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What is Generative AI ?
A branch of AI which generate new content using Machine Learning
techniques:

Supervised Learning: Requires training data (Input/Output Examples)

Deep Learning: Uses Neural Networks
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What's a Neural Network ?
Neural Network, Deep Learning

Neurons are connected to one another in enormous networks

Each neuron does a simple pattern recognition tasks

When triggered, the neuron sends a signal to its connections

The output is determined by which neurons was triggered
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What's a Neural Network ?

Source: Deng et al. 2022

A neural network has several layers

A input layer which models the entry. E.g., for an image classifier, the
image pixels
An output layer which models the model prediction
The output layer is often a probability distribution. E.g., the three output
neurones indicates the probability of each target class (Bird, Cat or Dog)
One or more intermediate layer(s) which models the relation between
input and output
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How do Neurons compute values ?

Each neuron applies an activation function to the weighted sum of its
inputs to return an activation value .
This activation value is passed on as input (signal) to the next layer
The weights are learned during training

Fiddle Course on Deep Learning
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Training - The Back-Propagation Algorithm

Src: Fiddle Course on Deep Learning
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Stochastic Gradient Descent (SGD)

updates the weights according
to following rule (  = learning
rate hyperparameter):

moves each weight in the
direction of the derivative
(gradient )

E.g., on the picture  is
positive, hence the update rule
decreases the value of  and

 decreases.

SGD

η

w ← w − η ​

dw

dJ(w)

dJ(w)

w

J(w)

Rumelhart et al. 1986
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Generative AI and Natural Language ProcessingGenerative AI and Natural Language Processing
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What is NLP ?
Natural Language Processing (NLP) is a field of artificial intelligence (AI) that
focuses on enabling computers to understand and generate human
language. It can also be used to study natural language i.e., to analyze and
understand natural language structure and use.
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NLU (Understanding)

Spam Detection (Email filtering)
Sentiment Analysis (Social
media monitoring)
Texte Classification
Author Attribution
Information Extraction
Search Engines (Google, Bing)

The input is text

NLG (Generation)

Human-Machine Dialog
(Automated Customer Support,
Chatbots)
Translation (DeepL, Google
Translate)
Text Simplification (for non
expert, non native speaker,
people with reading disability)
Summarisation
Image captioning
Video subtitles
Creative writing (poems, novels,
essays)

The input is varied: text,
data, numerical data,
images, video, a story
title, etc.

Example NLP Tasks and Applications
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Neural NLP Key Milestones

2014 - Encoder-Decoder for Machine Translation

2015 - Cross-Attention

2017 - Transformer

Pre-training and Fine-Tuning
Parallelism allows scaling to large models and bigger training sets

2023 - LLMs (ChatGPT, BLOOM, Llama, LeChat, ....)
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2014 - The Encoder-Decoder Architecture
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Decoder
= Language Model
Generates text one word at a
time
Conditioned on input
Commonly used encoders:

Recurrent: RNN, LSTM, GRU
Transformer

Encoder
Builds a continuous
representation of the input, a
real valued vector
Commonly used decoders:

Recurrent: RNN, LSTM, GRU
Convolutional
Graph
Transformer

The Encoder-Decoder Architecture
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The Encoder-Decoder Architecture
A unifying framework for all text production tasks

End to end : Direct input-output mapping

Unifying Framework for Text Generation : All types of input (data, text,
meaning representation) are encoded into a numerical representation
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Recurrent Encoder
The input to NLG (text but also data and MRs) is a sequence of tokens
Data or meaning representations need to be linearised first
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Encoding the Input using an RNN

 are vectors representing the input tokens (words, data or MR tokens)
At each step, the encoder produces a new vector  (state) which
represents the content of the preceding string of tokens
The last state represents the meaning of the whole input

 and  are the parameters learned during training
tanh is a non linear function

x ​i

st

U V
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Decoding Words using an RNN

 is the word predicted at time 
 is the network state at time 

Each new state is computed taking into account the previous state 
and the last predicted word .
The softmax function turns a vector of scores into a probability
distribution
At each time step , the output/predicted token  is sampled from this
probability distribution

y ​t t

s ​t t

s ​t−1

y ​t−1

t y ​t
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Generating Text using an RNN
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Generating Text using an RNN
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Generating Text using an RNN
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Generating Text using an RNN
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Generating Text using an RNN
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Generating Text using an RNN

24 / 58



2015 - Decoding with Attention
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Standard RNN Decoding

The input is compressed into a fixed-length vector

Performance decreases with the length of the input

Bahdanau et al. 2015

26 / 58



Decoding with Attention

A context vector  is added which

depends on the previous encoder states and therefore changes at each
step

indicates which part of the input is most relevant to the decoding step

s ​ =t f(s ​, y ​, c ​)t−1 t−1 t

c ​t

27 / 58



A score  is computed
between each input token
encoder state  and the
previous state 

The context vector is the
weighted sum of the encoder
states passed thru a softmax
layer

RNN Cross-Attention
a ​t,j

h ​j

s ​t−1

c ​ =t softmax(
​ α ​

.h ​
)

j

∑ t,j j
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Attention
Attention is a way to obtain a fixed-size representation

of an arbitrary set of representations (the values),
dependent on some other representation (the query)

Encoder-Decoder

Query = current decoder state
Values = encoder hidden states

Transformer

Query = token embedding
Values = surrounding tokens embeddings
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The Encoder-Decoder Model

Encoder: vectorises the input

Decoder: autoregressively generates from this input

Attention: helps the decoder focus on the relevant part of the input
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2017 - Transformer Network
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Deep and structured model
Stack of Encoder Blocks

No sequential dependencies
(different from RNN)

Self-attention -- better word
representations

Parallel processing -- Scaling,
Pre-training and fine-tuning

The Transformer Encoder

Vaswani et al. NIPS 2017
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https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Computes a context dependent
representation of each word in the
input sequence

Score the encoding of each input
word against the encoding of
each other input words

The output representation of
each word is the weighted sum
of the representations of its
surrounding words

Capture lexical ambiguity :
the same word will have
different representations
depending on its context

Jean lit un livre

Jean livre un colis

Ce colis pèse une livre

La livre sterling est la monnaie du
Royaume Uni

Self-Attention Layer
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No sequential dependencies.

Facilitates parallelism

Different processors can be used
to process input tokens in
parallel.

This enabled scaling, training on
larger amounts of data than was
possible before.

Scaling

Transformers lead to the introduction of the pre-training and fine-
tuning paradigm (BERT, T5, BART) and facilitated the creation of very
large models (e.g., ChatGPT).
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Pre-training and Fine Tuning
Pre-train once, fine-tune many times

How ?

Find a task (e.g., Language Modeling) for which it is easy to generate
labels and for which you can get large quantities of training data

Pre-training : train a model on this large data

Fine-tuning : adapt it to a task using labelled data
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Pre-training and Fine Tuning - Benefits
A pre-trained model encodes a lot of information about language

Data

Less labeled data required

Efficiency

Less time to fine-tune than to train from scratch

Generalisation

Achieves state of the art results for a wide variety of tasks:
classification, language inference, semantic similarity, question
answering, etc.
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2019 - BERT
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Pre-Training

Large Transformer Encoder - 340M
parameters, 24 layers

Pre-trained on a large quantity of
text - BooksCorpus (800M words)
and English Wikipedia (2,500M
words)

Masked Language Modeling
Objective - Predict missing word

Improved word
representations (Self
Attention)

A generic model that can
be fine-tuned for multiple
NLU tasks

Fine-Tuning

Adapts the model parameters to the
target task by further training on
labeled data from various target
tasks

BERT
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BERT Impact
Open sourced by Google in 2018

Achieved state-of-the-art results in 11 natural language
understanding (NLU) tasks, including sentiment analysis, semantic role
labeling, text classification and the disambiguation of words with multiple
meanings.

In contrast to previous models, such as word2vec and GloVe, BERT
effectively addresses ambiguity, a key challenge to NLU.

Estimated to enhance Google's understanding of approximately 10%
of U.S.-based English language Google search queries .
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2018 - GPT
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Pre-Training

Large Transformer decoder - 117M
parameters, 12 layers

Pre-trained on a large corpus of text
using Language Modeling
objective - BookCorpus 7K books

Fine-Tuning

GPT can be fine-tuned on NLU tasks
such as classification, entailment,
sentence similarity, question answer
task

Input sequences are processed by
the pre-trained model.

During fine-tuning, the model has
two heads:

the standard LM head for
predicting the next word as an
auxiliary head
a task specific head e.g., a
classification head (an
additional linear+softmax layer)
as main head

GPT - Generative Pre-Trained Transformer

Radford et al. 2018
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GPT Fine-tuning
Significantly improves upon the SOTA in 9 out of 12 NLU tasks

Results for NLI
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Improved Text Generation
GPT-2, a larger version (1.5B) of GPT trained on more data was shown to
produce convincing text e.g.,

Story Generation
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2020 - GPT3
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Large Language Model (LLM)

Transformer Decoder
175B parameters
Trained on 500B words

Prompting suffices, no Fine-
Tuning

2020 - GPT3

The biggest lesson that can be read from 70 years of AI research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin.

Rich Sutton. "The bitter Lesson", March 2019
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https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf


2020 - GPT3

Emergent Properties - An ability is emergent if it is not present in smaller
models but is present in larger models

Wei et al., TMLR 2022
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ChatGPT

A variant of GPT-3 optimised for
conversation

Fine tuned on conversational
data

Better suited for chatbots and
conversational interaction

InstructGPT

Initialised with GPT-3

Fine-tuned on Human
instructions

Supervised fine-tuning on
tasks specific data
Alignement with human
preferences using
Reinforcement Learning
with Human Feedback
(RLHF)

2023 - ChatGPT and InstructGPT
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Instruction Tuning
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SuperNatural Instruction Dataset
The SuperNatural Instruction Dataset contains over 1.6K tasks, 3M examples

Wang et al. 2022
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https://arxiv.org/pdf/2204.07705.pdf


Yang et al. 2023, "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond". arXiv 2304.13712
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LLMs get things wrong! They
have no notion of truth.

Bias and toxicity

Copyright and Intellectual
Property

GDPR/Personal Data

Generalisation to out of domain
data
Tesla Example

Environmental Cost

Issues with the technology
wbr>
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https://www.reddit.com/r/gifs/comments/yunals/how_a_tesla_sees_a_moving_traffic_light/


NLP Challenges
Improving factuality, consistency

From generic to specific

Adapting LLMs to a new domain, task, language

Evaluation

NLU is easy (accuracy, F1, etc.)
NLG (LLM output) is hard because language has high paraphrastic power

Generation from data

Verbalisation of knowledge graphs, numerical, tabular data etc.

Multilinguality

Not all languages are handled equal by LLMs
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Trends
Retrieval Augmented Generation (RAG)

Augment LLMs with knowledge from external sources
Helps with: Hallucination, Lack of attribution, Data Privacy, Limited
context

Fine-Tuning

Parameter efficient fine tuning (LoRA, Adapters, etc.); Helps with
domain/language/task adaptation
Preference learning (DPO); Helps with OOD generalisation, alignemnt
with human preferences

Agentic AI

Using multiple LLMs together: Helps with Data Creation, Evaluation
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Questions ?Questions ?
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