UE 903 NLG
class: center, middle background-image:url(images/data-background-light.jpg) # UE903 EC1: Application to Text ## Natural Language Generation (NLG) ## Introduction ### Claire Gardent
.footnote[.bold[[Claire Gardent](mailto:claire.gardent@loria.fr) CNRS / LORIA]] --- .left-column[ ## Today ] .right-column[ ### Course Logistics ### What is Text Production ? ### Pre-Neural Approaches to Text Production ] --- class: middle, center, large # Logistics --- .left-column[ ## UE903 ### Course Logistics ] .right-column[ ### Setting Up the Scene * Two Lectures ### Studying the various Approaches * Presentations and Quizzes ### Final Exam * 1 hour: NLG (C. Gardent) - 1 hour: Sentiment Analysis, etc. (D. Langlois) ### Contact and Documentation * Email: claire.gardent@loria.fr * Website: https://members.loria.fr/CGardent/teaching/ue903/README.html ] --- .left-column[ ## UE903 ### Course Logistics ] .right-column[ ### Schedule and syllabus
| **Event type** | **Date**|**Time** | **Description** | **Course material** | |:-----------------------|:--------|:--------|:------------------------------------------------------|-----------------------------------------------------------:| | Session 1 | 10/09 |10-12pm |**Introduction to Text Production** | [[slides]](https://members.loria.fr/CGardent/teaching/ue903/l0-introduction.pdf)| | | | | **Pre-Neural Approaches to Text Production** | [[slides]](https://members.loria.fr/CGardent/teaching/ue903/l1-preneural.pdf) | | Session 2 | 17/09 |10-12am |**Neural Approaches to Text Production** | [[slides]](https://members.loria.fr/CGardent/teaching/ue903/) | | Session 3 | 24/09 |2-5pm |**Presentations + Quiz** | | | Session 4 | 26/09 |10-12pm |**Presentations + Quiz** | | | Session 5 | 01/10 |10-12pm |**Presentations + Quiz** | | | Session 6 | 03/10 |10-12pm |**Presentations + Quiz** | | | Exam | 06/02 |2-4pm | | | | ] --- .left-column[ ## UE903 ### Course Logistics ] .right-column[ ### Presentations + Quiz
* Presentations - [pre-assigned](https://homepages.loria.fr/CGardent/teaching/ue903/README.html) - 10 minutes + 5 mn Q&A - Based on scientific paper - Slides sent to the class at the latest at 12pm on the day before the presentation - graded * Quiz on the presented scientific papers - 15 minutes per paper (usually half an hour for 2 papers) - slides and paper are available - graded ] --- .left-column[ ## UE903 ### Course Logistics ] .right-column[ ### Presentations + Quiz
* [Reading List](https://homepages.loria.fr/CGardent/teaching/ue903/README.html) * Each student presents one paper (see [List](https://homepages.loria.fr/CGardent/teaching/ue903/README.html)) * All students read all papers * The slides for the presentation must be sent to the lecturer AND to the students at the latest at 12pm before the presentation day * After the presentations, a written quiz must be answered by each student . Usually the quiz will bear on two (related) presentations. So roughly, there will be half an hour of talks and Q/A followed by half an hour of written quiz. * Presentation: 10', Q&A: 5', Quiz: 15' ] --- .left-column[ ## UE903 ### Course Logistics ] .right-column[ ### Grading * 50% Written Exam * 10% Presentation * 40% Quiz scores ] --- class: middle, center, large # Questions ? --- .left-column[ ## UE903 ### Course Logistics ## Introduction ] .right-column[ ### What is Text Production ? Input and goals define different types of text production tasks
] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ] .right-column[ ### Three Main Types of Input #### Meaning Representations * Abstract Meaning Representations * Dependency Trees (Deep and Shallow) * Discourse Representation Structures * Logical Formulae (First Order Logic, Description Logic ) #### Data * Knowldege Bases * Data Bases * Numerical data from signal processing #### Text * Short, Long * Multiple or single document * Dialog or Discourse ] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ] .right-column[ ### Various Types of Communicative Goals #### Describing, Verbalising * a KB fragment * an entity in a DB * an image, a video #### Summarising * A text * Several texts * The content of a KB #### Simplifying * For children, foreigners, disabled people #### Paraphrasing, Reformulating * Expert/non expert * Varied chatbot output ] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ] .right-column[ ### Example 1: Verbalising Knowledge Base Fragments ![image3](images/lecture1/webnlg.png) ] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ] .right-column[ ### Example 2: Generating from Data Bases ![image4](images/lecture1/db2text.png)
[Angeli, Liang and Klein 2010](http://www.aclweb.org/anthology/D10-1049) ; [Konstas and Lapata 2012](https://aclanthology.info/pdf/P/P12/P12-1039.pdf)
] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ] .right-column[ ### Example 3: Captioning Images and Videos [Vinyals et al., 2015](https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vinyals_Show_and_Tell_2015_CVPR_paper.pdf) .center[
] ] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ] .right-column[ ### Example 4: Summarising .center[
] [Grusky et al., 2018](http://aclweb.org/anthology/N18-1065) ] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ] .right-column[ ### Example 5: Generating Headlines .center[
] [Chopra et al., 2016](http://www.aclweb.org/anthology/N16-1012) ] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ] .right-column[ ### Example 6: Summarising Multiple Documents .center[
] ] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ] .right-column[ ### Example 7: Conversational Agents .pull-left[
] .pull-right[ A: Where are you going ?
B: I'm going to the police station.
A: I'll come with you
B: No, no, non, you're not going anywhere
A: Why?
B: I need you to stay here
A: I don't know what you are talking about. ]
[Li et al., 2016a](http://www.aclweb.org/anthology/N16-1014); [Li et al., 2016b](http://www.aclweb.org/anthology/P16-1094)
] --- .left-column[ ## UE903 ### Course Logistics ### Introduction ### Example Applications ### Summary ] .right-column[ ### NLG * Many different inputs *Data, Meaning Representations, Text* * Many different communicative goals *Verbalise, summarise, compress, simplify, respond, compare* …. ### Some Terminology * D2T Generation: Generating from Data * MR2T Generation: Generating from Meaning Representations * T2T Generation: Generating from Text Summarisation, Compression, Paraphrasing, Simplification ]