Structure-Driven Lexicalist Generation

Shashi Narayan1 and Claire Gardent1

(1) Université de Lorraine/LORIA, Nancy (2) CNRS/LORIA, Nancy

December 14, 2012
COLING 2012
Mumbai, India
This talk is about ...

Optimising Surface Realisation

using a Grammar-Based Surface Realiser

and evaluating it on a large benchmark derived from the PennTreebank and recently made available by the Generation Challenge Surface Realisation (SR) Task
What is Surface Realisation?

SR maps INPUT DATA to SENTENCES

The input data can be more syntactic or more semantic; a tree or a graph:

- Dependency trees (SR Task)
- OWL triples
- First Order Logic (FOL) Formulae
- Flat semantics (MRSs)
- ...

\[\exists x. (\text{Man}(x) \land \exists y. (\text{Apple}(y) \land \text{eat}(e, x, y) \land \text{now}(e))) \]
\[\Rightarrow A \text{ man eats an apple} \]
Grammar-Based Surface Realisation Algorithms

Two main approaches

<table>
<thead>
<tr>
<th>Head-Driven algorithm (Shieber et al. 1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for recursively structured input data e.g., logical formulae</td>
</tr>
<tr>
<td>Use this structure to guide the search</td>
</tr>
<tr>
<td>Hybrid Top-Down and Bottom-Up search</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lexicalist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for unstructured (Flat) input data (MRS formula) e.g.,</td>
</tr>
<tr>
<td>Bottom-Up Search</td>
</tr>
</tbody>
</table>
Head-Driven Surface Realisation

Use semantic structure to identify the syntactic heads and generate using their top-down predictions

Top-Down guidance restrict the search space

Logical Form Equivalence (LFE) problem

The input structures must match the structures generated by the grammar

E.g., $\text{small}(x) \land \text{cat}(x) \neq \text{cat}(x) \land \text{small}(x)$
Lexicalist Approach

Selects lexical entries bottom-up from the input semantic literals

Eschews the Logical Form Equivalence problem (because no structure)

Computationally expensive

- Unordered input: 2^n possible combinations to explore assuming each literal selects exactly one lexical entry with n the number of literals in the input
- Lexical ambiguity: $\prod_{1<i\leq n} e_i$ with e_i the number of lexical entries selected by the i-th literal
- Intersective modifiers: 2^m possible combinations with m the number of modifiers modifying the same entity
Structure-Driven Lexicalist Surface Realisation

Combines techniques and ideas from the head-driven and the lexicalist approach.

<table>
<thead>
<tr>
<th>Lexicalist</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Select grammar rules bottom up for each input unit (i.e., lemma)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure Driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Uses the structure of the input to guide the search</td>
</tr>
</tbody>
</table>
Outline

Related work (Optimisation of Surface Realisation algorithms)

Structured Input from the Generation Challenge Surface Realisation Task

Tree Adjoining Grammar and Regular Tree Grammar

The Algorithm

Evaluation and Results
Surface Realisation Algorithms and Optimisations

- Grammar Based with Symbolic Optimisations (polarity filtering, building derivation rather than derived trees, tabular, modifiers last): (Gardent and Kow 2007; Koller and Striegnitz, 2002; Gardent and Perez-Beltrachini 2010; Carrol et al. 1999).

- Grammar Based with Statistical Optimisations (supertagging, language and tree models): HPSG (Carroll and Oepen 2005); TAG (Bangalore and Rambow 2000); CCG: (White 2004, Espinosa et al, 2008)

- Statistical realisers (Guo et al 2011, Bohnet et al 2011, Stent 2011): Cascaded classifiers and n-gram models to map input to sentences
Structure-Driven Lexicalist Generation

- FB-LTAG converted to FB-RTG (Koller and Striegnitz, 2002; Gardent and Perez-Beltrachini 2010)
- Parallelism used to explore the possible completions of the top-down predictions simultaneously rather than sequentially.
- Top-down filter using the structure of the input Head-Driven algorithm
- Bottom-up polarity filter on local input trees. (Bonfante 2004; Gardent and Kow 2007).
- Language model used to prune competing intermediate substructures (Bangalore and Rambow 2000; White 2004)
Input Representations

From the Generation Challenge Surface Realisation Task (Shallow Track)

Shallow dependency structures

- Unordered trees
- Edges are labelled with syntactic functions
- Nodes labelled with lemmas, part of speech tags and partial morphosyntactic information

All words of the original sentence are represented by a node in the tree
The most troublesome report may be the August merchandise trade deficit due out tomorrow.
Grammars

Feature-Based Lexicalised Tree Adjoining Grammar (FB-LTAG)

- A set of trees, lexicalised with one or more words and decorated with feature structures
- 2 combining operations: substitution and adjunction

Converted to a Feature-Based Regular Tree Grammar (FB-RTG)

- Generates derivation trees first
- More efficient: fewer nodes, optimised context free algorithms
 (Koller and Striegnitz, 2002; Gardent and Perez-Beltrachini 2010).
Example FB-LTAG

(a) Derived tree

(b) Derivation tree
Converting a TAG to an RTG

```
NP  \downarrow NP  \rightarrow john(NP_A)
 NP  \rightarrow runs(S_A NP_S VP_A VA)
 VP  \rightarrow often(VP_A)
 VP  \rightarrow \epsilon
 VP* \rightarrow \epsilon
```

```
NPS \rightarrow john(NPA)
 SS \rightarrow runs(S_A NPS VP_A VA)
 VA \rightarrow \epsilon
 VP_A \rightarrow \epsilon
 VP* \rightarrow \epsilon
```
A Slightly Bigger FB-LTAG
... and the corresponding FB-RTG

\[
\begin{align*}
NP_{A}^{t:T} & \rightarrow \text{which}(NP_{A}^{t:T,b:[wh:+]}) \\
NP_{A}^{t:T} & \rightarrow \text{the}(NP_{A}^{t:T,b:[wh:-]}) \\
NP_{S}^{t:T} & \rightarrow \text{fruit}(NP_{A}^{t:T}) \\
NP_{S}^{t:T} & \rightarrow \text{John}(NP_{A}^{t:T}) \\
S_{A}^{t:T} & \rightarrow \text{have}(S_{A}^{t:T}) \\
VP_{A}^{t:T} & \rightarrow \text{have}(VP_{A}^{t:T}) \\
S_{S}^{t:T,b:B} & \rightarrow \text{have}(S_{A}^{t:T,b:B} \ VP_{A}^{t:T,b:B} \ VP_{A}^{t:T,b:B} \ NP_{S}^{t:T,b:[wh:-]}) \\
S_{S}^{t:T,b:B} & \rightarrow \text{eat}(S_{A}^{t:T,b:B} \ NP_{S}^{t:T,b:[wh:-]}) \\
S_{S}^{t:T,b:B} & \rightarrow \text{eat}(S_{A}^{t:T,b:B} \ NP_{S}^{t:T,b:[wh:-]}) \\
S_{S}^{t:T,b:B} & \rightarrow \text{eat}(S_{A}^{t:T,b:B} \ NP_{S}^{t:T,b:[wh:+]}) \\
X_{A}^{t:T,b:T} & \rightarrow \epsilon
\end{align*}
\]
Which fruit has John eaten?
The Algorithm

Starts from the root node of the input tree

Processes all children nodes *in parallel* spreading lexical selection constraints *top-down* and combining FB-RTG rules *bottom-up*

4 main steps

- Top-Down Lexical Selection and Filtering
- Bottom-Up Local Polarity Filtering
- Bottom-Up Generation
- N-Gram Filtering
Top-Down Lexical Selection and Filtering

Lexical Selection: for each input node n with lemma w, selects all FB-RTG rules which can be lexicalised by w.

Top-Down Filtering: Only keep those rules whose left-hand side category occurs at least once in the right-hand side of the rules selected by the parent node.
Example

Input Dependency Tree

```
eat

fruit

John

has

which
```

- OBJ: fruit
- SBJ: John
- VC: has
- NMOD: which
Example Top-Down Filtering

Rule selection for eat:

\[S_{[t:T,b:B]} \rightarrow \text{eat}(S_{A}[t:T,b:B] \quad NP_{S}[t:[\text{wh}:\text{−}]] \quad VP_{A}) \]

\[S_{[t:T,b:B]} \rightarrow \text{eat}(S_{A}[t:T,b:B] \quad NP_{S}[t:[\text{wh}:\text{−}]] \quad VP_{A} \quad NP_{S}) \]

\[S_{[t:T,b:B]} \rightarrow \text{eat}(S_{A}[t:T,b:B] \quad NP_{S}[t:[\text{wh}:\text{+}]] \quad S_{A} \quad NP_{S} \quad VP_{A}) \]

Rule selection and filtering for has:

\[\checkmark \quad S_{A}[t:T] \quad \rightarrow \quad \text{have}(S_{A}[t:T]) \]

\[\checkmark \quad VP_{A}[t:T] \quad \rightarrow \quad \text{have}(VP_{A}[t:T]) \]

\[\times \quad S_{S}[t:T,b:B] \quad \rightarrow \quad \text{have}(S_{A}[t:T,b:B] \quad NP_{S}[t:[\text{wh}:\text{−}]] \quad VP_{A} \quad NP_{S}) \]
Global Polarity Filtering (Gardent and Kow 2005) filters out

- Sets of rules which cover the input
- but cannot possibly lead to a valid derivation
- either because a substitution node cannot be filled
- or because a root node fails to have a matching substitution site

Local (Structure-Driven) Polarity Filtering: on each local tree
Example of Local Polarity Filtering

\[
\begin{align*}
\times & \quad S_{S\{t:T,b:B\}} \rightarrow \text{eat}(S_{A\{t:T,b:B\}}) \\
\checkmark & \quad S_{S\{t:T,b:B\}} \rightarrow \text{eat}(S_{A\{t:T,b:B\}}) \\
\checkmark & \quad S_{S\{t:T,b:B\}} \rightarrow \text{eat}(S_{A\{t:T,b:B\}})
\end{align*}
\]

\[
\begin{align*}
NP_{S}^{t:[wh:+],b:[wh:+]} \quad & \quad S_{A}^{t:[T,b:B]} \quad NP_{S}^{t:[wh:+]} \quad VP_{A} \\
& \quad \text{fruit-t3} \quad \text{have-t5} \quad \text{John-t4} \quad \text{have-t6} \\
NP_{A}^{t:[wh:+],b:[wh:+]} \quad & \quad S_{A} \quad NP_{A} \quad VP_{A} \\
& \quad \epsilon \quad \epsilon \quad \epsilon
\end{align*}
\]
Bottom-Up Generation and N-Gram filtering

For each local tree in the input, the rule sets passing the local polarity filter are tried out for combination.

Only *the n best scoring n-grams* let through after each bottom-up generation step are kept. The language model helps finding the most likely ordering of modifiers.
Evaluation and Results

Test data: The SR Data

- Dependency trees derived from the Penn Treebank
- 26 725 inputs
- Average (maximum) word length: 22 (134)
- Average (maximum) branching degree: 4 (18)

Algorithms compared:

- Baseline: A strictly top-down algorithm (No time information available for systems participating in SR Task, only coverage and BLEU)
- SEQ: The SDL algorithm without parallelism
- PAR: The SDL algorithm with parallelism

Evaluation Focus: Efficiency (Time)
Evaluation and Results

<table>
<thead>
<tr>
<th></th>
<th>$S(0 − 5)$</th>
<th>$S(6 − 10)$</th>
<th>$S(11 − 20)$</th>
<th>$S(All)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1084</td>
<td>2232</td>
<td>5705</td>
<td>13661</td>
</tr>
<tr>
<td>Succ</td>
<td>985</td>
<td>1477</td>
<td>520</td>
<td>2744</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>0.85</td>
<td>10.90</td>
<td>110.07</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td>10.76</td>
<td>97.52</td>
<td>–</td>
</tr>
<tr>
<td>SEQ</td>
<td>1.49</td>
<td>2.84</td>
<td>4.36</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>1.63</td>
<td>3.64</td>
<td>6.03</td>
<td>3.18</td>
</tr>
<tr>
<td>PAR</td>
<td>1.53</td>
<td>2.56</td>
<td>2.66</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td>1.66</td>
<td>3.28</td>
<td>4.14</td>
<td>2.78</td>
</tr>
</tbody>
</table>

- Maximum arity = 3. Else BL times out.
- Many time out for BL on input longer than 10
- For short sentences (0-5), BL outperforms SDL
- For sentences with more than 5 words, SDL increasingly outperforms BL
The impact of parallelism increases with the branching factor.
Coverage and BLEU score

Coverage: 81.74%
- No robustness mechanism added.

BLEU score: 0.73
- No ranking module
- Best statistical system in SR Task: 0.88
- Best symbolic system in SR Task: 0.37
Conclusion

Results

- an optimised grammar-based SR algorithm
- which permits testing the grammar for under- and over-generation
 ⇒ “lean, linguistic” grammar e.g., for Language Learning (Gardent and Perez-Beltrachini 2011)

Future Work

- Compare local polarity filtering and supertagging
- Add a ranking module (to improve BLEU)
- Generating coordination and ellipses
- Adapt algorithm to graph shaped input and reversible grammar
Thanks!