WebNLG
A Benchmark for Microplanning

Claire Gardent

CNRS/LORIA and Université de Lorraine, Nancy

Amazon, Cambridge
08 June 2017
Joint Work with

Anastasia Shimorina Shashi Narayan Laura Perez-Beltrachini

Funded by the French ANR Project WebNLG
http://talc1.loria.fr/webnlg/stories/about.html
Microplanning in NLG: How to say it?

Data ⇒ Fluent text

(John_E_Blaha birthDate 1942_08_26)
(John_E_Blaha birthPlace San_Antonio)
(John_E_Blaha occupation Fighter_pilot)

John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot

- Generating Referring Expressions: Describing entities
- Lexicalisation: Choosing lexical items
- Surface Realisation: Choosing syntactic structures
- Aggregation: Avoiding repetition
- Sentence segmentation: Segmenting the content into sentence size chunks
Generating Referring Expressions: Describing entities

Data

(John_E_Blaha birthDate 1942-08-26)
(John_E_Blaha birthPlace San_Antonio)
(John_E_Blaha occupation Fighter_pilot)

John E Blaha was born in San Antonio on 1942-08-26. *He worked as a fighter pilot*
Lexicalisation: Choosing lexical items

Data

(John_E_Blahoma birthDate 1942_08_26)

John E Blaha was born on 1942-08-26

John E Blaha’s birthdate is 1942-08-26.
Surface Realisation: Choosing syntactic structures

Data

(John_E_Blah birthPlace San_Antonio)
(John_E_Blah birthDate 1942_08_26)
(John_E_Blah occupation Fighter_pilot)

John E Blaha, *(born in San Antonio)* \text{APPOS}, on 1942-08-26 worked as a fighter pilot

John E Blaha *(was born in San Antonio)* \text{VP} on 1942-08-26. He worked as a fighter pilot

John E Blaha *(who was born in San Antonio on 1942-08-26)* \text{RELX} worked as a fighter pilot
Aggregation: Avoiding repetition

Data

(John_E_Blahoma birthDate 1942_08_26)
(John_E_Blahoma birthPlace San_Antonio)
(John_E_Blahoma occupation Fighter_pilot)

John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot

?? *John E Blaha* was born in San Antonio. *John E Blaha* was born on 1942-08-26. *John E Blaha* worked as a fighter pilot
Sentence segmentation: Segmenting the content into sentence size chunks

Data

(John_E_Blaha birthDate 1942_08_26)
(John_E_Blaha birthPlace San_Antonio)
(John_E_Blaha occupation Fighter_pilot)

[John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot]$_s$

[John E Blaha was born in San Antonio on 1942-08-26]$_s$. [He worked as a fighter pilot]$_s$
Outline

1 Existing Benchmarks

2 The WebNLG Framework
 - Creating Data
 - Associating Data with Text
 - Comparing Benchmarks

3 The WebNLG Challenge
Existing Benchmarks
Data-to-Text Corpora

Domain specific

Constructed from expert linguistic annotations.

Crowdsourced
Domain Specific Benchmark

- (Chen et al. 2008): Soccer Games
 1,539 data-text pairs, Vocabulary of 214 words.
- (Liang et al. 2009): Weather forecasts
 29,528 data-text pairs, Vocabulary of 345 words.
- (Ratnaparkhi et al. 2000): Air travel domain
 5,426 data-text pairs, Vocabulary of 927 words.

Strongly stereotyped text with restricted syntax and lexicon.
Benchmarks constructed from expert linguistic annotations

Unordered dependency trees / Newspaper text

Banarescu et al. 2012.
Abstract Meaning Representations / News and Discussion Forum

- Linguistic input
- Focus on surface realisation
 No sentence segmentation, restricted REG and lexicalisation
- Manual annotation of text with complex linguistic structure is expensive (time and expertise)
Crowdsourced

(Wen et al. 2016, Novikova and Rieser 2016): Dialog acts

\[
\text{recommend(name=caerus 33;type=television;}
\text{screensizerange=medium;family=t5;hasusbport=true)}
\]

The caerus 33 is a medium television in the T5 family that’s USB-enabled.

- ✓ Low cost (no expert linguist required)
- × Data synthetised from toy ontology
- × Limited Data Variety: input = tree of depth one
The WebNLG Framework
The WebNLG Approach

- RDF KB – Content Selection → Data
 - “Real” data: automatically extracted from RDF KB
 - “Varied” data: data of various shapes and sizes
- Text produced by crowdworkers

Claire Gardent, Anastasia Shimorina, Shashi Narayan and Laura Perez-Beltrachini
Creating Training Corpora for NLG Micro-Planning
ACL, 2017.
DBPedia

Data stored as RDF triples of the form (subject, property, object)

(Alan.Bean mission Apollo.12)
(Apollo.12 crewMember Peter.Conrad)
(Apollo.12 operator NASA)
(Alan.Bean birthDate 1932-03-15)
(Alan.Bean birthPlace Wheeler,Texas)
(Wheeler,Texas country USA)

6.2M entities, 739 classes, 2,695 properties
Content Selection
Data Shape and NL Syntax

CHAIN

<table>
<thead>
<tr>
<th>Discourse-Based</th>
<th>Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A participated in mission B operated by C.</td>
<td>A participated in mission B which was operated by C.</td>
</tr>
</tbody>
</table>

SIBLING

<table>
<thead>
<tr>
<th>Topic-Based</th>
<th>Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A was born in E. She worked as an engineer.</td>
<td>A was born in E and worked as an engineer.</td>
</tr>
</tbody>
</table>
Content Selection Procedure

Step 1: Learn bigram models of RDF-properties

Step 2: Use these models and Integer Linear Programming to extract data units

- that are subtrees of the DBPedia graph
- that maximise coherence
- that have various shapes and sizes

Laura Perez-Beltrachini, Rania Mohammed Sayed and Claire Gardent
Building RDF Content for Data-to-Text Generation

COLING, 2016.
Bi-grams of RDF Properties

S(IBLING) bi-grams
mission-birthDate
mission-birthPlace
birthDate-birthPlace
crewMember-operator

C(HAIN) bi-grams
mission-crewMember
mission-operator
birthPlace-country

Claire Gardent
“mission” (1-gram)
“mission - birthPlace” (2-gram)
“mission - birthPlace - birthDate” (3-gram).

SRILM toolkit

-1.329421 mission (1-gram),
-0.8845956 mission - birthPlace (2-gram),
-0.5842706 mission - birthPlace - birthDate (3-gram)
Extracting Data Units

\[x_t = x^p_{s,o} = \begin{cases}
1 & \text{if the triple is preserved} \\
0 & \text{otherwise}
\end{cases} \]

\[y_{t_1,t_2} = \begin{cases}
1 & \text{if the pair of triples is preserved} \\
0 & \text{otherwise}
\end{cases} \]
Objective Function

s- and c-Model

\[S(X) = \sum_{Y} y_{t_i,t_j} \cdot P(t_i, t_j) \]

m-Model

\[S(X) = \gamma \sum_{Y} y_{t_i,t_j} \cdot P(t_i, t_j) + (1 - \gamma) \sum_{Z} z_{t_k,t_l} \cdot P(t_k, t_l) \]
Consistency Constraints.

Bigram → Triple

\[\forall i, j \ (y_{i,j} \leq x_i \ \text{and} \ y_{i,j} \leq x_j) \]

Triple → Bigram

\[y_{i,j} + (1 - x_i) + (1 - x_j) \geq 1 \]
Tree constraints

Each object has at most one subject

\[\forall o \in Soln, \sum_{s,p} x_{s,o}^p \leq 1 \]

All triples are connected

\[\forall o \in Soln, \sum_{s,p} x_{s,o}^p - \frac{1}{|X|} \sum_{u,p} x_{o,u}^p \geq 0 \]
Crowdsourcing Text
Associating Data with Text

1. Clarifying RDF properties
 (Allan_Bean crew1up Apollo_12)
 ⇒ (Allan_Bean commander Apollo_12)

2. Getting verbalisations for single triples.
 (John_E_Blaha birthDate 1942_08_26)
 ⇒ ??

3. Getting verbalisations for input containing more than one triple.
 Make a text out of n clauses
 John E Blaha was born in San Antonio.
 John E Blaha was born on 1942-08-26.
 ⇒ ??

4. Verifying the quality of the collected texts.
Monitoring Crowdworkers

- *A priori* automatic checks. 12 custom javascript validators implemented in the CrowdFlower platform
 - Minimal text length
 - Minimal match triple/text
 - No exact match
 - No cut and paste
 - ...

- *A posteriori* manual checks to remove incorrect verbalisations
- Continuous monitoring of crowdworkers (bans, bonuses)
Verifying the quality of the collected texts

Does the text sound fluent and natural?

Does the text contain all and only the information from the data?

Is the text good English (no spelling or grammatical mistakes)?

5 judgments / question
Reject text if it received three negative answers in at least one criterion.
Total corpus loss: 8.7%

Rejected example

(AEK_Athens_F.C. manager Gus_Poyet)
(Gus_Poyet club Chelsea_F.C.)

AEK Athens F.C. are managed by Gus Poyet, who is in Chelsea_F.C.
Evaluation
Evaluation

Content selection

Are the created data units coherent and varied?

Benchmark Comparison

How does a WebNLG corpus compares with Wen’s Dataset?
Evaluating the Results of Content Selection

Are the created data units coherent and varied?

Experiment

- 3 DBPedia categories: Monument, University, Astronaut
- 5 entity graphs per category
- 10 best solutions produced by each model
Diversity

Input shapes

- 75 distinct shapes
- Nb of instances per shape: Min = 1, Max = 24, Avg = 5.31

Average Overlap

\[
\frac{\sum_{i,j} O(s_i, s_j)}{N}
\]

\[
O(s_i, s_j) = \frac{\text{Nb. of common properties}}{\text{Total nb of triples}}
\]
Overlap within Models

<table>
<thead>
<tr>
<th></th>
<th>Depth 1</th>
<th>Depth 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-Model</td>
<td>c-Model</td>
<td>m-Model</td>
</tr>
<tr>
<td>n3</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>n4</td>
<td>0.29</td>
<td>0.21</td>
</tr>
<tr>
<td>n5</td>
<td>0.29</td>
<td>0.23</td>
</tr>
<tr>
<td>n6</td>
<td>0.27</td>
<td>0.23</td>
</tr>
<tr>
<td>n7</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>n8</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>n9</td>
<td>0.34</td>
<td>0.27</td>
</tr>
<tr>
<td>n10</td>
<td>0.39</td>
<td>0.30</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.31</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Overlap across Models

<table>
<thead>
<tr>
<th></th>
<th>Depth 2</th>
<th>Depth1 vs. Depth 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c-Model</td>
<td>s-Model</td>
</tr>
<tr>
<td>m-Model</td>
<td>0.21</td>
<td>0.10</td>
</tr>
<tr>
<td>n3</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>n4</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>n5</td>
<td>0.23</td>
<td>0.17</td>
</tr>
<tr>
<td>n6</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>n7</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>n8</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>n9</td>
<td>0.25</td>
<td>0.27</td>
</tr>
<tr>
<td>n10</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>0.24</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Irrelevant Properties

E.g., leader for category Astronaut

Baseline: Random extraction of subtrees from entity graph

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
<th># Solns</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>0</td>
<td>2</td>
<td>0.44</td>
<td>400</td>
</tr>
<tr>
<td>s-Model</td>
<td>0</td>
<td>1.75</td>
<td>0.31</td>
<td>271</td>
</tr>
<tr>
<td>d2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>0</td>
<td>2</td>
<td>0.73</td>
<td>218</td>
</tr>
<tr>
<td>c-Model</td>
<td>0</td>
<td>1.94</td>
<td>0.59</td>
<td>382</td>
</tr>
<tr>
<td>m-Model</td>
<td>0</td>
<td>1.25</td>
<td>0.43</td>
<td>152</td>
</tr>
<tr>
<td>s-Model</td>
<td>0.07</td>
<td>1.29</td>
<td>0.54</td>
<td>123</td>
</tr>
</tbody>
</table>
Human Evaluation

<table>
<thead>
<tr>
<th></th>
<th>BL</th>
<th>s-Model</th>
<th>c-Model</th>
<th>m-Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherent (3)</td>
<td>6</td>
<td>18</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Medium (2)</td>
<td>15</td>
<td>11</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Low (1)</td>
<td>10</td>
<td>2</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Avg</td>
<td>1.87</td>
<td>2.52</td>
<td>2.27</td>
<td>2.43</td>
</tr>
</tbody>
</table>

23 pairs of data units
Size 3 to 10
Three categories
10 judgements for each pair
Comparing Benchmarks
Comparing Benchmarks

RNNNLG (Wen et al. 2016)

recommend(name=caerus 33;type=television;
screensizerange=medium;family=t5;hasusbport=true)

The caerus 33 is a medium television in the T5 family that’s USB-enabled.

WebNLG

(John_E_Blaha birthDate 1942_08_26)
(John_E_Blaha birthPlace San_Antonio)
(John_E_Blaha occupation Fighter_pilot)

John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
Properties

<table>
<thead>
<tr>
<th></th>
<th>WebNLG</th>
<th>RNNLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. Input</td>
<td>5068</td>
<td>22225</td>
</tr>
<tr>
<td>Nb. Properties</td>
<td>172</td>
<td>108</td>
</tr>
</tbody>
</table>

A larger number of properties is more likely to induce texts with greater **lexical variety**.

- X title Y / X *served as* Y
- X nationality Y / X’s *nationality is* Y
- X country Y / X *is in* Y
- X nationality USA / X *is American*
Input Patterns

<table>
<thead>
<tr>
<th></th>
<th>WEBNLG</th>
<th>RNNLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. Input</td>
<td>5068</td>
<td>22225</td>
</tr>
<tr>
<td>Nb. Input Patterns</td>
<td>2108</td>
<td>2155</td>
</tr>
<tr>
<td>Nb Input Pattern / Nb. Input</td>
<td>0.41</td>
<td>0.09</td>
</tr>
</tbody>
</table>

A larger number of input patterns is more likely to induce texts with greater syntactic variety.

country-location-startDate ⇒ passive, apposition, deverbal nominal
108 St. Georges Terrace is located in Perth, Australia. Its construction began in 1981.

almaMater-birthPlace-selection ⇒ passive, VP coordination
William Anders was born in British Hong Kong, graduated from AFIT in 1962, and joined NASA in 1963.
Neural Generation

(Vinyals et al. 2015) Multi-layered sequence-to-sequence model with attention mechanism.

- 13K data-text pairs
- 3-layer LSTMs with 512 units each
- batch size of 64
- learning rate of 0.5.

<table>
<thead>
<tr>
<th></th>
<th>WEBNLG</th>
<th>RNNLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocab (Input/Output)</td>
<td>520 / 2430</td>
<td>140 / 1530</td>
</tr>
<tr>
<td>Perplexity</td>
<td>27.41</td>
<td>17.42</td>
</tr>
<tr>
<td>BLEU</td>
<td>0.19</td>
<td>0.26</td>
</tr>
</tbody>
</table>
The WebNLG Challenge
The WebNLG Challenge

21,855 data/text pairs
8,372 distinct data input
9 DBpedia categories: Astronaut, University, Monument, Building, ComicsCharacter, Food, Airport, SportsTeam and WrittenWork
CC Attribution-Noncommercial-Share Alike 4.0 International licence

Baseline
OpenNMT sequence-to-sequence model with attention mechanism
BLEU = 54.03
Schedule

14 April 2017: Release of Training and Development Data
30 April 2017: Release of Baseline System
22 August 2017: Release of Test Data
25 August 2017: Entry submission deadline
5 September 2017: Results of automatic evaluation and system presentations (at INLG 2017)
30 September 2017: Results of human evaluation

37 downloads from 15 countries
Summary

- Generation
- Multilingual
- Discourse
Summary

- Generation
- Multilingual
- Discourse

THANKS!