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Generative Al



What is Generative Al ?

A branch of Al which generate new content using Machine Learning
techniques:

e Supervised Learning: Requires training data (Input/Output Examples)

e Deep Learning: Uses Neural Networks

TEXT
VIDEO
— IMAGE

SOUND

CODE

MUSIC
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What's a Neural Network ?

Neural Network, Deep Learning
e Neurons are connected to one another in enormous networks
e Each neuron does a simple pattern recognition tasks
e When triggered, the neuron sends a signal to its connections

e The output is determined by which neurons was triggered
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What's a Neural Network ?

Input layer

Hidden layer

Input image

.\Oulput layer

Source: Deng et al. 2022

A neural network has several layers

e A input layer which models the entry. E.g., for an image classifier, the
image pixels

e An output layer which models the model prediction

e The output layer is often a probability distribution. E.g., the three output
neurones indicates the probability of each target class (Bird, Cat or Dog)

* One or more intermediate layer(s) which models the relation between
input and output

5/58



How do Neurons compute values ?

y=0(07-X+b)

X, ﬂ; b\
x . bias .
X, : : ; e y
%
y=o(t)
Xm i’:ix;-w;+b O’(f)
1

Input Bias / Weight Activation function Output
X e,b o(t) y

e Each neuron applies an activation function to the weighted sum of its
inputs to return an activation value .
e This activation value is passed on as input (signal) to the next layer

e The weights are learned during training

Fiddle Course on Deep Learning
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https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6?path=%2FSaison%202022-2023

Training - The Back-Propagation Algorithm
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Back-propagation

Src: Fiddle Course on Deep Learning

Predicted
output

Expected
output

-

Ea(y.9) = 5

Eo(y.9) = ZZy} 7 log(p™)

i=1 j=1

To define:
n : Learning rate Optimization
B:Momentum Activation
Loss
Metrics
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https://cloud.univ-grenoble-alpes.fr/index.php/s/wxCztjYBbQ6zwd6?dir=undefined&path=%2FSaison%202022-2023&openfile=578602063

5GD

Stochastic Gradient Descent (SGD)

e updates the weights according " weight N\ e
to following rule (1 = learning ”
rate hyperparameter): S
‘-"{ ! B '.:.Ir.-l!':-:!lrm.r iR M
- dJ(w) =
W 4— W — .
n dw "

* moves each weight in the
direction of the derivative
(gradient)

e E.g, on the picture dJ(w) is
positive, hence the update rule
decreases the value of w and

J(w) decreases.

Rumelhart et al. 1986
8 /58


https://www.cs.toronto.edu/~hinton/backprop.html

Generative Al and Natural Language Processing



What is NLP ?

Natural Language Processing (NLP) is a field of artificial intelligence (AI) that
focuses on enabling computers to understand and generate human
language. It can also be used to study natural language i.e., to analyze and
understand natural language structure and use.

NL Understanding

—
_

c—
=
=

NL Generation
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Example NLP Tasks and Applications

NLU (Understanding)

Spam Detection (Email filtering)
Sentiment Analysis (Social
media monitoring)

Texte Classification

Author Attribution

Information Extraction

Search Engines (Google, Bing)

The input is text

NLG (Generation)

Human-Machine Dialog
(Automated Customer Support,
Chatbots)

Translation (DeepL, Google
Translate)

Text Simplification (for non
expert, non native speaker,
people with reading disability)
Summarisation

Image captioning

Video subtitles

Creative writing (poems, novels,
essays)

The input is varied: text,
data, numerical data,
images, video, a story
title, etc.
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Neural NLP Key Milestones

2014 - Encoder-Decoder for Machine Translation
2015 - Cross-Attention
2017 - Transformer

* Pre-training and Fine-Tuning
e Parallelism allows scaling to large models and bigger training sets

2023 - LLMs (ChatGPT, BLOOM, Llama, LeChat, ....)
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2014 - The Encoder-Decoder Architecture

Sequence to Sequence Learning
with Neural Networks

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasu@google.com vinyals@google.com qvl@google.com
Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence
learning that makes minimal assumptions on the sequence structure. Our method
uses a multilayered Long Short-Term Memory (L.STM) to map the input sequence
to a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French
translation task from the WMT’ 14 dataset, the translations produced by the LSTM
achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU
score was penalized on out-of-vocabulary words. Additionally, the LSTM did not
have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM

toy reranls tha 10NN hyrmnthecae nradnrad by the afaremaentinnad SMT cwvctam ite
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The Encoder-Decoder Architecture

Encoder

* Builds a continuous
representation of the input, a
real valued vector

e Commonly used decoders:

@)
O
®)
o

Recurrent: RNN, LSTM, GRU
Convolutional

Graph

Transformer

R T
INPUT B { ENCODER W» I ® | DecobeR (WP TEXT

VECTOR

Decoder

e = Language Model
* Generates text one word at a
time
e Conditioned on input
* Commonly used encoders:
o Recurrent: RNN, LSTM, GRU
o Transformer
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The Encoder-Decoder Architecture

A unifying framework for all text production tasks

p

p
L ENCODER J—b VECTOR -  DECODER
REPRESENTATION L
INPUT TEXT

(Data, Text,
Image, etc.)

e End to end : Direct input-output mapping

e Unifying Framework for Text Generation : All types of input (data, text,
meaning representation) are encoded into a numerical representation
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Recurrent Encoder

e The input to NLG (text but also data and MRs) is a sequence of tokens
e Data or meaning representations need to be linearised first

boy wanits 1o

yrn — HLr

<START> A boy  wants

AMRs
KBs boy arg0-want arg0-visit argl-NY

Datahases
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Encoding the Input using an RNN

s = tanh(U x s;_1 + V * x;)

e x; are vectors representing the input tokens (words, data or MR tokens)
e At each step, the encoder produces a new vector s; (state) which

represents the content of the preceding string of tokens
e The last state represents the meaning of the whole input
e U and V are the parameters learned during training

e tanh is a non linear function
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Decoding Words using an RNN

Y., y,
t } 8 = tanh(Ux*s 1+ V*y 1)
|

i : _:‘ X yy = softmax(W *s;_1)
| |

yf-l

* 9, is the word predicted at time ¢

e s, isthe network state at time ¢

e Each new state is computed taking into account the previous state s;_
and the last predicted word y;_1.

e The softmax function turns a vector of scores into a probability
distribution
o At each time step ¢, the output/predicted token y; is sampled from this

probability distribution
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Generating Text using an RNN

Fine

vocabulary
softmax
{ Encoder J—’@ p(Fine|<s>, How are you doing?)
T <s>

Conditional Generation

Input
How are you doing?
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Generating Text using an RNN
;
F%:e I:.jT“-:|1 vocabulary
Encoder =(§W > E

T p(,|<s> Fine, How are you doing?)

Input <s> Fine

How are you doing?
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Generating Text using an RNN

and

{

I
5
D

vocabulary

S
.

s
.

softmax softmax

Encoder

Input
How are you doing?

<s> Fine

p(and|<s> Fine,; How are you doing?)
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Generating Text using an RNN

. $
Fine ’ and [. . vocabulary

soﬁ}nax soﬁ}nax soﬁ}nax soﬁ}nax

P

<s> Fine , and

Input
How are you doing?
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Generating Text using an RNN

Fine

soft}wax

soﬂTﬂax

you

soﬂTnax

soft}nax

!

Fine

Input
How are you doing?

and

‘.

you
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Generating Text using an RNN

Input
How are you doing?
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2015 - Decoding with Attention

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of encoder—decoders and encode
a source sentence into a fixed-length vector from which a decoder generates a
translation. In this paper, we conjecture that the use of a fixed-length vector is a
bottleneck in improving the performance of this basic encoder—decoder architec-
ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.
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Standard RNN Decoding

A boy wam
. i L] ]
- - - - - - - -
- - . - - - - -
- - L - - - L L
. . 4
<START> A boy wants

boy argd.want argo-wse angl-NY

e The input is compressed into a fixed-length vector

e Performance decreases with the length of the input

Bahdanau et al. 2015
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Decoding with Attention

St =— f(st—la Yt—1, Ct)

A context vector c; is added which

e depends on the previous encoder states and therefore changes at each
step

e indicates which part of the input is most relevant to the decoding step
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RNN Cross-Attention

* Ascore a; ; is computed Vi Vi
between each input token
encoder state h; and the

previous state s;_1

e The context vector is the

weighted sum of the encoder Ge.1 Gy 7
states passed thru a softmax Oy 2 ay 3
layer :

ct = softmaw(z ay j.h;j)
J

28 /58



Attention

e Attention is a way to obtain a fixed-size representation
o of an arbitrary set of representations (the values),
o dependent on some other representation (the query)

e Encoder-Decoder

o Query = current decoder state
o Values = encoder hidden states

e Transformer

o Query = token embedding
o Values = surrounding tokens embeddings
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The Encoder-Decoder Model

-

INPUT ) { ENCODER W» B)  DECODER }* TEXT

> <

VECTOR

e Encoder: vectorises the input
e Decoder: autoregressively generates from this input

e Attention: helps the decoder focus on the relevant part of the input
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2017 - Transformer Network

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
1lion@google.com

Noam Shazeer™ Niki Parmar” Jakob Uszkoreit”
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez* 1 Lukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Tllia Polosukhin® ¥
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
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The Transformer Encoder

Encoder block ]

r 1t 1t T [ 1

Encoder block J

Add & Norm

Multi-Head

Encoder block
Attention

1 1 I I

—
\ e . ! | Encoder block
I 1 1 I 1 1 i I
e “”\; s I T U 1 »

e Deep and structured model o Self-attention -- better word
Stack of Encoder Blocks representations

* No sequential dependencies e Parallel processing -- Scaling,
(different from RNN) Pre-training and fine-tuning

Vaswani et al. NIPS 2017
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https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Self-Attention Layer

Computes a context dependent
representation of each word in the
input sequence

e Score the encoding of each input
word against the encoding of
each other input words

e The output representation of
each word is the weighted sum
of the representations of its
surrounding words

Capture lexical ambiguity :
the same word will have
different representations
depending on its context

Self-attention

o161

Jean lit un livre
Jean livre un colis
Ce colis pése une livre

La livre sterling est la monnaie du
Royaume Uni
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Scaling

No sequential dependencies. 4 4 N
Facilitates parallelism [ j
f f f
. LT [T11] [ 111
e Different processors can be used t t t
to process input tokens in [ — ]
parallel.

t t t

This enabled scaling, training on o .

larger amounts of data than was
possible before.

Transformers lead to the introduction of the pre-training and fine-
tuning paradigm (BERT, T5, BART) and facilitated the creation of very
large models (e.g., ChatGPT).
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Pre-training and Fine Tuning

Pre-train once, fine-tune many times
How ?

e Find a task (e.g., Language Modeling) for which it is easy to generate
labels and for which you can get large quantities of training data

* Pre-training : train a model on this large data

e Fine-tuning : adapt it to a task using labelled data
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Pre-training and Fine Tuning - Benefits

A pre-trained model encodes a lot of information about language
Data

Less labeled data required
Efficiency

Less time to fine-tune than to train from scratch
Generalisation

Achieves state of the art results for a wide variety of tasks:
classification, language inference, semantic similarity, question
answering, etc.
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2019 - BERT

cs.CL] 24 May 2019

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.
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BERT

Pre-Training

Large Transformer Encoder - 340M
parameters, 24 layers

Pre-trained on a large quantity of
text - BooksCorpus (800M words)
and English Wikipedia (2,500M
words)

Masked Language Modeling
Objective - Predict missing word

Improved word
representations (Self
Attention)

A generic model that can
be fine-tuned for multiple
NLU tasks

Fine-Tuning

Adapts the model parameters to the
target task by further training on
labeled data from various target
tasks

Class
Label

o D) @
BERT

Ele] EEE- &

Single Sertence

{a) Sentence Pair Classification Tasks:
MMLI, QQP, QMLI, STS-B, MRPC,
RTE, SWAG

{b) Single Sentence Classification Tasks:
SET-2, ColA

StarVEnd Span o0 BPER o
BERT

- M-

[c) Question Answering Tasks
SQuAD v1.1

[d) Single Sentence Tagging Tasks
CoMLL-2003 NER
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BERT Impact

Open sourced by Google in 2018

Achieved state-of-the-art results in 11 natural language
understanding (NLU) tasks, including sentiment analysis, semantic role
labeling, text classification and the disambiguation of words with multiple
meanings.

In contrast to previous models, such as word2vec and GloVe, BERT
effectively addresses ambiguity, a key challenge to NLU.

Estimated to enhance Google's understanding of approximately 10%
of U.S.-based English language Google search queries .
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2018 - GPT

Improving Language Understanding
by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever

OpenAl OpenAl OpenAl OpenAl

alec@openai.com karthikn@openai.com tim@openai.com ilyasu@openai.com

Abstract

Natural language understanding comprises a wide range of diverse tasks such
as textual entailment, question answering, semantic similarity assessment, and
document classification. Although large unlabeled text corpora are abundant,
labeled data for learning these specific tasks is scarce, making it challenging for
discriminatively trained models to perform adequately. We demonstrate that large
gains on these tasks can be realized by generative pre-training of a language model
on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each
specific task. In contrast to previous approaches, we make use of task-aware input
transformations during fine-tuning to achieve effective transfer while requiring
minimal changes to the model architecture. We demonstrate the effectiveness of

our approach on a wide range of benchmarks for natural language understanding.

Our general task-agnostic model outperforms discriminatively trained models that
use architectures specifically crafted for each task, significantly improving upon the
state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute

imrmearramaants AF @ (WL Anm aammmmancaneas saacanine (Ctamian Mlasa Tacth & TOL Ae.
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GPT - Generative Pre-Trained Transformer

Pre-Training

Large Transformer decoder - 117M
parameters, 12 layers

Pre-trained on a large corpus of text
using Language Modeling
objective - BookCorpus 7K books

cf sant | Text | Bwant ‘J { +{ wLinear |
Entail art ‘ Premi ‘ Delim ‘ Hypothesis ‘ EEEEEEE H—-| Transformer |——| Linear
san | Tet | own | Tenz | Ewea || Tarsiomer {1
Similarity (+)+ Linear
Start [ Text2 ‘ Delim [ Text 1 ‘Ex\vadw—l l_]
san | Context | Deim | Answerl | Exract H-| Transformer |+ Linear |
Multiple Choice | sart | Context | Deim | Answer2 | Exvact H——| { Linear | :-a_il
san | Context | owim | Answer N | Bxvact \].| }

Radford et al. 2018

Fine-Tuning

GPT can be fine-tuned on NLU tasks
such as classification, entailment,
sentence similarity, question answer
task

Input sequences are processed by
the pre-trained model.

During fine-tuning, the model has
two heads:

e the standard LM head for
predicting the next word as an
auxiliary head

e a task specific head e.g., a
classification head (an
additional linear+softmax layer)
as main head
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https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

GPT Fine-tuning

Significantly improves upon the SOTA in 9 out of 12 NLU tasks

Results for NLI

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 833

GenSen [64] 714 71.3 - - 823 592
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 617
Finetuned Transformer LM (ours) 82.1 81.4 89.9 88.3 88.1 56.0
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Improved Text Generation

GPT-2, a larger version (1.5B) of GPT trained on more data was shown to
produce convincing text e.g.,

Story Generation

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now. after almost two centuries. the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.
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2020 - GPT3

Language Models are Few-Shot Learners

Tom B. Brown™ Benjamin Mann* Nick Ryder” Melanie Subbiah®
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Tlya Sutskever Dario Amodei
OpenAl
Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. Bv contrast. humans can generallv perform a new language task from onlv
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2020 - GPT3

Large Language Model (LLM) Prompting suffices, no Fine-
Tuning
e Transformer Decoder
e 175B parameters

e Trained on 500B words Input

' !

Rewview: This mowvie sucks. f ) Dutput
Sentiment: negative. Lan [ 7
. 1 guage 1 positie.
Review: | love this movie. model |
Sentiment:

M, -

\
e

The biggest lesson that can be read from 70 years of Al research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin.

Rich Sutton. "The bitter Lesson", March 2019
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https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

2020 - GPT3

Published in Transactions on Machine Learning Research (08/2022)

—o— LaMDA —s— GPT-3 —#— Gopher —#&— Chinchilla —g@—PaLM

=== Random

(A) Mod. arithmetic (B) IPA transliterate (C) Word unscramble (D) Persian QA

50 50 50
— 40 10 = = 40
= = = =
o 30 = 30 < < 30
7 £ £
1 2 ] 2 5 -
£ 20 = 20 R = 20
E =) = =
3 [ 2 2
< 10 10 B g 10

m <]
0 C - 0 - Sy

10" 102 10%% 10** 10'% 10° 1072 10%*

: 0
10'% 107 107 10%*

10'% 10%° 10%2 10%*

(E) TruthfulQA

-1
=]

(F) Grounded mappings (G) Multi-task NLU (H) Word in context
70

70 70
60 60 60 60
= 50 = 50 = 50
= 40 ) = 40 = 40
2 g 2 2
£ 30 5 £ 30 £ 30
| 3 El - |
20" Teela—wT g g 20 g 20
< < < <
10 10 10
0 . . of, 0
100 102 10* 1020 102 10** 1020 10?2 10%

1020 1022 102t

Model scale (training FLOPs)

Emergent Properties - An ability is emergent if it is not present in smaller
models but is present in larger models

Wei et al.,, TMLR 2022
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2023 - ChatGPT and InstructGPT

ChatGPT InstructGPT
e Avariant of GPT-3 optimised for e Initialised with GPT-3
conversation
e Fine-tuned on Human
e Fine tuned on conversational instructions
data
o Supervised fine-tuning on
* Better suited for chatbots and tasks specific data
conversational interaction o Alignement with human

preferences using
Reinforcement Learning
with Human Feedback
(RLHF)
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Instruction Tuning

Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?
L

Chain-of-thought finetuning

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they
used 20 for lunch and bought & more,
how many apples do they have?

Language
model

Inference: generalization to unseen tasks

Q: Can Geoffrey Hinton have a
conversation with George Washington? /

Give the rationale before answering.

-320.4F

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
S apples, so theyhave 3 + 6= 9.

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.
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SuperNatural Instruction Dataset

The SuperNatural Instruction Dataset contains over 1.6K tasks, 3M examples

(2) SUP-NATINST (this work) (d) FLAN (e) INSTRUCTGPT

Wang et al. 2022
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https://arxiv.org/pdf/2204.07705.pdf

LLaMA-2-Chat 53

FT-4&
LLaMA £V

OPT-IMIL TN

(hatGPT) @ sLooMze] W Galactica 2]
Bs

uL2 j€]

Ge30% NOOBRKE

Yang et al. 2023, "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond". arXiv 2304.13712
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Issues with the technology

wbr>
e LLMs get things wrong! They
have no notion of truth.
e Bias and toxicity

e Copyright and Intellectual
Property

e GDPR/Personal Data

e Generalisation to out of domain
data
Tesla Example

e Environmental Cost
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https://www.reddit.com/r/gifs/comments/yunals/how_a_tesla_sees_a_moving_traffic_light/

NLP Challenges

Improving factuality, consistency
From generic to specific

e Adapting LLMs to a new domain, task, language
Evaluation

e NLU is easy (accuracy, F1, etc.)
e NLG (LLM output) is hard because language has high paraphrastic power

Generation from data
e Verbalisation of knowledge graphs, numerical, tabular data etc.
Multilinguality

* Not all languages are handled equal by LLMs
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Trends

Retrieval Augmented Generation (RAG)

e Augment LLMs with knowledge from external sources
e Helps with: Hallucination, Lack of attribution, Data Privacy, Limited
context

Fine-Tuning

e Parameter efficient fine tuning (LoRA, Adapters, etc.); Helps with
domain/language/task adaptation

e Preference learning (DPO); Helps with OOD generalisation, alignemnt
with human preferences

Agentic Al

e Using multiple LLMs together: Helps with Data Creation, Evaluation
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