need for a yacht on the island and the lagoon.
Reference (Eng):
In the archipelagos and lakes you do not necessarily need a yacht.

TAB. B.5: PTHQL Asturian generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The used MT model does not support Asturian, Spa-to-Eng translation was used instead. The
MT model may have altered differences in the original Asturian generation. **The graphs were
automatically parsed and may contain errors.
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LSample u B L C LB2O M Q J
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARG1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Spa):
La matricula es tipicamente una cuota de matricula para inscribirse en este
programa educativo.
Reference (Spa):
Normalmente, se cobrard una tarifa de matricula para inscribirse en estos
programas educativos.
Generation (Eng MT¥*):
Tuition is typically a registration fee to enroll in this educational program.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.
Graph:
(¢ / contrast-01
:ARG2 (t / thing
:quant (12 / lot)
:ARGO-of (1 / look-02
:ARG1 (d / dinosaur)
:mod (s / still))
:topic (b / bird)))
Generation (Spa): 0.08 | 0.41 | 0.65 3rd
Pero hay muchas cosas que todavia parecen dinosaurios en los aves.
Reference (Spa):
Sin embargo, hay muchas caracteristicas en las aves que todavia las asemejan
a los dinosaurios.
Generation (Eng MT¥*):
But there are many things that still seem dinosaur-like about birds.
Reference (Eng):
But there are a lot of things about birds that still look like a dinosaur.
Graph:
(t / think-01
:ARGO (y / you)
:ARG1 (r2 / route
:mod (s / ski-01))
:ARG2 (r3 / route
:purpose (h / hike-01)
:ARG1-of (r / resemble-01
:ARG2 r2))
:mode imperative)
Generation (Spa):
Piensa en las rutas de esquia como rutas de caminata.
Reference (Spa):
Imaginese la pista de esqui como una ruta de senderismo.
Generation (Eng MT*):
Think of ski trails as hiking trails.
Reference (Eng):
Think of the skiing route as of a similar hiking route.

0.27 | 0.54 | 0.66 1st

0.05 | 0.24 | 0.62 5th

TAB. B.6: PTHQL Spanish generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Spanish generation. **The graphs
were automatically parsed and may contain errors.
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[ Sample [ B ] C [B20] Q |
Graph:
(c / contrast-01
:ARG2 (t / thing
:quant (12 / lot)
:ARGO-of (1 / look-02
:ARG1 (d / dinosaur)
:mod (s / still))
:topic (b / bird)))
Generation (Hat):
Men, gen anpil bagay sou zwazo ki toujou sanble ak dinozo.
Reference (Hat):
Men gen anpil bagay sou zwazo yo ki sanble anko ak yon dinozo.
Generation (Eng MT*):
But there are many things about birds that still resemble dinosaurs.
Reference (Eng):
But there are a lot of things about birds that still look like a dinosaur.
Graph:
(p / possible-01
:ARG1 (n / need-01
:ARGO (y2 / you)
:ARGI1 (y / yacht)
:location (a / and
:opl (i / island)
:0p2 (1 / lake))
:polarity -)) 0.14 | 0.36 | 0.54 3rd
Generation (Hat):
Ou pa ka bezwen yon yacht sou zile yo ak lak yo.
Reference (Hat):
Nan achipél ak lak yo, li pa nesesé pou gen yon yacht.
Generation (Eng MT¥*):
You may not need a yacht on the islands and lakes.
Reference (Eng):
In the archipelagos and lakes you do not necessarily need a yacht.
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARGI1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Hat): 0.06 | 0.24 | 0.36 5th
Yon fré ekolaj tipik pou enskri nan pwogram edikasyon sa a.
Reference (Hat):
An rég jeneral, enskripsyon pou pwogram anséyman sa yo mennen ak depans
pou eskolarite a.
Generation (Eng MT¥*):
A typical tuition fee to enroll in this educational program.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.

0.34 | 0.62 | 0.83 1st

TAB. B.7: PTHQL Haitian Creole generation examples and their score from automatic metrics.
The samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based
on the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Haitian Creole generation. **The
graphs were automatically parsed and may contain errors.
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LSample u B L C LBZO H Q J
Graph:
(c / contrast-01
:ARG2 (t / thing
:quant (12 / lot)
:ARGO-of (1 / look-02
:ARG1 (d / dinosaur)
:mod (s / still))
:topic (b / bird)))
Generation (Fra):
Mais il y a beaucoup de choses qui ressemblent & des dinosaures quand il s’agit
d’oiseaux.
Reference (Fra):
Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore & un
dinosaure.
Generation (Eng MT¥*):
But there are a lot of things that look like dinosaurs when it comes to birds.
Reference (Eng):
But there are a lot of things about birds that still look like a dinosaur.
Graph:
(p / possible-01
:ARGI1 (t / theme
:ARG1-of (g / good-02)
:ARG2-of (b / base-02
:ARG1 (h / holiday-01)
:location (a / around))
:domain (w / waterway
:ARG1-of (1 / land-01)))) 3rd
Generation (Fra): 0-18 | 0.46 | 0.50
Les routes d’atterrissage peuvent étre un bon théme pour les vacances.
Reference (Fra):
Les voies navigables intérieures peuvent étre un excellent théme pour des va-
cances.
Generation (Eng MT*):
Landing routes can be a good theme for a vacation.
Reference (Eng):
Inland waterways can be a good theme to base a holiday around.
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARG1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Fra):
Il y a généralement une frais de scolarité pour s’inscrire dans ce programme
d’éducation.
Reference (Fra):
En régle générale, il faut payer des frais d’inscription pour suivre ces pro-
grammes éducatifs.
Generation (Eng MT*):
There is usually a tuition fee to enroll in this education program.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.

0.40 | 0.64 | 0.70 1st

0.05 | 0.24 | 0.62 5th

TaB. B.8&: PTHQL French generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original French generation. **The graphs
were automatically parsed and may contain errors.
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LSarnple u B L C LB20 M Q J

Graph:
(a / and
:opl (d2 / display-01
:ARGI1 (s / scene)
:ARG2 (p / pyramid))
:op2 (1 / light-up-08
:ARG1 (p2 / pyramid
:ARG1-of (d / differ-02))))
Generation (Scn): 0.14 | 0.44 | 0.33 1st
Li piramidi sunnu ’n vitrina e li diversi piramidi sunnu illuminati.
Reference (Scn):
Li sceni sunnu prujittati ncapu & piramidi e li vari piramidi sunnu illuminati.
Generation (Eng MT*):
The pyramids are on display and the different pyramids are illuminated.
Reference (Eng):
The scenes are displayed on the pyramids and the different pyramids are lit
up.
Graph:
(s2 / summarize-01
:ARG1 (s / situation
:location (¢ / country
:quant 1)
:mod (p / politics))

:ARG2 (a / advise-01)

:duration (b / brief)

:mod (m / mere)) 3rd
Generation (Scn): 0121 040 | 0.64
Un breve riassunto della situazione politica in un paese.

Reference (Scn):
Gli avvisi costituiscono semplicemente un breve riepilogo della situazione po-
litica di un Paese.
Generation (Eng MT*):
A brief summary of the political situation in a country.
Reference (Eng):
Advisories are merely a brief summary of the political situation in one country.
Graph:
(w / worth-02
:ARGI1 (s / stroll-01
:ARG1 (a / about
:opl (v / village
:ARGO-of (i / intrigue-01))))
:ARG2 (t / temporal-quantity
:quant 0.5
:unit (h / hour))) 0.05 | 0.22 | 0.10 5th
Generation (Scn):
Un viaggiu nto paisi intriganti vali na mitati di ura.
Reference (Scn):
Vali la pena farisi na passijata di menz’ura ntd villaggiu.
Generation (Eng MT¥*):
A trip through the intriguing village is worth half an hour.
Reference (Eng):
It’s worth half an hour to stroll about the intriguing village.

TAB. B.9: PTHQL Sicilian generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Sicilian generation. **The graphs
were automatically parsed and may contain errors.
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LSample u B L C LBZO H Q J
Graph:
(f / fee
:purpose (e2 / enroll-01
:ARG2 (p / program
:mod (e / educate-01)
:mod (t / this)))
:ARGI1-of (t3 / typical-02)
:mod (t2 / tuition))
Generation (Ita):
Una tassa di iscrizione a questi programmi educativi é di solito una tassa di
iscrizione.
Reference (Ita):
Di solito l’iscrizione a questi programmi educativi richiede il pagamento di una
tassa.
Generation (Eng MT¥*):
An enrollment fee for these educational programs is usually a tuition fee.
Reference (Eng):
Typically there will be a tuition fee to enroll in these educational programs.
Graph:
(¢ / check-01
:ARGO (y / you)
:ARGI1 (t2 / thing
:ARG2-of (1 / label-01))
:ARG2 (i / instruct-01
:ARGI1 (p / poison-01
:ARG1-of (s2 / specific-02)
:mod (t / that))
:ARGI1-of (s / specific-02)
:ARG2 (a / aid-01 0.04 | 0.34 0.23 3rd
:mod (f / first))))
Generation (Ita):
Check D’etichetta pi l'istruzioni specifici di I’aiutu primu pi stu poison specificu.
Reference (Ita):
Cuntrolla ’etichetta pi l'istruzzioni pdt primu succursu pi chiddu velenu spici-
ficu.
Generation (Eng MT¥*):
Check the label for specific first aid instructions for this specific poison.
Reference (Eng):
Check the label for specific first aid instructions for that specific poison.
Graph:
(p / possible-01
:ARG1 (n / need-01
:ARGO (y2 / you)
:ARG1 (y / yacht)
:location (a / and
:opl (i / island)
:0p2 (1 / lake))
:polarity -)) 0.04 | 0.19 | 0.54 5th
Generation (Ita):
Non si potrebbe avere bisogno di un yacht su un’isola e un lago.
Reference (Ita):
Non serve per forza uno yacht per gli arcipelaghi e i laghi.
Generation (Eng MT*):
You wouldn’t need a yacht on an island and a lake.
Reference (Eng):
In the archipelagos and lakes you do not necessarily need a yacht.

0.20 | 0.58 | 0.61 1st

TAB. B.10: PTHQL Italian generation examples and their score from automatic metrics. The
samples were selected from the 1st (best), 3rd (medium), and 5th (worst) quintile (Q) based on
the average of the three automatic metrics: BLEU (B), ChrF++ (C), and BLEURT-20 (B20).
*The MT model may have altered differences in the original Italian generation. **The graphs

were automatically parsed and may contain errors.
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C.1 Referenceless metric synthetic dataset creation example

Starting with the following dataset of aligned (graph g;, text ¢;) pairs:

L ID “ Graph L Text ‘

1 Alice | occupation | Writer | Alice is a writer.

Alice | occupation | Writer
Alice | country | USA
Alice | country | USA
Bob | country | USA

2

Alice is an American writer.

Alice and Bob are Americans.

It is possible to assign all of them precision and recall values of 1, since they are aligned, and
turn them into quadruples.

L 1D H Graph LText L P L R ‘
1 || Alice | occupation | Writer | Alice is a writer. 1.00 | 1.00
Alice | occupation | Writer o . .
2 Alice | country | USA Alice is an American writer. 1.00 | 1.00
3 Alice | country | USA Alice and Bob are Americans. | 1.00 | 1.00

Bob | country | USA

To create new quadruples, start by pairing texts with subgraphs or supergraphs of their original
graph. For example, g; is a subgraph of go (and therefore gs is a supergraph of g;). Pairing a text
with a supergraph will produce a quadruple where the text is missing information (omission),
leading to a lower recall. Pairing a text with a subgraph will produce a quadruple where the text
has extra information (addition/hallucination), leading to a lower precision:

L D) H Graph LText L P L R ‘
1 Alice | occupation | Writer | Alice is a writer. 1.00 | 1.00
2 Alice | occupation | Writer Alice is an American writer. 1.00 | 1.00

Alice | country | USA
Alice | country | USA

3 Bob | country | USA Alice and Bob are Americans. | 1.00 | 1.00
4 Alice | occupation | Writer | Alice is an American writer. | 0.50 | 1.00
5 || Alice [ occupation | Writer |1y o riter. 1.00 | 0.50

Alice | country | USA
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It is also possible to pair a text with partially overlapping graphs.

For example, g2 and g3

overlap in one triple, matching their texts and graphs creates new quadruples where both recall
and precision can be affected (there are both omissions and additions/hallucinations):

L 1D H Graph L Text L P L R ‘

1 Alice | occupation | Writer Alice is a writer. 1.00 | 1.00
Alice | occupation | Writer .. . .

2 Alice | country | USA Alice is an American writer. 1.00 | 1.00
Alice | country | USA . .

3 Bob | country | USA Alice and Bob are Americans. | 1.00 | 1.00

4 Alice | occupation | Writer Alice is an American writer. | 0.50 | 1.00
Alice | occupation | Writer N .

5 Alice | country | USA Alice is a writer. 1.00 | 0.50
Alice | country | USA o . .

6 Bob | country | USA Alice is an American writer. 0.50 | 0.50
Alice | occupation | Writer : .

7 Alice | country | USA Alice and Bob are Americans. | 0.50 | 0.50

Finally, new quadruples can be created by making synthetic graphs, either by corrupting original
triples or by adding new ones:

L ID H Graph L Text L P L R ‘

1 Alice | occupation | Writer Alice is a writer. 1.00 | 1.00
Alice | occupation | Writer o . .

2 Alice | country | USA Alice is an American writer. 1.00 | 1.00
Alice | country | USA . .

3 Bob | country | USA Alice and Bob are Americans. | 1.00 | 1.00

4 Alice | occupation | Writer Alice is an American writer. | 0.50 | 1.00
Alice | occupation | Writer . .

5 Alice | country | USA Alice is a writer. 1.00 | 0.50
Alice | country | USA o . .

6 Bob | country | USA Alice is an American writer. 0.50 | 0.50
Alice | occupation | Writer . .

7 Alice | country | USA Alice and Bob are Americans. | 0.50 | 0.50

8 Ahce | occupation | erter Alice is an American writer. | 0.50 | 0.50
Alice | country | Mexico
Alice | occupation | Writer

9 Alice | country | USA Alice is an American writer. 1.00 | 0.66
Alice | birthDate | 2000-01-01
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C.2 4L-RP-Human Annotation

« = C 25 perky-loud-mouse-deer.anvil.app ® Guest

Built with €3 @il Build web apps for free with Anvil

Consent Form

We support the practice of protecting human participants in research. This form provides you with important information
about taking part in this study.

Your participation in this study is entirely voluntary, and you have the right to withdraw at any time without penalty or
negative consequences. If you choose to withdraw, any data collected from you will be deleted and not included in the
final analysis.

The purpose of this study is to evaluate the similarity of information in Table-Text pairs to measure the quality of
automatic evaluation metrics.

In this study, we will ask you to answer questions about the amount of information present in both Table and Text from a
given pair.

This study will take approximately 1 hours to complete.

Risks
There may be some potential risks or discomforts associated with participating in this study, such as uncomfortable
topics being discussed in the provided text.

Personal Data
During this study, we will collect certain data from you, including the language you are proficient in and the time you take
to solve the task. This data will be used to better understand your performance.

Your personal information will be kept strictly confidential, and all data will be anonymised and stored securely.

Compensation
For your time and effort, you will receive compensation in the form of 9.60£.
Contact
If you have any questions, concerns, or feedback related to this study, please feel free to contact William Soto at
williamsotomartinez@gmail.com

Statement of Consent
By pressing the / agree button you confirm that:
1] You have read and understood the information provided in this consent form.
2] You have had the opportunity to ask questions and have received satisfactory answers.
3] You voluntarily agree to participate in the study.

| agree

| do not agree

~ | 4 Language Annotations x| + _ o %

ses

Fic. C.1: 4L-RP-Human annotation consent form part 1 of 2
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~ | i1 Language Annotations  x | + - o x
<« = C 2z perky-loud-mouse-deer.anvil.app o} @ Guest :
Built with €3 @il Build web apps for free with Anvil

Semantic Evaluation of Graph-Text Pairs

Textual information can be represented as Subject-Property-Object Triples.

For example, the following triple:

Subject Proeprty Object

Texas location United States

Represents this text:

Texas Is In the U.S.

We can represent more complex textual information by combining multiple triples.

For example, the following table:

Subject Proeprty Object
Andrews County Airport location Texas
Texas location United States

Represents this text:

Andrews County Alrport Is In Texas, U.S.

The aim of this annotation task is to evaluate the similarity of information in Table-Text pairs.
To do so, you will be presented with a Table and a Text and asked two different questions:
1] How many Triples from the table can you find in the Text?

2] How many Triples from the text can you find In the Table?

To answer you will select one of these options: None, Few, Half, Most, AllL

Fic. C.2: 4L-RP-Human annotation instructions part 1 of 2
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For example given the following Table

Subject Proeprty Object
Arros negre country Spain
Spain language Spanish
And this Text:
Arros negre Is from Catalonla, Spain.

To answer the first question:
1] How many Triples from the table can you find in the Text?

We can observe that the Text includes the first triple (about Arros negre being from Spain) but does not contain the
second triple (about Spanish being a language spoken in Spain). Since we can only find half of the triples from the table
in the Text, we answer Half.

To answer the second question:
2] How many Triples from the text can you find In the Table?

Once again, can observe that both the Text and the Table share some information (about Arros negre being from Spain)
but the table does not contain the rest of the information from the text (about Arros negre being from Catalonia). Since
we can only find half of the possible troples from the text in the Table, we answer Half.

Answering the first question is a bit simpler, since the triples you need to search for are already clearly delimited, while
for the second question you need to estimate if there is any information from the text missing in the table and how much
of the total triples it would represent.

The text presented to you might have been generated by an automnatic system and therefore contain errors of different
types. Only count the triples of information that are clear and understandable in the text.

~ | {4 Language Annotations x| + N =) &
« > C 2z perky-loud-mouse-deer.anvil.app & @ Guest :
Built with Ganvil Build web apps for free with Anvil
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~ | {4 Language Annotations x|+

<« = C 2z perky-loud-mouse-deer.anvil.app

Built with €3 @il Build web apps for free with Anvil

Question 2 of 50

Given the following Table:

Subject Proeprty Object
Expect a Miracle genre Instrumental music
Expect a Miracle genre Easy listening

And the following Text:

The expection of the Instrumental music genre Is Easy Lira acle.

1] How many Triples from the table can you find in the Text?

None Few Half Most All

2] How many Triples from the text can you find In the Table?

None Few Half Most All

Back € Next &

Go to Home page

F'y

Fic. C.4: 4L-RP-Human annotation example question
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C.3 Referenceless Metric Evaluation Examples

Sample

Precision
H mLR

Recall
H mLR

Graph:

McVeagh of the South Seas | director | Cyril Bruce

McVeagh of the South Seas | writer | Harry Carey (actor born 1878)
Evaluated Generation (Mlt):

imwieled 1878) u dirett minn Cyril Bruce.
Evaluated Generation (Eng MT*):

born 1878) and directed by Cyril Bruce.

McVeagh tal-Bahar tan-Nofsinhar kien miktub minn Harry Carey (attur

McVeagh of the Southern Seaboard was written by Harry Carey (actor

0.92  0.96

0.83 0.88

1st

Graph:

United States | leaderTitle | Vice President

Darinka Dentcheva | residence | United States
Evaluated Generation (MIt):

Il-Vici President huwa l-mexxej tal-Istati Uniti
Evaluated Generation (Eng MT*):

The Vice President is the leader of the United States.

0.75  0.99

0.42  0.67

3rd

Graph:

Turkey | demonym | Turk

Evaluated Generation (MIt):

Id-demonimu tal-abitanti tal-belt ta’ Turkmen huwa ta
Evaluated Generation (Eng MT*):

The demonym of the inhabitants of the city of Turkmen is

0.08 0.84

0.08 0.71

5th

TAB. C.1: Referenceless metric evaluation on Maltese examples from 4L.-RP-Human with their
Human and MonoLR scores in a scale from 0 to 1. The samples were selected from the 1st
(best), 3rd (medium) and 5th (worst) quintile (Q) based on the accuracy of MonoLR (mLR)
compared to the human annotation (H). *The MT model may have altered differences in the

original Maltese generation.
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Precision Recall

Sample H mLR| H mLR| <

Graph:

(66063) 1998 RO1 | meanTemperature | 265.0 (kelvins)

(66063) 1998 RO1 | apoapsis | 254989570.60815 (kilometres)

(66063) 1998 RO1 | epoch | 2013-11-04

(66063) 1998 RO1 | orbitalPeriod | 360.29 (days)

Evaluated Generation (Rus):

HeGecnoe Teso, mspecrnoe kak (66063) 1998 RO1, umeer cpeHiO0
remueparypy 265 KenbBuros u opouraibubiii mepuot 360,29 nueii. Ero || 0.88 0.93 0.88 0.79 1st
anonentTp - 254989570,60815 kuoMeTpoB, a ero 3mnoxa - 13 suBaps 2016
roaa.

Evaluated Generation (Eng MT¥*):

The celestial body, known as (66063) 1998 RO1, has an average temper-
ature of 265 Kelvin and an orbital period of 360.29 days. Its apocenter
is 254989570.60815 kilometers, and its epoch is January 13, 2016.
Graph:

School of Business and Social Sciences at the Aarhus University |
affiliation | European University Association

European University Association | headquarter | Brussels

School of Business and Social Sciences at the Aarhus University |
established | 1928

Evaluated Generation (Rus):

IIIkona 6usHeca u comumasibHbIX Hayk Opxycckoro yauepcurera O6buta || 0.88  0.56 1.00  0.90 3rd
co3nana B 1928 romy u BXOAUT B AcCCOIUAINIO YHUBEPCUTETOB EBpombL,
mrab-KBapTHpa KOTOPOH HaXOAWTCS B DBpPIOCCEIBCKOM  CTOIMYHOM

peruone.
Evaluated Generation (Eng MT*):

The School of Business and Social Sciences at Aarhus University was
founded in 1928 and is a member of the Association of European Uni-
versities, headquartered in the Brussels-Capital Region.

Graph:

11 Diagonal Street | location | South Africa

Evaluated Generation (Rus):

Huaronas-crpur 11 naxomurcs B FOxnoit Adpuke.

Evaluated Generation (Eng MT*):

Diagonal Street 11 is located in South Africa.

0.12  1.00 0.12  1.00 5th

TAB. C.2: Referenceless metric evaluation on Russian examples from 4L-RP-Human with their
Human and MonoLR scores in a scale from 0 to 1. The samples were selected from the 1st
(best), 3rd (medium) and 5th (worst) quintile (Q) based on the accuracy of MonoLR (mLR)
compared to the human annotation (H). *The MT model may have altered differences in the
original Russian generation.
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