Verbalising Graphs into High-, Medium- and Low-Resource Languages

Chaire IA xNLG: Generating from Multiple Sources into Multiple Languages

Claire Gardent

CNRS / LORIA

Anja Belz, Thiago Castro-Ferreira, Liam Cripwell, Angela Fan, ALbert Gatt, Nikolai Ilinyskh, Chris van der Lee, Simon Mille, Diego Moussalem, Yannick Parmentier, Laura Perez-Beltrachini, Anastasia Shimorina, William Soto-Martinez

• Knowledge Graphs

- Knowledge Graphs
- RDF Stores

- Knowledge Graphs
- RDF Stores
- Meaning Representations

- Knowledge Graphs
- RDF Stores
- Meaning Representations
- Tabular Data

Abstract Meaning Representation (AMR)

Ryan describes himself as a genius

Knowledge Graphs

RDF Graph

English Text

Alan Bean graduated from UT Austin in 1955 with a Bachelor of Science degree. He was hired by NASA in 1963 and served as a test pilot. Apollo 12's backup pilot was Alfred. Worden and was commanded by David Scott

• Structured input has a different surface form

- Structured input has a different surface form
- Structured Input is underspecified

- Structured input has a different surface form
- Structured Input is underspecified
- Lack of parallel Graph/text data

- Structured input has a different surface form
- Structured Input is underspecified
- Lack of parallel Graph/text data
- Decoding into languages with varied morphology and word order

Multilingual Models

• AMR \Rightarrow 21 EU Languages

Multilingual Models

• AMR \Rightarrow 21 EU Languages

Pre-trained Multilingual Models

• RDF \Rightarrow English, Russian

Multilingual Models

• AMR \Rightarrow 21 EU Languages

Pre-trained Multilingual Models

• RDF \Rightarrow English, Russian

Parameter Efficient Fine Tuning

• RDF \Rightarrow Breton, Welsh, Irish, Maltese

Multilingual Models

• AMR \Rightarrow 21 EU Languages

Pre-trained Multilingual Models

• RDF \Rightarrow English, Russian

Parameter Efficient Fine Tuning

- RDF ⇒ Breton, Welsh, Irish, Maltese
- AMR ⇒ 6 High- and 6 Low-Resource Languages

$AMR \Rightarrow 21 EU Languages$

Fan and Gardent EMNLP 2020

Abstract Meaning Representation (AMR)

Ryan describes himself as a genius

AMR → 21 Languages

Amerikanska tjänstemän höll ett expertgruppsmöte i januari 2002 i New York.

Americkí predstavitelia usporiadali stretnutie expertnej skupiny v januári 2002 v New Yorku.

US officials held an expert group meeting in January 2002 in New York.

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à Ne York.

Funcionarios estadounidenses celebraron una reunión de un grupo de expertos en enero de 2002 en Nueva York.

Romance, Germanic, Slavic, Uralic

The Encoder-Decoder Framewok

Two networks

- The encoder produces a continuous representation of the input
- The decoder generates a text from this representation

AMR Encoding

- Transformer encoder
- Linearise (and simplify) AMRs
- Graph structure
 - Node: token + distance from root + branch
- Pretraining (Masked Language Modelling objective)
 - on 30M silver AMRs

Linearising

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1 United :op2

States: ARG2 official

:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group

:time date-entity :year 2002 :month 1

:location city :op1 New :op2 York

Encoding Structure

Add branch and sibling embeddings (aka positional embedding for graphs)

Multilingual Decoding

- Crosslingual embeddings (XLM Sentence Piece Model and Vocabulary)
- Language Models pretrained on 30M sentences (for each language)

Leveraging Pretraining

- Encoder: pretraining on Silver AMRs
- Decoder: language model pretraining

Multilingual decoding

- Prefix each training instance with a control token
- Trained on multilingual Europarl data

Training Data

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1 United :op2

States: ARG2 official

:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group

:time date-entity :year 2002 :month 1

:location city :op1 New :op2 York

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

French

Funcionarios estadounidenses celebraron una reunión de un grupo de expertos en enero de 2002 en Nueva York.

Spanish

Americkí predstavitelia usporiadali stretnutie expertnej skupiny v januári 2002 v New Yorku.

Slovak

Американските служители проведоха среща на експертна група през януари 2002 г. в Ню Йорк.

Bulgarian

Amerikanska tjänstemän höll ett expertgruppsmöt e i januari 2002 i New York.

Swedish

- Europarl: 21 Languages
- Input AMR: create AMR structure with JAMR parser

Test Data

- Silver AMR: 21 languages, Europarl
- Gold AMR: 4 languages

Comparison: Bilingual vs Multilingual

Bilingual Baseline

hold

```
:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York
```


Comparison: Bilingual vs Multilingual

Bilingual Baseline

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

Multilingual Model

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Comparison: Bilingual vs Multilingual

Bilingual Baseline

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

Multilingual Model

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Amerikanska tjänstemän höll ett expertgruppsmöte i januari 2002 i New York.

Results: Europarl

Results: Europarl

The multilingual model generally outperforms monolingual models

Results: Europarl

The multilingual model generally outperforms monolingual models

The difference is stronger on Mid-Resource Languages

Results: Gold AMR

Bilingual Baseline: En AMR -> X Multilingual Model: En AMR -> All

The difference also holds when generating from gold AMRs

Comparison: Hybrid vs Multilingual

Hybrid Translation Model

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

AMR to English

US officials held an expert group meeting in January 2002 in New York.

Multilingual Model

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Comparison: Hybrid vs Multilingual

Hybrid Translation Model

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

Generate: AMR → **English**

Multilingual Model

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Comparison: Hybrid vs Multilingual

Hybrid Translation Model

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

AMR to English

US officials held an expert group meeting in January 2002 in New York.

Translation Model

Des responsables américains ont tenu une réunion d'un groupe d'experts en janvier 2002 à New York.

Generate: AMR \rightarrow English

Translate: English o X

Multilingual Model

hold

:ARG0 person : ARG0-of have-org-role :ARG1 :op1
United :op2 States :ARG2 official
:ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
:time date-entity :year 2002 :month 1
:location city :op1 New :op2 York

Comparison: Hybrid vs Multilingual

Hybrid Translation: En AMR -> En -> Translate to X

Multilingual Model: En AMR -> All

Comparison: Hybrid vs Multilingual

Hybrid Translation: En AMR -> En -> Translate to X

Multilingual Model: En AMR -> All

The multilingual model outperforms the Gen&Translate pipeline

Human Evaluation

- Evaluators: colleagues from NLP mailing lists
- 50 sentences per language
 - Half low BLEU
 - Half high BLEU

Human Evaluation

- Semantic Accuracy:
 Does the generated text correctly paraphrase the reference?
- Morphology:
 Is the morphology correct? Are agreement constraints e.g., verb/subject, noun/adjective respected?
- Word Order:Is the word order natural sounding?

Human Evaluation: Semantic Accuracy

 Pre-training and Multilingual techniques permits bridging the gap between English-Centric AMR graphs and target languages with varied syntax and morphology

- Pre-training and Multilingual techniques permits bridging the gap between English-Centric AMR graphs and target languages with varied syntax and morphology
 - Pretrained LMs and AMRs, Crosslingual embeddings, Multilingual training

- Pre-training and Multilingual techniques permits bridging the gap between English-Centric AMR graphs and target languages with varied syntax and morphology
 - Pretrained LMs and AMRs, Crosslingual embeddings, Multilingual training
- Multilingual models benefits from increased training data and perform better on average than bilingual

- Pre-training and Multilingual techniques permits bridging the gap between English-Centric AMR graphs and target languages with varied syntax and morphology
 - Pretrained LMs and AMRs, Crosslingual embeddings, Multilingual training
- Multilingual models benefits from increased training data and perform better on average than bilingual
- Multilingual End-to-End models outperform NLG+MT models

Knowledge Graphs ⇒ English, Russian

Gardent et al. ACL 2017, Castro-Ferreira et al. INLG 2020

The WebNLG Challenge

RDF Graph

The WebNLG Challenge

RDF Graph

English Text

Alan Bean graduated from UT Austin in 1955 with a Bachelor of Science degree. He was hired by NASA in 1963 and served as a test pilot. Apollo 12's backup pilot was Alfred. Worden and was commanded by David Scott

	Train+Dev	Test (Seen Category)	Test (Unseen Category)	TOTAL
# (Graph,Text)	20,370	2,495	2,413	25,298
# Graphs	7,812	971	891	9,674

- DBPedia graphs with root entity of various categories.
- English texts are crowdsourced

	Train+Dev	Test (Seen Category)	Test (Unseen Category)	TOTAL
# (Graph,Text)	20,370	2,495	2,413	25,298
# Graphs	7,812	971	891	9,674

10 **seen** categories:

• Astronaut, University, Monument, Building, Comics Character, Food, Airport, SportsTeam, City and WrittenWork

5 **unseen** categories:

• Athlete, Artist, MeanOfTransportation, CelestialBody, Politician

- 6 participants, 10 systems
- Models: 3 rule-based, 1 SMT, 5 neural

ALL: 7.07 - 45.13, **Seen**: 19.87 - 60.54, **Unseen**: 5.13 - 35.7

ALL: 7.07 - 45.13, **Seen**: 19.87 - 60.54, **Unseen**: 5.13 - 35.7

Strong differences between models

ALL: 7.07 - 45.13, **Seen**: 19.87 - 60.54, **Unseen**: 5.13 - 35.7

Strong differences between models

All models degrades on Unseen Data

Natural Language Generation

 $\bullet \ \ \mathsf{RDF} \Rightarrow \mathsf{English}$

Natural Language Generation

 $\bullet \ \ \mathsf{RDF} \Rightarrow \mathsf{English}$

Natural Language Generation

- RDF \Rightarrow English
- RDF ⇒ Russian

Natural Language Generation

- RDF \Rightarrow English
- RDF ⇒ Russian

Semantic Parsing

- English \Rightarrow RDF
- Russian ⇒ RDF

	Train	Dev	Test NLG/SP	TOTAL
# (Graph,Text)	35,426	4,664	5,150	47,395
# Graphs	13,211	1,667	1,779	17,409

16 **seen** categories

Astronaut, University, Monument, Building, Comics Character, Food, Airport, SportsTeam, City, WrittenWork, Athlete, Artist, CelestialBody, MeanOfTransportation, Politician, Company

3 **unseen** categories:

Film, Scientist, and MusicalWork

Unseen entities: graphs from seen categories, but unseen root entity

E.g., Nie Haisheng in category Astronaut

WebNLG 2020: Participation

System	Affiliation	Country
MED	Sber Al Lab	Russia
RALI-UMontréal	Université de Montréal	Canada
ORANGE-NLG	Orange Labs	France
CUNI-UFAL	Charles University	Czechia
TGen	AIST	Japan
BT5	Google	US
UPC-POE	Universitat Politècnica de Catalunya	Spain
DANGNT-SGU	Saigon University	Vietnam
Huawei	Huawei Noah's Ark Lab	UK
AmazonAI	Amazon AI (Shanghai)	China
NILC	University of São Paulo	Brazil
NUIG-DSI	National University of Ireland	Ireland
CycleGT	Amazon	China
OSU NEURAL NLG	The Ohio State University	US
FBConvAI	Facebook	US

WebNLG 2020: Results

WebNLG 2020: Results

Results are better for English than for Russian

WebNLG 2020: Results

Results are better for English than for Russian

Pre-training improves results: +16 BLEU points for English w.r.t. 2017

WebNLG 2023: Low Resource Languages

Data

	Silver Train	Dev	Test
Breton	13,211	1,399	1,778
Welsh	13,211	1,665	1,778
Irish	13,211	1,665	1,778
Maltese	13,211	1,665	1,778

WebNLG 2023: Low Resource Languages

Data

	Silver Train	Dev	Test
Breton	13,211	1,399	1,778
Welsh	13,211	1,665	1,778
Irish	13,211	1,665	1,778
Maltese	13,211	1,665	1,778

Participants

Team	Affiliation	Country	Breton	Welsh	Irish	Maltese	Russian
CUNI-Wue	Charles University	Czechia	✓	✓	√	✓	√
DCU/TCD-FORGe	ADAPT/DCU/Trinity College	Ireland	-	-	\checkmark	-	-
Interno	Pulkovo Observatory	Russia	-	-	-	-	\checkmark
IREL	IIT Hyderabad	India		\checkmark	\checkmark	\checkmark	\checkmark
DCU-NLG-PBN	ADAPT/DCU	Ireland	-	\checkmark	\checkmark	\checkmark	-

WebNLG 2023: Low Resource Languages

Data

	Silver Train	Dev	Test
Breton	13,211	1,399	1,778
Welsh	13,211	1,665	1,778
Irish	13,211	1,665	1,778
Maltese	13,211	1,665	1,778

Participants

Team	Affiliation	Country	Breton	Welsh	Irish	Maltese	Russian
CUNI-Wue	Charles University	Czechia	✓	✓	√	✓	√
DCU/TCD-FORGe	ADAPT/DCU/Trinity College	Ireland	-	-	\checkmark	-	-
Interno	Pulkovo Observatory	Russia	-	-	-	-	\checkmark
IREL	IIT Hyderabad	India		\checkmark	\checkmark	\checkmark	\checkmark
DCU-NLG-PBN	ADAPT/DCU	Ireland	-	\checkmark	\checkmark	\checkmark	-

No training Data

WebNLG 2023: Pipeline NLG+MT Models

Participants

Team	Affiliation	Country	Breton	Welsh	Irish	Maltese	Russian
CUNI-Wue	Charles University	Czechia	✓	✓	\checkmark	✓	\checkmark
DCU/TCD-FORGe	ADAPT/DCU/Trinity College	Ireland	-	-	\checkmark	-	-
Interno	Pulkovo Observatory	Russia	-	-	-	-	\checkmark
IREL	IIT Hyderabad	India		\checkmark	\checkmark	\checkmark	\checkmark
DCU-NLG-PBN	ADAPT/DCU	Ireland	-	\checkmark	\checkmark	\checkmark	-

$RDF \Rightarrow English$

- T5 or mT5 fine-tuned on English WebNLG data
- GPT3-5 in context learning, no fine-tuning

English \Rightarrow LR Language

• Machine Translation: NLLB or Google Translate

WebNLG 2023: Results

WebNLG 2023: Results

Strong degradation overall compared to results on English

WebNLG 2023: Results

Strong degradation overall compared to results on English

Very poor output for Breton

End-to-End RDF ⇒ Celtic Language

Soto-Martinez et al. AACL-IJCNLP 2023

Pipeline vs. End-to-End

For Breton, there is no (good) MT system

For Breton, there is no (good) MT system

For Breton, there is no (good) MT system

For Breton, there is no (good) MT system

X Full-fine tuning (BLEU: 0.10)

✓ Parameter Efficient Fine Tuning (PEFT)

For Breton, there is no (good) MT system

Full-fine tuning (BLEU: 0.10)

- ✓ Parameter Efficient Fine Tuning (PEFT)
 - Soft-Prompt (Prefix Tuning)
 - Structured to capture language relatedness and various tasks

Prefix Tuning

- All parameters of the pre-trained model are frozen
- Only learn the prefix (soft-prompt) parameters

Phylogenetic Tree

Soft Prompt

The soft-prompt is decomposed into Family, Genus, and Language subprompts.

Phylogenetic Tree

Soft Prompt

The soft-prompt is decomposed into Family, Genus, and Language subprompts.

Allows LR languages to benefit from the training data of their related languages (E.g., The sub-prompt for Goidelic is updated each time an Irish or Gaelic training instance is processed) - Facilitate Transfer

Prevents the mixture of training data to introduce too much noise to the model. - Reduce Noise

Training and Testing

Step 1: Self-supervised Training (Language Models) *Trains the Soft Prompt on unsupervised, monolingual tasks*

	Task	Source			Target			Original Input Sequences					
		Family	Genus	Lang.	Family	Genus	Lang.						
	Masked LM	Germanic	West Germanic	RDF	Germanic	West Germanic	RDF	<s></s>	Einstein	< P >	<mask></mask>	< P >	Poland
ch	Prefix LM	Germanic	West Germanic	English	Germanic	West Germanic	English	Thank	you	for	<mask></mask>	<pad></pad>	<pad></pad>
Input Batch	Suffix LM	Celtic	Britonic	Welsh	Celtic	Britonic	Welsh	<mask></mask>	honno	?	<pad></pad>	<pad></pad>	<pad></pad>
fuI	Deshuffling	Celtc	Britonic	Breton	Celtic	Britonic	Breton	skuizh	?	out	На	<pad></pad>	<pad></pad>
	Generate	Celtc	Goidelic	Irish	Celtic	Goidelic	Irish	Seo	<mask></mask>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>

Training and Testing

Step 1: Self-supervised Training (Language Models) *Trains the Soft Prompt on unsupervised, monolingual tasks*

	Task	Source			Target			Original Input Sequences					
		Family	Genus	Lang.	Family	Genus	Lang.						
	Masked LM	Germanic	West Germanic	RDF	Germanic	West Germanic	RDF	<s></s>	Einstein	< P >	<mask></mask>	< P >	Poland
ich:	Prefix LM	Germanic	West Germanic	English	Germanic	West Germanic	English	Thank	you	for	<mask></mask>	<pad></pad>	<pad></pad>
Input Batch	Suffix LM	Celtic	Britonic	Welsh	Celtic	Britonic	Welsh	<mask></mask>	honno	?	<pad></pad>	<pad></pad>	<pad></pad>
lu]	Deshuffling	Celtc	Britonic	Breton	Celtic	Britonic	Breton	skuizh	?	out	На	<pad></pad>	<pad></pad>
	Generate	Celtc	Goidelic	Irish	Celtic	Goidelic	Irish	Seo	<mask></mask>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>

Step 2: Fine-Tuning on Dev RDF-to-Text data (RDF-to-Text Models) *Trains the RDF-to-Text Task sub-prompt for each target language*

Training and Testing

Step 1: Self-supervised Training (Language Models) *Trains the Soft Prompt on unsupervised, monolingual tasks*

	Task Source			Target			Original Input Sequences						
		Family	Genus	Lang.	Family	Genus	Lang.						
	Masked LM	Germanic	West Germanic	RDF	Germanic	West Germanic	RDF	<s></s>	Einstein	< P >	<mask></mask>	< P >	Poland
īc h	Prefix LM	Germanic	West Germanic	English	Germanic	West Germanic	English	Thank	you	for	<mask></mask>	<pad></pad>	<pad></pad>
Input Batch	Suffix LM	Celtic	Britonic	Welsh	Celtic	Britonic	Welsh	<mask></mask>	honno	?	<pad></pad>	<pad></pad>	<pad></pad>
luI	Deshuffling	Celtc	Britonic	Breton	Celtic	Britonic	Breton	skuizh	?	out	На	<pad></pad>	<pad></pad>
	Generate	Celtc	Goidelic	Irish	Celtic	Goidelic	Irish	Seo	<mask></mask>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>

Step 2: Fine-Tuning on Dev RDF-to-Text data (RDF-to-Text Models) *Trains the RDF-to-Text Task sub-prompt for each target language*

Inference

The Language sub-prompt is set to the target language.

Results

Results

Phylogenetic prefix-tuning outperforms full fine-tuning and a SoTA approach for KG-to-Text generation

• Pretraining (2017 vs 2020) improves performance

- Pretraining (2017 vs 2020) improves performance
- Performance degrades on out of domain data (unseen)

- Pretraining (2017 vs 2020) improves performance
- Performance degrades on out of domain data (unseen)
- Performance is very poor for Low Resource Languages (2023)

- Pretraining (2017 vs 2020) improves performance
- Performance degrades on out of domain data (unseen)
- Performance is very poor for Low Resource Languages (2023)
- PEFT techniques help improve performance for these languages

BLEU for Breton: 10 (NLG+MT) → 18.15 (PEFT E2E Model)

AMR Graph --> High- and Low-Resource Languages

Soto-Martinez et al. 2024, In Submission

Hierarchical Fine-Tuning

Hierarchical Fine-Tuning

• Iterative fine-tuning of a multilingual model (12 languages) into 12 monolingual models

Phylogenetic Knowledge

 At each iteration, the training languages are chosen using phylogenetic knowledge

LoRA (Low Rank Matrices) Adaptation

A new model is created. No overhead during inference

HQL outperforms or is on par with multi- and monolingual approaches.

HQL outperforms the Gen&Trans approach for LR Languages

Figure 4: Average BLEU score of all languages against total number of seen training instances. HQL models include results on the intermediary levels of the hierarchy.

Figure 4: Average BLEU score of all languages against total number of seen training instances. HQL models include results on the intermediary levels of the hierarchy.

HQL optimises faster than the 3 baselines.

Figure 4: Average BLEU score of all languages against total number of seen training instances. HQL models include results on the intermediary levels of the hierarchy.

On average, HQL outperforms all 3 baselines.

Comparison with Previous Work

Model	DEU	ENG	SPA	ITA
F&G	15.3	24.9	21.7	19.8
Ribeiro	20.6	_	30.7	26.4
Xu	25.7	_	31.4	28.4
Martinez	23.2	44.8	34.6	29.0
MonoQL	18.2	49.2	38.6	22.7
MultiQL	19.8	42.9	34.1	27.2
Gen&Trans*	28.0	49.2	39.6	33.8
DLHQL	21.2	44.2	37.4	29.2
PTHQL	22.8	43.4	37.2	29.7

Table 4: BLEU score on AMR3.0 test data. English Gen&Trans is simply the result of MonoQL.

HQL performs on par with previous work on HRL while using fewer data.

Cross-Modal, Multilingual Graph/Text similarity metrics are needed to

Cross-Modal, Multilingual Graph/Text similarity metrics are needed to

• filter noisy training data

Cross-Modal, Multilingual Graph/Text similarity metrics are needed to

- filter noisy training data
- guide generation

Cross-Modal, Multilingual Graph/Text similarity metrics are needed to

- filter noisy training data
- guide generation
- generalise Graph-to-Text Models to other languages and other domains

Questions?