Generating Text

Claire Gardent
Joint work with Angela Fan (Facebook), Antoine Bordes (Facebook) and Chloé Braud (CNRS/IRIT)
Natural Language Processing

NL Understanding

NL Generation
Natural Language Generation

What is NLG useful for?

- Verbalising, Summarising, Querying Knowledge-Bases
- Summarising, Simplifying, Paraphrases one or more Text(s)
- Converting Graphs into Text
Facebook claims its new chatbot beats Google's as the best in the world

It has also open-sourced the AI system to spur further research.

By Karen Hao

April 29, 2020

Opinion
Artificial intelligence (AI)

AI can write just like me. Brace for the robot apocalypse
Hannah Jane Parkinson

This article is more than 3 years old
Sacoolas, who has immunity as a diplomat’s wife, was involved in a traffic collision ... **Prime Minister Johnson** was questioned about the case while speaking to the press at a hospital in Watford. **He said**, “I hope that Anne Sacoolas will come back ... if we can’t resolve it then of course **I will be raising** it myself personally with the White House.

Generated summary

Boris Johnson has said **he will raise** the issue of US diplomat Anne Sacoolas’ diplomatic immunity with the White House.
Sacoolas, who has immunity as a diplomat’s wife, was involved in a traffic collision ... Prime Minister Johnson was questioned about the case while speaking to the press at a hospital in Watford. He said, “I hope that Anne Sacoolas will come back ... if we can’t resolve it then of course I will be raising it myself personally with the White House.”

Cisco, Inc. is an American multinational technology conglomerate headquartered in Santa Clara, California. It develops, manufactures and sells networking and telecommunication services and products for consumers, small and medium-sized businesses and service providers. The company is a market leader in several technology and manufacturing sectors, including computer networking, Internet of Things (IoT), unified communications and service provider networking. Cisco was founded in 1984. It is the third-largest public networking company (with an approximate $114 billion market capitalization), and the second-largest U.S. electronics company.
Sacoolas, who has immunity as a diplomat’s wife, was involved in a traffic collision ... **Prime Minister Johnson** was questioned about the case while speaking to the press at a hospital in Watford. He said, “I hope that Anne Sacoolas will come back ... if we can’t resolve it then of course I will be raising it myself personally with the White House.

Generated summary

Boris Johnson has said he will raise the issue of US diplomat Anne Sacoolas’ diplomatic immunity with the White House.
The NLG Hype

Errors in automatically summarised text

Title: Almond-raspberry thumbprint cookies

Ingredients: 1 cup butter or margarine softened, 1 cup sugar, 1 can solo almond filling, 2 egg yolks, 1 tsp almond extract, 2 1/2 cups all-purpose flour, 1/2 tsp baking powder, 1/2 tsp salt, 1 can solo raspberry filling

In a large bowl, beat butter and sugar until light and fluffy. Add eggs, one at a time, beating well after each addition. Blend in flour, baking powder, baking soda, salt and baking soda. Add to creamed mixture and mix well. Stir in nuts and vanilla. Drop dough by rounded table spoonfuls 2” apart onto ungreased cookie sheets. Bake 8 to 10 minutes or until edges are lightly browned. Cool on wire racks.
The NLG Hype

The factuality and faithfulness issue

A key issue in Neural NLG is correctness. The generated text may

- Contain factually incorrect data
- Include contradictions and repetitions / redundancies
- Omit information present in the input
- Hallucinate information not present in the input
LaMDA and the Sentient AI Trap

Arguments over whether Google’s large language model has a soul distract from the real-world problems that plague artificial intelligence.

OpenAI’s new language generator GPT-3 is shockingly good—and completely mindless

The AI is the largest language model ever created and can generate amazing human-like text on demand but won’t bring us closer to true intelligence.

By Will Douglas Heaven

July 20, 2020
• A short introduction to Neural Generation

• Four Challenges for Neural NLG
 • Long Input
 • Integrating Knowledge
 • Generating into multiple languages
 • Generating long form text
Neural Generation
Neural Generation

- Represents *(sub)words* as vectors of real numbers called *embeddings*

- Generates text by *predicting the next most probable word* using either a Language Model (decoder) or an Encoder-Decoder

- Increasingly uses *pretrained models*
 - Pretrained word embeddings (Word2Vec, BERT, XLNet, …)
 - Pretrained decoder (GPT2, LAMDA, …)
 - Pretrained encoder-decoder (T5, BART, …)
Neural Word Representations
Embeddings

Neural Word Representations

- Words with similar contexts have similar meanings
- Words are represented by vectors of real numbers called *embeddings*

John eats an apple.

Peter eats a pear.

The apple is ripe.

The pear is ripe.

<table>
<thead>
<tr>
<th></th>
<th>JOHN</th>
<th>PETER</th>
<th>EAT</th>
<th>APPLE</th>
<th>PEAR</th>
<th>RIPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PETER</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EAT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>APPLE</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PEAR</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RIPE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

APPLE = <1,0,1,0,0,1>

PEAR = <0,1,1,0,0,1>
Embeddings

Neural Word Representations

- Word embeddings are vectors
- The embedding of words with similar meaning are close in the vector space
Word embeddings

Can be

• Learned during training

• Pretrained (Word2Vec, Glove, BERT, …)
Neural Language Models
Language Model

How probable is a sequence of words?

Determines the probability of a sequence of words

\[P(W) = P(w_1, w_2, w_3 \ldots w_n) \]

Ex (in English)

\begin{align*}
P_1 &= P("a quick brown dog") \\
P_2 &= P("dog quick a brown") \\
P_3 &= P("un chien quick brown") \\
P_4 &= P("un chien brun rapide")
\end{align*}

\[P_1 > P_2 > P_3 > P_4 \]
Language Models can be used to generate a sentence by auto-regressively predicting the next word given a previous context.

France is where I grew up and where I now work. I speak fluent French.

\[
p(\text{French} \mid \text{France is where I grew up and where I now work. I speak fluent}) >
\]
\[
p(\text{English} \mid \text{France } \ldots \text{ fluent}) >
\]
\[
p(\text{Pizza} \mid \text{France } \ldots \text{ fluent}) >
\]
\[
p(\text{the} \mid \text{France } \ldots \text{ fluent})
\]
Pre-Neural LM

The probability of a sequence of words is computed using the chain Rule of Probability and Markov assumption

$$P(w_1, \ldots, w_n) = \prod_i P(w_i | w_{i-k}, \ldots, w_{i-1})$$

In Pre-neural model, probabilities are estimated on large corpora

$$P(w_n | w_1, \ldots, w_{n-1}) = \frac{\text{count}(w_1, w_2, w_3 \ldots w_n)}{\text{count}(w_1, w_2, w_3 \ldots w_{n-1})}$$

Example

$$P(\text{its water is so transparent}) = P(\text{its}) \times P(\text{ water | its}) \times P(\text{ is | its water }) \times P(\text{so | its water is }) \times P(\text{ transparent | its water is so})$$
Neural LMs

Using an RNN

- At each step, RNNs output a probability distribution over the vocabulary.

- The next word is predicted using sampling (or beam search, top-k sampling, nucleus sampling, ranking).

\[
\hat{y}^{(t)} = \text{softmax} \left(U h^{(t)} + b \right)
\]
The Encoder-Decoder Model

INPUT → **ENCODER** Neural Network → **Continuous Representation** → **DECODER** Neural Network → **Text**

Auto-regressive Generation

INPUT:
- Text
- KB
- Graph
- Image
Encoders

- Recurrent Neural Network (sequences)
- Convolutional Neural Network (Images and Text)
- Graph Encoder (Knowledge Bases, Tabular Data, RDF store)
- Transformer (sequences)
Decoders

- Recurrent Neural Network
- Transformer
Encoding and Decoding with a Recurrent Neural Network (RNN)
Encoding the Input with a Recurrent Neural Network

- Processes sequences from left-to-right
- Recurs over the input
- Outputs a new hidden state at each step

\[h_t = \tanh(W_1 h_{t-1} + W_2 x_t) \]

The last hidden state is the input representation
Decoding with a Recurrent NN

Outputs a word at each step

- Use a softmax layer to compute a *probability distribution over the output vocabulary*
- Sample a word from this distribution
- The predicted word is the input to the next decoding step

\[P_t = \text{softmax}(W_t h_t) \]
Generating with a Recurrent NN

$p(\text{Fine}|<s>, \text{How are you doing?})$

Conditional Generation
Generating with a Recurrent NN

\[p(,|<s>\text{ Fine, How are you doing?}) \]
Generating with a Recurrent NN

\[p(\text{and}|<s> \text{ Fine,; How are you doing?}) \]
Generating with a Recurrent NN

Input: How are you doing?

Encoder

Fine

softmax

<s>

Fine

softmax

,'

softmax

and

softmax

and

softmax

you

vocabulary
Generating with a Recurrent NN

Encoder

Input

How are you doing?

<s> Fine softmax , softmax and softmax you vocabulary

Generating with a Recurrent NN

Input

<s>

Fine

softmax

Fine

softmax

,

softmax

and

softmax

you

softmax

?
Generating with a Recurrent NN

Input: How are you doing?
Shortcomings and Solutions

• In practice, RNNs cannot handle long context
Exploding and Vanishing Gradients
 >> GRU, LSTM

• RNNs only know about the left context
 >> Bi-directional RNN
Shortcomings and Solutions

- The input to decoding is a fixed size vector

 > Attention

 permits focusing on the relevant part of the input

- Because they process a sequence one word at a time, RNNs are slow to train

 > Convolutional Neural Network, Transformer

 Process each input item in parallel
Shortcomings and Solutions

• Word unseen at training time represented as UNK at test time
 >> BPE (Byte Pair Encoding), WordPieces
 Uses subwords rather than words
Words and Subwords

- Neural Language Models assume a finite vocabulary
- All words unseen at training time are mapped to UNK
- For language with a rich morphology (Georgian, Swahili etc.), this is even more problematic
Words and Subwords

- Instead of handling words, subword models learn a vocabulary of subwords.
- At training and test time, each word is split into a sequence of subwords.
- **Byte-Pair encoding (BPE)** is one way to define a subword vocabulary.
 - Start with characters.
 - Add most frequent n-grams as subword.
 - Iterate until desired vocabulary size is reached.
BPE Example

Dictionary

<table>
<thead>
<tr>
<th>5</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>lower</td>
</tr>
<tr>
<td>6</td>
<td>newest</td>
</tr>
<tr>
<td>3</td>
<td>widest</td>
</tr>
</tbody>
</table>

Vocabulary

| l, o, w, e, r, n, w, s, t, i, d |

Start with all characters in vocab

Dictionary

<table>
<thead>
<tr>
<th>5</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>lower</td>
</tr>
<tr>
<td>6</td>
<td>newest</td>
</tr>
<tr>
<td>3</td>
<td>widest</td>
</tr>
</tbody>
</table>

Vocabulary

| l, o, w, e, r, n, w, s, t, i, d, es |

Add a pair (e, s) with freq 9
BPE Example

Dictionary

5. low
2. lower
6. new est
3. widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, est

Add a pair (es, t) with freq 9
Attention

- The input is compressed into a fixed-length vector
- Performance decreases with the length of the input
Attention

- Computes a score between each input token encoder state and the current state
 \[a_{t,j} = \text{score}(s_t, h_j) \]
 \[\alpha_t = \text{softmax}(a_t) \]
- The context vector is the weighted sum of the encoder states.
 \[c_t = \text{softmax}(\sum_j \alpha_{t,j} \cdot h_j) \]
- The new state is computed taking into account this context vector.
 \[s_t = f(s_{t-1}, y_{t-1}, c_t) \]
Attention

Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values) dependent on some other representation (the query)

Encoder-Decoder Cross-Attention
- Query = decoder state
- Values = encoder hidden states

Transformer Self-Attention
- Query = token embedding
- Values = surrounding tokens embeddings
Pretraining (Self-Supervised Learning)

Word Embedding, Encoder
• Word2Vec, Glove, BERT …

Language Models
• GPT2, DialoGPT, LAMDA …

Encoder-Decoder
• T5, BART ….
BERT

Transformer encoder pretrained on BooksCorpus (800M words) and English Wikipedia (2,500M words)

Two loss functions

- Predict masked tokens (Masked Language Modelling)
- Next sentence prediction classification (true if next sentence is the correct continuation)

The training loss is the sum of the mean masked LM likelihood and mean next sentence prediction likelihood
BERT Masked Language Modeling

Mask 1 word in 7
- Too little masking: too expensive to train
- Too much masking: not enough context

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

the

of
BERT Fine Tuning

- Sentence representation = final hidden state output by the Transformer (= [CLS] word embedding)
- Add a classification layer
- Fine tune all BERT parameters and the classification layer jointly to maximize the log-probability of the correct label
GPT2

• **Unsupervised Pre-training**
 Train a LM on a large corpus of text (BookCorpus 7K books)

• **Supervised Fine-tuning**
 • Input passed through pre-trained LM
 • Feed final LM activation to added linear + softmax output layers to predict output
 • Task-aware input transformations

• Significantly improves upon the SOTA in 9 out of 12 NLU tasks
BART

- Transformer Encoder-Decoder
- Denoising Auto-Encoder
 - Corrupt text with a noising function
 - Model learns to reconstruct original text
- Experiment with different noising functions
BART

Achieves new state-of-the-art results on a number of text generation tasks

Text infilling (reconstruct spans) demonstrates the most consistently strong performance

Token masking (reconstruct missing tokens) is crucial

Document Rotation and Sentence Shuffling perform poorly in isolation

<table>
<thead>
<tr>
<th></th>
<th>SQuAD 1.1 EM/F1</th>
<th>SQuAD 2.0 EM/F1</th>
<th>MNLI m/m</th>
<th>SST Acc</th>
<th>QQP Acc</th>
<th>QNLI Acc</th>
<th>STS-B Acc</th>
<th>RTE Acc</th>
<th>MRPC Acc</th>
<th>CoLA Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT</td>
<td>84.1/90.9</td>
<td>79.0/81.8</td>
<td>86.6/86</td>
<td>93.2</td>
<td>91.3</td>
<td>92.3</td>
<td>90.0</td>
<td>70.4</td>
<td>88.0</td>
<td>60.6</td>
</tr>
<tr>
<td>UniLM</td>
<td>-</td>
<td>80.5/83.4</td>
<td>87.0/85.9</td>
<td>94.5</td>
<td>-</td>
<td>92.7</td>
<td>-</td>
<td>70.9</td>
<td>-</td>
<td>61.1</td>
</tr>
<tr>
<td>XLNet</td>
<td>89.0/94.5</td>
<td>86.1/88.8</td>
<td>89.8/89</td>
<td>95.6</td>
<td>91.8</td>
<td>93.9</td>
<td>91.8</td>
<td>83.8</td>
<td>89.2</td>
<td>63.6</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>88.9/94.6</td>
<td>86.5/89.4</td>
<td>90.2/90.2</td>
<td>96.4</td>
<td>92.2</td>
<td>94.7</td>
<td>92.4</td>
<td>86.6</td>
<td>90.9</td>
<td>68.0</td>
</tr>
<tr>
<td>BART</td>
<td>88.8/94.6</td>
<td>86.1/89.2</td>
<td>89.9/90.1</td>
<td>96.6</td>
<td>92.5</td>
<td>94.9</td>
<td>91.2</td>
<td>87.0</td>
<td>90.4</td>
<td>62.8</td>
</tr>
</tbody>
</table>

Table 2: Results for large models on SQuAD and GLUE tasks. BART performs comparably to RoBERTa and XLNet, suggesting that BART’s uni-directional decoder layers do not reduce performance on discriminative tasks.

<table>
<thead>
<tr>
<th></th>
<th>CNN/DailyMail</th>
<th>XSum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R2</td>
</tr>
<tr>
<td>Lead-3</td>
<td>40.42</td>
<td>17.62</td>
</tr>
<tr>
<td>PTGEN (See et al., 2017)</td>
<td>36.44</td>
<td>15.66</td>
</tr>
<tr>
<td>PTGEN+COV (See et al., 2017)</td>
<td>39.53</td>
<td>17.28</td>
</tr>
<tr>
<td>UniLM</td>
<td>43.33</td>
<td>20.21</td>
</tr>
<tr>
<td>BERTSUMABS (Liu & Lapata, 2019)</td>
<td>41.72</td>
<td>19.39</td>
</tr>
<tr>
<td>BERTSUMEXTABS (Liu & Lapata, 2019)</td>
<td>42.13</td>
<td>19.60</td>
</tr>
<tr>
<td>BART</td>
<td>44.16</td>
<td>21.28</td>
</tr>
</tbody>
</table>

Table 3: Results on two standard summarization datasets. BART outperforms previous work on summarization on two tasks and all metrics, with gains of roughly 6 points on the more abstractive dataset.
Four Challenges for Neural Generation
Challenges for Neural NLG

- Generating from long Input
Challenges for Neural NLG

- Generating from Dealing long Input
- Retrieving and Integrating Relevant Knowledge
Challenges for Neural NLG

- Generating from long Input
- Retrieving and Integrating Relevant Knowledge
- Generating into Languages other than English
Challenges for Neural NLG

- Generating from Long Input
- Retrieving and Integrating Relevant Knowledge
- Generating into Languages other than English
- Generating Long Form Text
Handling Long Input
Generating from Long Input

WEB DOCUMENTS

200,000 words

Question Answering
ELI5 Dataset

QUESTION

ANSWER

Summarisation
Wikisum Dataset

SUMMARY
Question Answering
Explain Like I'm Five Dataset

WEB DOCUMENTS

QUESTION

200,000 words

ANSWER

270,000 TRAINING INSTANCES

200,000 words
Dealing with Long Web Input

WEB DOCUMENTS

Over 200,000 words long
Creating a Shorter Support Document

CALCULATE TF-IDF OVERLAP

QUESTION

WEB DOCUMENT SENTENCES
Creating a Shorter Support Document

200,000 words

850 words avg
Downsides of Short Support Document

SUPPORT DOCUMENT

- 850 words avg

40% of the Answer Tokens are Missing
Downsides of Short Support Document

SUPPORT DOCUMENT

850 words avg

40% of the Answer Tokens are Missing

Information selected is Redundant
Downsides of Extractive Support Document

40% of the Answer Tokens are Missing
Information selected is Redundant
Web Input is Noisy, Selection is Hard
Knowledge Graph Construction

WEB DOCUMENTS

compression

linearization

Generation

10,000 words avg

QUESTION

ANSWER
Knowledge Graph Construction

WEB DOCUMENTS

- compression

linearization

Generation

QUESTION

10,000 words avg

ANSWER
Converting a Text to a Graph

WEB DOCUMENTS

WEB DOCUMENT SENTENCES

open information extraction

coreference Resolution

Tf-idf filtering

relation

subject object

Merge nodes
Increment Nodes Weight

Filter Irrelevant Input
Can someone explain the theory of relativity?

Albert Einstein, a German theoretical physicist, published the theory of relativity.
Can someone explain the theory of relativity?

Albert Einstein, a German theoretical physicist, published the theory of relativity.

The theory of relativity is one of the two pillars of modern physics.

node weight +1
Albert Einstein, a German theoretical physicist, published the theory of relativity.

The theory of relativity is one of the two pillars of modern physics.

He won the physics Nobel Prize **node weight +1**
Albert Einstein, a German theoretical physicist, published the theory of relativity.

The theory of relativity is one of the two pillars of modern physics.

He won the physics Nobel Prize.

Puppies are very cute.

Low TF-IDF overlap with query Not added.
Knowledge Graph Construction

Compresses the input by
- Merging redundant information
- Dropping words
- Filtering out irrelevant triples

Reduces redundancy
- Merging nodes, edges and redundant triples

Filters out irrelevant content
- Tf-idf overlap (Question, Triple)
How much does the graph manage to compress the input?

Knowledge Graph Construction drastically reduces the input size.
How much does the graph preserve relevant information?

TF-IDF extraction is missing 38% of the answer tokens
Knowledge Graph Construction contains More Answer

The graph extracted for 850 tokens is missing 35% of the answer tokens
Knowledge Graph Construction contains More Answer

The graph for the full Input is missing only 8.7% of the answer tokens.
Model
Generation Model

linearization

10,000 words avg

QUESTION

Generation

ANSWER
Encoding Graph Structure in a Seq2Seq Model

Word Embedding: _{Albert Einstein} <obj>the theory of relativity</obj> <pred>published</pred> <s>developed</s> <obj>the Physics Nobel Prize</obj> <s>won

Position Embedding: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Encoding Graph Structure in a Seq2Seq Model

\[
\begin{array}{cccccccccccccccc}
\text{WORD EMBEDDING} & <\text{sub}> & \text{Albert Einstein} & <\text{obj}> & \text{the theory of relativity} & <\text{pred}> & \text{published} & <\text{s}> & \text{developed} & <\text{obj}> & \text{the Physics Nobel Prize} & <\text{s}> & \text{won} \\
\text{POSITION EMBEDDING} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\text{GRAPH WEIGHT EMBEDDING} & 0 & 4 & 4 & 0 & 2 & 2 & 2 & 2 & 0 & 1 & 0 & 1 & 0 & 3 & 3 & 3 & 3 & 0 & 2
\end{array}
\]
Encoding Graph Structure in a Seq2Seq Model

<table>
<thead>
<tr>
<th>WORD EMBEDDING</th>
<th><sub> Albert Einstein <obj> the theory of relativity <pred> published <s> developed <obj> the Physics Nobel Prize <s> won</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION EMBEDDING</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19</td>
</tr>
<tr>
<td>GRAPH WEIGHT EMBEDDING</td>
<td>0 4 4 0 2 2 2 2 0 1 0 1 0 3 3 3 3 0 2</td>
</tr>
<tr>
<td>QUERY RELEVANCE EMBEDDING</td>
<td>0 1 1 0 1 1 1 1 0 1 0 2 0 1 1 1 1 0 1</td>
</tr>
</tbody>
</table>
Sequence-to-Sequence Model

Generate each word of the answer

SEQUENCE TO SEQUENCE

QUESTION + SUPPORT DOCUMENT → ANSWER
Language Model
Language Modeling Model

Inference time: provide true question and support document
evaluate answer
MULTITASK LEARNING

training time: train on many tasks

SEQUENCE TO
SEQUENCE

LANGUAGE MODELING
training time: train on many tasks
Training time: train on many tasks

Sequence to Sequence Language Modeling

- **Input:** Question
- **Output:** Answer

Language Modeling

- **Input:** Text
- **Output:** Prediction

Masked Language Modeling

- **Input:** Text
- **Output:** Prediction (with masked tokens)
Training time: train on many tasks

Sequence to Sequence

- **Input:** question + text
- **Output:** completion

- **Input:** text
- **Output:** question + completion

Language Modeling

- **Input:** question + text
- **Output:** completion

Masked Language Modeling

- **Input:** question + masked text
- **Output:** completion
Handling Long Input

How do we encode 10K tokens in a Transformer?

- MCA in Encoder
 Memory Compressed Attention
Handling Long Input

- **MCA in Encoder**
 Memory Compressed Attention

- **Hierarchical Top-k Attention**
Evaluation
Automatic Evaluation

ROUGE

<table>
<thead>
<tr>
<th></th>
<th>Extractive</th>
<th>LM</th>
<th>Seq2Seq</th>
<th>Multitask</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUGE</td>
<td>20.6</td>
<td>27.8</td>
<td>28.3</td>
<td>28.9</td>
</tr>
</tbody>
</table>
| | | | | **30.1** | Multi-Task+MCA
Human Evaluation: Preference

Multi-task

Multi-Task+MCA

58.4*
Title: dwight h. perkins (economist)

Beginning of Web Search: memorial minute adopted by the faculty of arts and sciences, harvard university: abram bergson, john kenneth galbraith, carl kaysen, raymond vernon, dwight h. perkins, chairman. ed was a generous and understanding man who could see the good qualities in people and bring them out. he was always determined and persistent, which meant that he also saw to completion what he started, the list of projects, large and small, that he led is long. in 1946 he was one of the authors of the speech of secretary of state james byrnes in which the secretary announced the return of responsibility for the german economy to the germans. in 1956, he, together with ray vernon, did a pioneering study of the new york metropolitan region, a study that tried to identify the economic, political and social forces that were shaping that vast urban area. at the time the problems of urban areas were mainly the concern of architects and philosophers; almost no economist and only a few political scientists knew much or cared greatly about such issues. the studies that resulted provided rich fare for a generation of urban planners to follow. mason, edward s.(1899-1992) — harvard square library home biographies mason, edward s.(1899-1992) mason, edward s.(1899-1992) edward sagendorph mason was a member of the first parish unitarian church in harvard square who exemplified liberal religion in both thought and action. in addition to his notable contributions to the science of government, he served as chairman of the sloan commission on cable communication which issued recommendations for the future, on the cable. [...]

Target Lead Paragraph: dwight heald perkins (born in chicago, illinois in 1934) is an american academic, economist, sinologist and professor at harvard university. he is the son of lawrence bradford perkins, architect, and margery blair perkins and the grandson of dwight heald perkins, the architect, for whom he was named. he married julie rate perkins in 1957 and they have three adult children. == early life == perkins earned an undergraduate degree at cornell university in 1956. after two years military service in the us navy, perkins resumed his studies at harvard. he earned a ma in economics in 1961 and a ph.d. in economics in 1964. his doctoral thesis was “price formation in communist china”. == academic career == perkins’ teaching career at harvard began when he was still a graduate student, and continued uninterrupted through 2006 when he became a research and emeritus professor. he was a member of both the department of economics of the faculty of arts and sciences at harvard and of the harvard kennedy school. [...]

Title = query for web search

Multi-document input = Result from web search

Target = Wikipedia Article lead paragraph
Automatic Evaluation

ROUGE

- **Tf-IDF (500)**: 33.8
- **KG (500)**: 35.2
- **KG (11K)**: 36.5
Question: Why is touching microfiber towels such an uncomfortable feeling?

True Answer: Do you mean the kind of cloths used to clean glasses and lenses? I’ve never noticed any uncomfortable feeling myself, but I do find touching certain cleaning cloths can be quite uncomfortable. There’s a brand called “e - cloth” which market themselves as not needing any cleaning supplies. Basically the threads have tiny little hooks and barbs in them, so dragging them over skin makes you feel like it’s catching against you.

Generation: The microfiber is made up of a bunch of tiny fibers that are attached to them. When you touch them, the fibers that make up the microfiber are attracted to each other. When they touch, they’re attracted to the other end of the fiber, which is what makes them feel uncomfortable.

Fluent answer, factually correct
Some repetition (“attracted to each other”)
Example of Generated Text (ELI5)

Question: Why do we have nightmares when stressed out?

True Answer: I can tell you that your mind, and in particular your dreams, are subject to the input that it the journey of your life, as you have interpreted it. Yours dreams tend to be your subconscious representing issues you have within, whether it be past or present, with things and people that are sort of “preinterpreted symbology” from your deep and ever power subconsciousness. All your nightmares are just dreams, and your inner mind knows exactly can mess with you the most, and sometimes it brings that to light, it usually being an issue you may be stressed about.

Generation: When you’re stressed, your brain releases a hormone called cortisol. This hormone is released by your adrenal glands, and is released when you are stressed. This is why it’s called “fight-or-flight” mode. When your body is stressed, it releases hormones that make you feel more stressed. The reason why you don’t feel stressed is because your brain is trying to get rid of the stress hormone, which causes you to feel stressed, and you’re less likely to get stressed. If you’re really stressed, you’re probably going to be more stressed than if you weren’t stressed.

Repetitions (“when you are stressed”)

Non sense fragments (“The reason ...get stressed”)
Example of Generated Text (WikiSum)

Title: wylie rogers

True Paragraph: wylie rogers (born march 16, 1985) is an american ice hockey goaltender. he played with the rio grande valley killer bees of the central hockey league. prior to turning professional, rogers attended the university of alaska fairbanks where he played four seasons of ncaa men’s division i ice hockey with the alaska nanooks men’s ice hockey team. rogers played the 2010-11 season in the netherlands with the heerenveen flyers.

Generation: wylie rogers is an american football coach and former player. he is currently the head football coach at the university of north carolina at chapel hill. rogers played college football at north carolina state university. he was a member of the north carolina tar heels men’s football team that won the ncaa division i football championship in 2012. he also played for the university’s men’s basketball team. after his playing career ended, rogers was hired as the head coach at unc chapel hill in 2013. he led the tar heels to their first ncaa division ii championship in 2015.

Fluent text with nice, elaborate discourse structure
Incorrect facts (Wylie Rogers is an ice hockey player not a football coach. University of Alaska not North Carolina. etc;)
Retrieving and Integrating Relevant Knowledge
Human: I love watching Disney movies! Do you like Disney?

Model: That’s nice!
Human: I love watching Disney movies! Do you like Disney?

✗ Model: That’s nice!

✓ Model: I love Disney, I love watching Disney movies and different animations and characters that makes them unique
Human: I love watching Disney movies! Do you like Disney?
Model: I love Disney, I love watching Disney movies and different animations and characters that makes them unique
Human: What’s your favorite Disney movie?
Model: I love the incredibles, they are my favorite Disney movie.
Human: omg, me too! The second one just came out. I don't watch a lot of sequels though, I think the last one I saw was Toy Story
Model: That’s cool. I remember when Toy Story was first released in 1995
Retrieval Augmented Generation

Two retrieval sources

Human: What’s your favorite Disney movie?
Model: I love the incredibles, they are my favorite Disney movie.

Knowledge: Disney announced intentions to develop additional superhero films after the success by the incredibles.

Template: I love kiteboarding, it is one of my favorite activities on the water.
Extending Human-Machine Dialog with External Retrieval using K-Nearest Neighbour Search
Wizard of Wikipedia

Dialog about a topic

Retrieval Corpus for KL
• WKP passages
 • 34 sentences per topic

Retrieval Corpus for Template
• Dialog turns
• 170K dialog turns

Image Chat

Dialog about an image

Retrieval Corpus for KL
• Image + dialog
 • 184K images

Retrieval Corpus for Template
• Dialog turns
• 350K dialog turns
Effect of Fetched Text on Generation

Keeping the template fixed

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Training Utterance</th>
<th>Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>buzz lightyear's name is in honor of astronaut edwin ‘buzz’ aldrin</td>
<td>my favorite character in that book series is hermione granger</td>
<td>cool! my favorite character in that movie is buzz lightyear</td>
</tr>
<tr>
<td>mr potato head is based on the real-life mr. potato head toy</td>
<td>my favorite character in that book series is hermione granger</td>
<td>my favorite character in that movie is real-life mr potato head</td>
</tr>
<tr>
<td>slinky dog is a toy dachshund with a metal slinky for a body</td>
<td>my favorite character in that book series is hermione granger</td>
<td>cool! my favorite character is the slinky dog</td>
</tr>
<tr>
<td>slinky dog is a toy dachshund with a metal slinky for a body</td>
<td>i really like the character hermione granger</td>
<td>cool! i really like slinky dog</td>
</tr>
<tr>
<td>slinky dog is a toy dachshund with a metal slinky for a body</td>
<td>my favorite character of all time has to be hermione granger</td>
<td>i love that movie, my favorite character has to be slinky dog the dachshund</td>
</tr>
<tr>
<td>slinky dog is a toy dachshund with a metal slinky for a body</td>
<td>i agree with you! that's my favorite character as well</td>
<td>i think so too! my favorite is slinky</td>
</tr>
</tbody>
</table>

Keeping the KL fixed
Human Evaluation

Wizard of Wikipedia, Unseen Set

- Preference over Retrieval
- Preference over Generative MemNet

% KNN Model Preference

- Prefer in Long Conversation
- More Interesting
- More Human
- More Coherent
- More Knowledge

50%
Generating from AMR Graphs into Multiple Languages
I have known a planet that was inhabited by a lazy man

- Rooted Directed Acyclic Graph
- Nodes: concepts (nouns, verbs, NE, etc.)
- Edges: Semantic Roles
Graphs are frequent data structures

- Knowledge Graphs
- RDF stores
- Tabular data
- Meaning Representations
US officials held an expert group meeting in January 2002 in New York.
Challenges

• Structured Input has a different surface form
Challenges

- Structured Input has a different surface form
- Structured Input is underspecified
Structured Input has a different surface form

Structured Input is often very underspecified

Multilingual: decoding into languages with varied morphology and word order
Encoder-Decoder MODEL
hold
 :ARG0 person : ARG0-of have-org-role :ARG1 :op1 United :op2 States :ARG2 official
 :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
 :time date-entity :year 2002 :month 1
 :location city :op1 New :op2 York
Graph Encoding

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1 United :op2 States : ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York
Graph Encoding

hold

:ARG0 person : ARG0-of have-org-role : ARG1 : op1 United : op2 States : ARG2 official
: ARG1 meet : ARG0 person : ARG1-of expert : ARG2-of group
: time date-entity : year 2002 : month 1
: location city : op1 New : op2 York
Preprocessing

- Remove variable names and instance-of relation
- No anonymisation
- Sentence piece model with 32K operations
Pretraining

- Pretraining on silver AMRs
 - 30M sentences from CCNET
 - Using JAMR
Decoding into multiple Languages

- XLM cross-lingual embeddings and vocabulary (32K sentence piece subwords)
- Language Model pretraining on 30M sentences
- Multilingual Encoder-Decoder
XLM Cross-lingual embeddings

curtains were

les

bleus

Transformer Model

Token Embeddings

[/s] the MASK MASK blue [/s] [MASK] rideaux étaient MASK [/s]

Position Embeddings

0 1 2 3 4 5 0 1 2 3 4 5

Language Embeddings

en en en en en en fr fr fr fr fr fr

Cross-lingual Language Model Pretraining
Guillaume Lample, Alexis Conneau
Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

Amerikanska tjänstemän höll ett expertgruppsmöte i januari 2002 i New York.
Multilingual AMR-to-NL Model

- Encoder: pretraining on Silver AMRs
- Decoder: language model pretraining, multilingual model
DATA
Training Data

- Europarl: 21 Languages
- Construct AMR: create AMR structure with JAMR parser
Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

Americkí predstavitelia usporiadali stretnutie expertnej skupiny v januári 2002 v New Yorku.

Американските служители проведоха среща на експертна група през януари 2002 г. в Ню Йорк.

Amerikanska tjänstemän höll ett expertgruppsmöt e i januari 2002 i New York.
EVALUATION
Evaluation

Automatic (BLEU)
• Ablation
• Comparison with two strong baselines
• Impact of training data (which languages ?)
• Correlation I/O (sub)word overlap and BLEU

Human-Based
• Word-Oder, Morphology, Semantic adequacy, Paraphrasing
Ablation Study

Base Model (English) 32.5

+ Graph embeddings 32.9
+ Crosslingual embeddings 33.0
+ Encoder pretraining 33.4
+ Decoder pretraining 33.8
Comparison: Monolingual v. Multilingual

Monolingual Baseline

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.
Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.
Results: Europarl

Monolingual Baseline: En AMR -> X

Multilingual Model: En AMR -> All

<table>
<thead>
<tr>
<th>Language</th>
<th>BLEU Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td>34.0</td>
</tr>
<tr>
<td>da</td>
<td>24.4</td>
</tr>
<tr>
<td>de</td>
<td>23.9</td>
</tr>
<tr>
<td>el</td>
<td>23.1</td>
</tr>
<tr>
<td>es</td>
<td>25.5</td>
</tr>
<tr>
<td>fi</td>
<td>24.7</td>
</tr>
<tr>
<td>fr</td>
<td>21.2</td>
</tr>
<tr>
<td>it</td>
<td>18.9</td>
</tr>
<tr>
<td>nl</td>
<td>20.3</td>
</tr>
<tr>
<td>pt</td>
<td>13.4</td>
</tr>
<tr>
<td>sv</td>
<td>25.1</td>
</tr>
<tr>
<td>bg</td>
<td>14.6</td>
</tr>
<tr>
<td>cs</td>
<td>17.5</td>
</tr>
<tr>
<td>et</td>
<td>21.9</td>
</tr>
<tr>
<td>hu</td>
<td>33.8</td>
</tr>
<tr>
<td>lt</td>
<td>30.6</td>
</tr>
<tr>
<td>lv</td>
<td>30.1</td>
</tr>
<tr>
<td>pl</td>
<td>30.6</td>
</tr>
<tr>
<td>ro</td>
<td>31.4</td>
</tr>
<tr>
<td>sl</td>
<td>32.1</td>
</tr>
<tr>
<td>sk</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Resource Levels:
- **High Resource**
- **Mid Resource**
Results: Gold AMR

Bilingual Baseline: En AMR -> X Multilingual Model: En AMR -> All

<table>
<thead>
<tr>
<th>Language</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td>28</td>
</tr>
<tr>
<td>es</td>
<td>22</td>
</tr>
<tr>
<td>it</td>
<td>19</td>
</tr>
<tr>
<td>de</td>
<td>15</td>
</tr>
</tbody>
</table>
Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

US officials held an expert group meeting in January 2002 in New York.
Comparison: Hybrid Translation v. Multilingual

Hybrid Translation Model

hold
:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

Multilingual Model

hold
:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

US officials held an expert group meeting in January 2002 in New York.

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.
Comparison to Hybrid Translation Baseline

Hybrid Translation: En AMR -> En -> Translate to X
Multilingual Model: En AMR -> All

![Diagram showing BLEU scores for different languages]
Training on languages from the same family

<table>
<thead>
<tr>
<th></th>
<th>Da</th>
<th>De</th>
<th>Ni</th>
<th>Sv</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Language</td>
<td>21.3</td>
<td>17.0</td>
<td>18.5</td>
<td>18.7</td>
</tr>
<tr>
<td>Germanic Family</td>
<td>21.8</td>
<td>21.9</td>
<td>19.6</td>
<td>19.3</td>
</tr>
<tr>
<td>All Languages</td>
<td>21.9</td>
<td>17.5</td>
<td>19.4</td>
<td>19.5</td>
</tr>
</tbody>
</table>
Training on the closest language

- Multilingual models trained on language pairs
- Within a family, the most closely related pairs get best results
 - Romance: Spanish/Portuguese
 - Germanic: Swedish/Danish
 - Uralic: Finnish/Estonian
 - Slavic: Czech/Slovak
Human Evaluation

• **Semantic Accuracy:**
 Does the hypothesis correctly paraphrase the reference?

• **Morphology:**
 Is the morphology correct? Are agreement constraints e.g., verb/subject, noun/adjective respected?

• **Word Order:**
 Is the word order natural sounding?
Human Evaluation: Semantic Accuracy

![Semantic Accuracy Bars](image-url)
Human Evaluation

The scores are uniformly high across languages for both Morphology and Word Order.

A Multilingual model generalises well across languages.
This point will certainly be the subject of subsequent further debates in the council.

This is a point that will undoubtedly be discussed later in the council.

Je ne suis pas favorable à des exceptions à cette règle.

A mon avis, il n’est pas bon de faire des exceptions à cette règle.
Human evaluation demonstrates multilingual techniques generalize across languages
Human evaluation demonstrates multilingual techniques generalize across languages.

Multilingual benefits from increased training data and performs better than monilingual.
Human evaluation demonstrates multilingual techniques generalize across languages.

Multilingual benefits from increased training data and performs better than monilingual.

Using English-Centric AMR, we can decode into many different target-side languages.
Retrieval-Based Generation of Long Form Text
Generating Woman Biographies
Generating Wikipedia Biographies from Web Retrieval

Wikipedia

Joan Paton

Joan Burton Paton (1916–April 2000) was an Australian teacher, naturalist, environmentalist and ornithologist. One of the first women to become a member of the exclusive Adelaide Ornithologists Club, of which she was elected President 1991–1993, she also served as president of the South Australian Ornithologists Association (1979–1982). Her father was Professor Sir John Burton Cleland, a notable microbiologist and pathologist who strongly encouraged her early interest in natural history.

Contents
Early life and education
Career
Legacy and honours
References
External References

Early life and education

Joan Burton Paton was born in Sydney, New South Wales, the daughter of John Burton Cleland (1878–1974) and his wife, Dea Isabel Paton (1880–1955). She had three sisters, Dr Margaret Burton Cleland, Elizabeth Robson Cleland and Barbara Burton Cleland; and a brother, William Paton ‘Biff’ Cleland, who became a surgeon. The father encouraged his children's interest in science. Joan Paton was educated at the University of Adelaide, where she majored in organic chemistry and biochemistry. In 1951 she married Ernest Norman Paton (1922–1985), son of Adolph Ernest Paton and Ida Marie Payton. Their son is Prof David Cleland Paton.

Career

In 1967 Paton became a lecturer on ornithology in South Australia's Workers' Educational Association. Among those she inspired to work in ornithology and environmental conservation was Margaret Cameron, who became the President of the Royal Australasian Ornithologists Union (RAOU). Paton was active in the RAOU, as well as in the South Australian Ornithologists Association (SAOA), of which she was elected Vice-President 1974–1975, and President 1979–1982. She was one of the first women to become a member of the exclusive Adelaide Ornithologists Club, of which she was elected president (1991–1993).

Legacy and honours

- 1990: she was made an Honorary Member of the SAOA.
- 1996: she was made an Honorary Member of the Adelaide Ornithologists Club.
Challenges

- Gather relevant evidence
- Generate a structured text
- Ensure factuality
EACH SECTION PREDICTS THE NEXT, TO WRITE A FULL BIOGRAPHY

INTRO PARAGRAPH

Early Life

Career

INPUT WEB EVIDENCE

DOC 1

What was Katherine Johnson's Early Life like?

As a young girl, Katherine loved to count.

She counted everything.

She would count the number of steps she took to the road.

She counted the steps into church.

DOC 2

What was Katherine Johnson's Early Life like?

She counted everything.

RETRIEVAL MODULE

RETRIEVAL OUTPUT

DOC 1

DOC 2

SUBJECT

Katherine Johnson

OCCUPATION

Mathematician

SECTION

Early Life

QUERY

CACHE:

PREVIOUS SECTIONS

GENERATION ENCODER

GENERATION MODULE

GENERATION DECODER

CITATION MODULE

Katherine Johnson was born as Cazols Katherine Coleman on August 26, 1918, in White Sulphur Springs, West Virginia, to Joyletta Roberts (Lowe) and Joshua McKinley Coleman. She was the youngest of four children. Johnson showed strong math abilities from an early age, career [1][2].
Retrieval

QUERY
Katherine Johnson
Mathematician
Early Life

SEARCH OUTPUT
Top 20 search results segmented into sentences

OUTPUT
40 sentences most similar with the query (1,000 words)
Katherine Johnson was born as Creola Katherine Coleman on August 26, 1918, in White Sulphur Springs, West Virginia, to Joylette Roberta (Lowe) and Joshua McKinley Coleman. She was the youngest of four children. Johnson showed strong math abilities from an early age.
Transformer-XL Cache Mechanism

- Caches the previous section’s hidden states at every later
- Usd as a memory to generate the current section
Ablation

<table>
<thead>
<tr>
<th>Model</th>
<th>ROUGE-L</th>
<th>Entailment</th>
<th>Named Entity Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BART Pretraining + Finetuning</td>
<td>17.4</td>
<td>15.8</td>
<td>21.9</td>
</tr>
<tr>
<td>+ Retrieval Module</td>
<td>18.8</td>
<td>17.2</td>
<td>23.1</td>
</tr>
<tr>
<td>+ Caching Mechanism</td>
<td>19.3</td>
<td>17.9</td>
<td>23.4</td>
</tr>
</tbody>
</table>

The retrieval and the cache module statistically significantly improve results.
Human Evaluation of Factuality
The Evidence Gap

Data
(person name, web evidence, Wikipedia biography)

- Wikisum: Wikipedia biographies
- Our dataset: Women biographies

<table>
<thead>
<tr>
<th>WikiSum Evaluation Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number of Sections</td>
</tr>
<tr>
<td>Average Length of a Section</td>
</tr>
<tr>
<td>Average Length of Total Article</td>
</tr>
<tr>
<td>Avg overlap of Web Hits and Biography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Our Evaluation Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number of Sections</td>
</tr>
<tr>
<td>Average Length of a Section</td>
</tr>
<tr>
<td>Average Length of Total Article</td>
</tr>
<tr>
<td>Avg Number of Web Hits (max 20)</td>
</tr>
<tr>
<td>Avg overlap of Web Hits and Biography</td>
</tr>
</tbody>
</table>
Less Web Evidence, Less Good Texts

<table>
<thead>
<tr>
<th>Model</th>
<th>WikiSum Test</th>
<th>Women</th>
<th>Scientists</th>
<th>Women in Asia</th>
<th>Women in Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>BART Pretraining</td>
<td>19.0</td>
<td>17.4</td>
<td>18.2</td>
<td>16.7</td>
<td>16.4</td>
</tr>
<tr>
<td>+ Retrieval</td>
<td>21.4</td>
<td>18.8</td>
<td>19.3</td>
<td>17.9</td>
<td>17.1</td>
</tr>
<tr>
<td>+ Caching</td>
<td>21.8</td>
<td>19.3</td>
<td>19.7</td>
<td>18.4</td>
<td>17.3</td>
</tr>
</tbody>
</table>
Toplevel

Ashley McKenzie is a Canadian film director, screenwriter, and producer. She is the winner of the Stella Artois Jay Scott Prize for Emerging Talent at the 2016 Toronto International Film Festival. Her first feature film, Werewolf, premiered at the Toronto Film Festival in 2016. She has also directed short films for the National Film Board of Canada and the Canadian Screen Actors Guild. She was born in Montreal, Quebec, Canada, and grew up in Ottawa, Ontario. [1,3,11,13,14]

Personal life

McKenzie was born in London, England. She is the daughter of Alexander McKenzie, who was a member of the British rock band The Beatles. She has a younger sister, Jessica, who is also a singer. She was educated at St Mary’s College, Oxford, where she graduated with a bachelor of arts degree in English literature. She also studied at the University of London. She married fellow X Factor contestant Andrew Davies in September 2006. They have two children, a son and a daughter. [3,4,7,8,10,11]

Career

McKenzie was a contestant on the third series of the X-Factor in 2006. She was eliminated in the first week of the competition. In 2007, McKenzie released her debut single "Don't Pretend You Hadn't, Now..." which peaked at No. 160; 2 on the UK singles chart. She also released a second single, "I'm Not Afraid", in 2008. In 2009, she released her third single, "Don't Pretend You Haven't, Now". In 2010, she was a judge on the X Factor UK. [2]
Conclusion
Open Challenges

- **Factuality, faithfulness to the input**
 (evaluation and implementation)
- Multilingual NLG: generating from and into multiple languages
 Document level Simplification
- Multi-document, multi-format, summarisation
- Domain adaptation, style transfer
Thank you!