
Supporting Customised Collaboration over

Shared Document Repositories

Claudia-Lavinia Ignat and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland
{ignat,norrie}@inf.ethz.ch

Abstract. The development of collaborative environments that not only
manage information and communication, but also support the actual
work processes of organisations is very important. XML documents are
increasingly being used to mark up various kinds of data from web con-
tent to data used by applications. Often these documents need to be
collaboratively created and edited by a group of users. In this paper we
present a flexible solution for supporting collaboration over shared repos-
itories containing both XML and text documents. By adopting hierar-
chical document models instead of linear representations used in most
editing systems, the level of conflict granularity and resolution can be
varied dynamically and the semantics of the user operations can be eas-
ily expressed. Merging of user work is based on the operations performed
rather than the document states which provides a less complex and more
appropriate way of handling conflicts.

1 Introduction

Collaboration is a central aspect of any team activity and hence of importance
to any organisation - be it business, science, education, administration, political
or social. The development of collaborative environments that not only manage
information and communication, but also support the actual work processes of
organisations is therefore very important. While some collaborative activity may
involve shared access to databases, a great deal of information central to the op-
eration of organisations is held in documents and support for collaboration is
left to file systems, document editors, revision control systems or the users them-
selves. At the same time, XML documents are increasingly being used to store
all kinds of information including not only application data, but also all forms
of metadata, specifications, configurations, templates, web documents and even
code. While some XML documents are generated automatically from systems,
for example database exports, there are many cases where XML documents are
created and edited by users either in raw text format or through special tool
support.

Although a number of document management and collaborative editing sys-
tems have been developed to support collaboration over documents, they tend to
focus on a particular form of document or mode of working. For example, some



collaborative editors support only synchronous editing of text documents while
revision control systems often support only asynchronous editing with support
for merging of versions. However, within a single project, it is often the case that
different forms of collaboration are used at different stages of the document life
cycle and, depending on the activity and mode of working, it should be possible
to support both synchronous and asynchronous collaboration and customise the
definition and resolution of potential conflicts, as pointed out in [7].

In [8] we described our approach for maintaining consistency for real-time
collaboration over text documents. In [5, 6] we described how our approach has
been applied to asynchronous collaboration over a repository, the basic unit for
collaboration being the text document. In this paper, we focus on asynchronous
working over a shared document repository and show how flexible solutions to
collaboration over both text and XML documents can be achieved by adopt-
ing hierarchical document models instead of the linear representations used in
most editing systems. These models enable the level of conflict granularity and
resolution to be varied dynamically and capture more of the semantics of user
operations. The handling of conflicts is based on the technique of operational
transformations applied to different document levels and the merging of user
work is therefore based on the operations that they perform rather than the
document states which, as we will show, provides a much more appropriate way
of detecting and handling conflicts. Rather than providing a full description of
the merging algorithms for consistency maintenance, in this paper, we briefly
describe the principles of merging and instead focus on the aspects of customi-
sation achieved by our approach in terms of the types of documents supported,
i.e. text and XML, and flexibility in the definition and resolution of conflicts.

The paper is structured as follows. We begin in section 2 by presenting the
limitations of existing version control systems for collaboration over documents
and give an overview of the existing asynchronous collaborative systems for text
and XML documents. Section 3 describes the document model that we adopted.
In section 4, we present the set of operations that are used to describe the changes
performed by the users. In section 5, we show how an existing linear-based merge
approach has been used by our tree-based merging approach recursively over the
document levels. We then describe in section 6 how conflicts can be defined and
resolved in a flexible way in our system. Concluding remarks are presented in
section 7.

2 Collaboration over Documents

We start this section with the description of some scenarios showing the set of
requirements of a version control system supporting a group of people collabora-
tively working on set of XML and text documents and the limitations of existing
systems. Afterwards we present existing related approaches for asynchronous col-
laboration on XML and text documents and highlight the contribution of our
approach.



Consider the case of a research team in the field of computational physics
that wants to publish the results of their simulations in XML documents and
also write scientific papers about their research work. The XML format offers a
number of advantages for computational physics: clear markup of input data and
results, standardised data formats, and easier exchange and archival stability of
data. Concurrent editing of the documents containing the data results should
be supported as simulations and the gathering of results can be performed in
parallel by the members of the group. Documentation for the simulations can be
edited and stored in XML or text documents. However, scientific papers should
conform to different formats required for publication. Text documents that in-
clude formatting instructions cover most of the formats required for publication.
For instance, RTF (Rich Text Format) and LaTex documents are text documents
including formatting instructions. For the moment, we only consider collabora-
tive editing on raw text documents, but in the future we are going to extend it
to text documents that include different formatting instructions.

First consider the editing of XML documents and the case that two re-
searchers concurrently edit the following part of an XML document.

<averages>
<scalar_average name="Energy">

<mean>-0.9469</mean><error>0.00362</error>
</scalar_average>

</averages>

Assume they concurrently modify the values of the mean and error ele-
ments, with the values -0.9336 and 0.00299. The two changes should both be
performed and the final version of the document should be

<averages>
<scalar_average name="Energy">

<mean>-0.9336</mean><error>0.00299</error>
</scalar_average>

</averages>

In the CVS [1] or Subversion [3] systems merging is performed on a line by
line basis with the basic unit of conflict therefore being the line. This means that
the changes performed by two users are deemed to be in conflict if they refer to
the same line and therefore the concurrent modification of the mean and error

elements is detected as conflict. The user has then to manually choose one of the
modifications. If conflicts would be defined at the level of elements both changes
could be taken into consideration. Another case is when one user adds some
spaces between the mean and error elements for reformatting purposes, while
another user in parallel performs some changes to the mean element. Version
control systems such as CVS and Subversion will detect conflict since the same
line of the document has been modified, even though there is no semantic conflict.
Again, such situations can be avoided if the document is structured into elements
and separators and the resolution conflict is set at the level of the element.
Situations may arise where a user would like to work exclusively on part of a
document. The possibility of locking parts of an XML document before an update
procedure is performed is not offered by existing version control systems.



Let us analyse next how flexible granularity and policies for the resolution
of conflicts could help users in the collaborative editing process. Consider the
example of two PhD students from the computational physics group writing
a research paper together with their professor. At the beginning, they decide
on the structure of the paper and divide the work of writing sections. Initially,
after writing different sections, their work is easily merged because the parts
that they have been working on do not overlap. Even though they have been
assigned separate parts of the document to work on, some parts of the document
such as the bibliography or the introduction may be edited together. Moreover,
at a later stage, the sections written by one of the authors will be read by the
other authors. In early stages of writing the paper, the maximum number of
modifications performed in parallel should be kept. In this case, defining the
conflict at the word level would be appropriate, i.e. conflict is detected only if
modifications have been performed on the same word. But, at a later stage when
changes are critical, the conflict granularity can be set at the paragraph level.
This means that if two modifications have been performed in the same paragraph,
the author committing the changes has to carefully read the two versions of the
paragraph and decide which version to keep. Suppose that each version in the
repository is associated with the user who committed that version. In the case
that the last version from the repository was committed by the professor, the
students might choose to synchronise their local workspaces in accordance with
the automatic policy of keeping the changes from the repository in the case of a
conflict. In this way, in the case of conflict, the changes of the professor included
in the last version in the repository are considered rather than the changes of
the students.

As seen from the above examples, there is a need to adopt a flexible means of
defining conflicts, as opposed to the fixed unit of conflict (the line) adopted by
version control systems such as CVS and Subversion. We propose an approach
that allows conflicts to be defined using semantic units corresponding to the
structure of the document, such as paragraph, sentence or word in the case of
text documents or elements, attributes, separators, words and characters in the
case of XML documents. Moreover, in our approach, we offer not only manual
resolution for conflicts, but also other automatic resolution policies, such as to
keep the changes in the repository or in the local workspace in the case of conflict.

Another disadvantage of existing version control systems such as CVS and
Subversion is the fact that they adopt state-based merging where only the in-
formation about the states of the documents and no information about the evo-
lution of one state into another is used. An operation-based merging approach
[15, 10] keeps information about the evolution of one document state into an-
other in a buffer containing a history of the operations performed between the
two states of the document. Merging is done by executing the operations per-
formed on a copy of the document onto the other copy of the document to be
merged. In contrast to the state-based approach, the operation-based approach
does not require documents to be transferred over the network between the local
workspaces and the repository. Moreover, no complex differentiation algorithms



for XML [17, 2, 9] or diff [14] for text have to be applied in order to compute
the delta between the documents. Therefore, the responsiveness of the system
is better in the operation-based approach. Merging based on operations also of-
fers better support for conflict resolution by having the possibility of tracking
user operations. In the case of operation-based merging, when a conflict occurs,
the operation causing the conflict is presented in the context in which it was
originally performed. In the state-based merging approach, the conflicts are pre-
sented in the order in which they occur within the final structure of the object.
For instance, CVS and Subversion present the conflicts in the line order of the
final document, the state of a line possibly incorporating the effect of more than
one conflicting operation.

In this paper, we propose a merging approach based on the transformation
of operations representing the changes performed during editing. By adopting a
tree model of the document, different semantic units can be associated to the
document levels and the approach offers a flexible way of defining and resolving
conflicts. Our approach is general for any document conforming to a hierarchical
structure and we show how it can be applied to both text and XML documents.

In what follows we are going to give a very short overview of the existing
approaches for the merging of both text and XML documents.

An operation-based merging approach that uses a flexible way of defining
conflicts has been used in FORCE [15]. However, the FORCE approach assumes
a linear representation of the document, the operations being defined on strings
and not taking into account the structure of the document. Another approach
that uses the principle of transformation of the operations has been proposed
in [11]. However, for the merging of the text documents, the authors proposed
using a fixed working unit, i.e. the block unit consisting of several lines of text.

By using a hierarchical model of documents, not only can conflicts be detected
and handled in a flexible way, but also the efficiency in terms of the number
of transformations performed is improved compared to approaches that use a
linear representation of documents, as shown in [8, 6] and shortly explained in
what follows. The existing operation-based linear merging algorithms maintain a
single log in the local workspace where the locally executed operations are kept.
When the operations from the repository need to be integrated in turn into the
local log, the entire local log has to be scanned and transformations need to
be performed even though the changes refer to completely different sections of
the document and do not interfere with each other. In our approach, we keep
the log distributed throughout the tree. When an operation from the repository
is integrated into the local workspace, only those local logs that are distributed
along a certain path in the tree are spanned and transformations performed. The
same reduction in the number of transformations is achieved when the operations
from the local workspace have to be transformed against the operations from the
repository in order to compute the new difference to be kept on the repository.
Our merging algorithm recursively applies over the different document levels any
existing merging algorithm relying on the linear structure of the document.



A flexible object framework that allows the definition of the merge policy
based on a particular application was presented in [13]. The objects subject to
the collaboration are structured and therefore semantic fine-grained policies for
merging can be specified. A merge matrix defines the merge functions for the
possible set of operations. The approach proposes different policies for merging,
but does not specify an ordering of concurrent operations, such as the order of
execution of two insert operations or an insert and delete. The approach does not
describe how the difference between two versions of the hierarchical documents
is generated. In our approach, we dealt with both the generation of differences
between document versions and the handling of conflicts.

Some state-based approaches for merging XML documents have been pro-
posed in [17, 2, 9]. In contrast, our approach is operation-based and we previously
highlighted the advantages of merging based on operations compared to state-
based merging.

Another operational-transformation approach for merging hierarchical docu-
ments, such as XML and CRC (Class, Responsibility, Collaboration) documents,
has been proposed in [12]. The environment provides the user with a graphical in-
terface which allows operations to be performed such as the creation and deletion
of a new node, the creation and deletion of a certain attribute and the modifica-
tion of an attribute. By using the graphical interface, no customised formatting
for the elements can be used. Modification of a node involves the deletion of the
node and the insertion of a new node containing the modified value. Moreover,
for text nodes, a lower granularity such as words or characters does not exist. Our
approach offers a more natural way of editing XML documents, as we provide a
text interface. We have chosen to rather add some additional logic to the editor
to ensure well-formed documents than limit the user with a graphical interface.
Moreover, our approach achieves better efficiency since the log of operations is
distributed throughout the tree rather than being linear.

3 Model of the Document

We now present our model for text and XML documents and the particular is-
sues concerning consistency maintenance during the editing of well-formed XML
documents as defined by W3C. We mention that we did not consider issues of
checking the validity during collaborative editing of XML documents according
to DTD (Document Type Definition) or XML Schema.

We model a text document as being composed of a set of paragraphs, each
paragraph containing a set of sentences, each sentence being formed by a set
of words and each word containing a set of characters. In this way, the con-
flicts can be defined and resolved at different granularity levels, corresponding
to the document levels (paragraph, sentence, word and character). For instance,
a conflict can be defined at the level of sentence, and, in this way, if two users
concurrently modify a sentence, a conflict will be detected. Books, a more gen-
eral form of text documents, also conform to a hierarchical model being formed
by chapters, sections, paragraphs, sentences, words and characters.



XML, the popular format for marking up various kinds of data from web
content to data used by applications, is also based on a tree model. We classified
the nodes of the document into root nodes, processing nodes, element nodes,
attribute nodes, word nodes and separator nodes in order that various conflict
rules can be defined. A conflict could then be defined, for example, for the case
that two users perform operations on the same word node or for the case that
users concurrently modify the same attribute node.

When editing XML content, we encounter problems which do not occur when
working with text. Consider the case that a user edits an XML document, e.g.
by adding the line ‘<test>hello world</test>’ character by character. In this
way, the XML document will not be well-formed until the closing tag is com-
pleted. The editor should provide support to insert complete elements, so that
the operations can be tracked unambiguously at any time in the editing process.
Our editor offers auto-completeness of elements. For instance, every time the
user inserts a ‘<’ character, the insertion of ‘<></>’ is performed. Of course an
empty tag, such as ‘<></>’ is not a valid XML element, but at least it allows
the desired operation of creating a new element to be addressed in a valid way.

Additional rules for the deletion of characters have to be provided. A user
should be prevented from deleting parts of the structure of an element, such as
the begin or end tag, unless the whole element is deleted. For instance, the user
cannot delete ‘</test>’ from an element ‘<test>hello world</test>’. Another
issue regarding the editing of elements are the two different forms that an ele-
ment can take: the form containing both the opening and closing tags such as
‘<test></test>’, or the form of an empty element such as ‘<test/>’ containing
only the closing tag meaning that no further child elements are defined. The user
is prevented from directly deleting the closing tag (‘</test>’). Instead the user
can insert a ‘/’ character at the end of the starting tag (‘<test>’ ⇒ ‘<test/>’) in
order to tell the system that the element should be transformed into an empty
element containing only a closing tag. The operation is not performed if the
element contains other child nodes. On the other hand, the deletion of the ‘/’
character in an empty element leads to the creation of an element containing a
begin and end tag.

In the remainder of this section, we discuss detailed handling of each type
of node that we used to structure XML documents. The root node is a special
node representing the virtual root of the document that contains the nodes of
the document. The user cannot perform operations on this node.

Processing nodes can be used to define processing instructions in the XML
document such as ‘<?xml version="1.0"?>’. In order to keep the XML content
valid and to allow insertions of whole elements, the insertion of processing nodes
is restricted to complete processing nodes, i.e. ‘<??>’ and the deletion of elements
referring to the structure of a processing node can be done only if the whole
processing node is deleted.

Element nodes represent XML element structures and they consist of an ele-
ment name, as well as some optional attribute and child nodes. For the following
element node ‘<test att="val">hello world</test>’, the string ‘test’ is the



element name, ‘att="val"’ is an attribute node and ‘hello world’ is composed
of three child nodes, namely two word nodes and one separator node. Similar
to processing nodes, in order to ensure well-formed XML documents, only com-
plete element nodes having the form ‘<></>’ are allowed to be inserted, and the
deletion of characters modifying the structure of the element node is restricted.
Element nodes present a further issue as the element name in the opening and
closing tag must be the same. As the update of the element name is an atomic
operation, the editor alters the element names automatically whenever the user
adds/removes some characters to/from the tag name.

The attribute nodes can be used either by the processing nodes or the element
nodes and they basically consist of a single attribute string. To support the user,
the editor will insert the ‘=""’ characters automatically whenever the user adds
a new attribute.

The separator nodes are used to preserve the formatting of the XML docu-
ment and they represent white spaces and quotation marks.

4 The Set of Operations

In this section, we present the set of operations used to describe the actions
performed by users during the editing process of text and XML documents. The
set of operations has been chosen to be as minimal as possible, but to allow the
flexible definition and resolution of conflicts. Even if the sets of operations for
describing the changes performed in the text and XML documents are different,
the mechanism for consistency maintenance is the same, as we will show later.

For text editing, the set of operations that can be performed on the model of
the document are insert and delete a semantic unit, such as paragraph, sentence,
word or character.

For XML editing, the set of operations contains various forms of insert and
delete operations. INSERT PROCESSING inserts a new processing node. IN-
SERT ELEMENT inserts a new element node that can either be a child of
the root node or a child of another element node. INSERT ATTRIBUTE in-
serts a new attribute node that can either be added to a processing or ele-
ment node. INSERT WORD inserts a new word node that can be added to
any element node. INSERT SEPARATOR inserts a new separator node. In or-
der to maintain well-formed documents, the user is not allowed to split the
names of processing nodes, elements or attributes by means of separators. IN-
SERT CHAR inserts a character that can be added to update processing or
element names, attributes and words. INSERT CLOSING TAG adds a closing
tag. DELETE PROCESSING, DELETE ELEMENT, DELETE ATTRIBUTE,
DELETE WORD, DELETE SEPARATOR, DELETE CHAR and DELETE
CLOSING TAG are the delete operations corresponding to the set of insert
operations.



5 Operational Transformation Approach

The operational transformation approach [4] is a suitable approach for merg-
ing that has been adopted for text documents conforming to a linear structure,
such as a sequence of characters. The advantages for merging based on oper-
ations compared to state-based merging are, as already pointed out, improved
responsiveness and the possibility of tracking the activity of the users.

The basic operations supplied by a configuration management tool are check-
out, commit and update. A checkout operation creates a local working copy of
the document from the repository. A commit operation creates in the repository
a new version of the document based on the local copy, assuming that the reposi-
tory does not contain a more recent version of the document than the local copy.
An update operation performs the merging of the local copy of the document
with the last version of that document stored in the repository.

We first illustrate the basic operation of the operational transformation mech-
anism, called inclusion transformation, by means of an example. The Inclusion
Transformation - IT (Oa, Ob) transforms operation Oa against operation Ob such
that the effect of Ob is included in Oa. Suppose the repository contains the
document consisting of one sentence “We present the merge.” and two users
check-out this version of the document and perform some operations in their
workspaces. Further, suppose User1 performs the operation O11=InsertWord
(“procedure”,5). It is an operation intending to insert the word “procedure” at
the end of the sentence, as the 5th word, in order to obtain “We present the merge
procedure.” Afterwards, User1 commits the changes to the repository and the
repository stores the list of operations performed by User1 consisting of O11.
Concurrently, User2 executes operation O21=InsertWord(“next”,2) of inserting
the word “next” as the 2nd word into the sentence in order to obtain “We next
present the merge.” Before performing a commit, User2 needs to update the
local copy of the document. The operation O11 stored in the repository needs to
be transformed in order to include the effect of operation O21. Because operation
O21 inserts a word before the insertion position of O11, O11 needs to increase its
position of insertion by 1. In this way the transformed operation will become an
insert operation of the word “procedure” as the 6th word, the result being “We
next present the merge procedure.”

In what follows, we outline an existing operational transformation approach
working on linear structures of documents. Afterwards we present the extension
of the linear-based approach working for a hierarchical document structure.

5.1 Linear-based Merging

First we describe the merging algorithm applied to a linear representation of
documents as implemented in [15].

In the commit phase, the repository simply executes sequentially the oper-
ations performed in the local workspace in order to generate the state of the
latest version from the repository. The list of operations sent to the repository
represents the difference between the latest two versions of the document. In the



checkout phase, in the case that the requested version number of the document
equals the latest version number in the repository, the state of the latest version
of the document is sent to the local workspace. In the case that the requested
version number is less than the latest version number from the repository, the
state of the document that is sent to the local workspace has to be computed. It
is obtained by executing on the state of the latest version of the document the
inverses of the operations that represent the deltas between the latest version in
the repository and the requested version.

In the updating phase, the merging algorithm has to be performed between
the list of operations executed in the local workspace LL and the list of op-
erations DL representing the delta between the most recent version from the
repository and the version that the local user started working on. Two basic
steps have to be performed. The first step consists of transforming the remote
operations from DL in order to include the effect of the local operations. These
transformed operations are then executed on the local workspace. The second
step consists of transforming the operations in LL in order to include the effects
of the operations in DL, the list of the transformed local operations representing
the new delta into the repository. In the case that operation Oi belonging to DL

is in conflict with an operation from LL, Oi cannot be executed in the local
workspace and it needs to be included into the delta as its inverse in order to
cancel the effect of Oi. Moreover, all operations following it in the list DL need
to exclude its effect.

In the case that, a user wants to commit the local changes to the repository
after performing an update, but in the meantime another user committed his
changes to the repository, the first user has to perform a new update.

5.2 Hierarchical-based Merging

The merging approach presented in the previous section works for a linear repre-
sentation of documents, the operations being defined on strings, without taking
into account the structure of the document. Structuring the document into dif-
ferent semantic units allows the possibility for the user to define and resolve the
conflicts in a natural way. The approach that we present is a generalisation of
the merging mechanism for a linear structure applied to a hierarchical structure.

The disadvantage of the linear-based merging approach is that all operations
in the repository and in the local workspace are kept in a single buffer and,
when an operation has to be integrated into one of these buffers, a large number
of transformations have to be performed. In our approach, the history buffer
is distributed throughout the tree, thereby making the merge more efficient as
only certain paths in the tree have to be spanned and few transformations are
performed. Using the same model, we were also able to improve the efficiency
of real-time collaborative editing as reported in [8]. The model of the document
is therefore extended by associating to each node in the hierarchical structure
(excluding leaf nodes) a history buffer containing operations associated with its
children nodes.



The structure of a text-based document is illustrated in Fig. 1. Each internal
node of the tree has an associated history containing operations of insertion or
deletion of child nodes.

…

…

Document

Pa1 Pa2

Se2.3 Se2.4

W2.3.1 W2.3.2

C2.3.2.3
“g”

Doc. Hist.

Se2.3 Hist.

…

W2.3.3

C2.3.2.4
“o”

History for operations 
at paragraph level

History for operations on 
sentences in paragraph Pa2

C2.3.2.1
“a”

C2.3.2.2
“ l”

Levels

Document

Paragraph

Sentence

Word

Character

Pa1 Hist. Pa2 Hist.

Se2.4 Hist.

W2.3.1 Hist. W2.3.2 Hist.

…

C2.3.2.5
“r”

W2.3.3 Hist.

Se2.1Se2.1 Hist. Se2.2 Se2.2 Hist.

… …

W2.3.4 W2.3.4 Hist.

C2.3.2.6
“ i”

C2.3.2.7
“ t”

C2.3.2.8
“h”

C2.3.2.9
“m”

Fig. 1. Structure of a text document

For the XML document below, its tree representation is illustrated in Fig. 2.
The attributes of a node are considered to be children of that node.

<?xml version=“1.0”?>
<addressBook>

<person id=“p001”>
<name>Smith, John< /name>

< /person>
< /addressBook>

RootNodeHist. RootNode

xml Hist. xml addressBook Hist. addressBook

version=“1.0” Hist. attr. version person

‘\n’

‘ ’ ‘\n’ ‘\t’ Hist. person ‘\n’

id=“p001” Hist. attr. id‘ ’ ‘\n’ ‘\t’ ‘\t’ nameHist. name ‘\n’ ‘\t’

Smith Hist. Smith ‘,’ ‘ ’ John Hist. John

Fig. 2. Structure of an XML document

Operations referring to processing nodes, elements, attributes, words and
separators are added to the history associated with the parent node. Operations
referring to characters are added to the history associated to the processing
target, element names, attributes or words to which they belong. The operations
referring to the closing tags are added to the history associated with the element
to which they belong.

The commit and checkout phase follow the same principles as described for
the linear representation of the documents, with the addition that, in the commit



phase, the hierarchical representation of the history of the document is linearised
using a breadth-first traversal of the tree. For instance, in the case of text edit-
ing, the first operations in the log will be the ones belonging to the paragraph
logs, followed by the operations belonging to the sentence logs and finally the
operations belonging to the word logs.

We now describe the update procedure that we apply for the case of text
editing. The update procedure achieves the actual update of the local version of
the hierarchical document with the changes that have been committed by other
users to the repository and kept in linear order in the remote log. It has as its
objective the computing of a new delta to be saved in the repository, i.e. the
replacement of the local log associated with each node with a new one which
includes the effects of all non-conflicting operations from the remote log and the
execution of a modified version of the remote log on the local version of the
document in order to update it to the version on the repository.

The update procedure is repeatedly applied to each level of the document
starting from the document level. First the remote level log is constructed to
contain those operations from the remote log that have the level identical with
the level of the operations from the history buffer of the current node. The oper-
ations belonging to the remote level log are eliminated from the remote log. The
basic merging procedure for linear structures is applied to merge the local log of
the current node with the remote level log. As a result of the merging procedure,
the new remote log representing the operations that need to be applied on the
local document and the new local log representing the operations to be saved
on the repository are computed. After the new remote log is applied locally, the
operations from the remote log are transformed against the operations in the
local log and are divided among the children of the current node. Afterwards,
the merging procedure is recursively called for each child. A detailed description
of the update procedure is presented in [5].

The same basic ideas underlying the merging of text documents have been
applied to the merging of XML documents. While in the case of text editing,
transformation functions have been defined between the operations of insert and
delete, in the case of XML editing, transformation functions have been defined for
all types of operations targeting processing nodes, elements, attributes, words,
characters and separators.

6 Conflict Definition and Resolution

In this section, we show how our approach can be used to define and resolve
conflicts in a flexible way.

Due to the tree model of the document, for the case of text editing, the
conflicts can be defined at different granularity levels: paragraph, sentence, word
or character. In our current implementation, we have defined that two operations
are conflicting in the case that they modify the same semantic unit: paragraph,
sentence, word or character. The semantic unit is indicated by the conflict level
chosen by the user from the graphical interface. The conflicts can be visualised



at the chosen granularity levels or at a higher level of granularity. For example,
if the user chooses to work at the sentence level, it means that two concurrent
operations modifying the same sentence are conflicting. The conflicts can be
presented at the sentence level such that the user can choose between the two
versions of the sentence. It may happen that in order to choose the right version,
the user has to read the whole paragraph to which the sentence belongs, i.e. the
user can choose to visualise the conflicts also in the context of the paragraph or
at an upper level. Other rules for defining the conflicts could be implemented
such as to check if some grammar rules are satisfied. This testing can easily be
implemented using the semantic units defined by the hierarchical model.

We allow different policies for conflict resolution, such as automatic resolution
where the local changes are kept in the case of a conflict or manual resolution,
where the user can choose the modifications to be kept. Concerning manual
resolution policies, the user can choose between the operation comparison and
the conflict unit comparison policies. The operation comparison policy means
that when two operations are in conflict, the user is presented with the effects
of both operations and has to decide which of the effects to preserve. In the
conflict unit comparison policy, the user has to choose between the set of all local
operations and the set of all remote operations affecting the selected conflict unit
(word, sentence or paragraph). The user is therefore presented with the two units
that are in conflict. The policies for the resolution of conflicts can be specified in
the graphical interface. The rules for the definition of conflict and the policies for
conflict resolution can be specified by each user before an update is performed
and they do not have to be uniquely defined for all users. Moreover, for different
update steps, users can specify different definition and resolution merge policies.

In order to better understand how conflicts are defined and resolved, we
are going to provide the following scenario. Suppose that two users are concur-
rently editing a document where the last paragraph consists of the sentence:
“Our algorithm applie a linear merging procedure”. For simplicity, we are going
to analyse the concurrent editing performed on this paragraph. The first user
adds the character “d” at the end of the word “applie” and inserts the word
“recursively” as illustrated in Fig. 3. The second user adds the character “s”
at the end of the word “applie” and the new sentence “The approach offers an
increased efficiency.” as also shown in the figure.

Suppose that, after performing their modifications, the first user commits
their changes to the repository. In order to commit to the repository, User2 has
to update their local version. In the case that User2 has chosen the conflict level
to be sentence and the policy for merging to be conflict unit comparison, the user
is presented with the two sentences that are in conflict, as illustrated in Figure 3.
Suppose that they choose the variant corresponding to their local version. After
the second user performs a commit, the last paragraph of the new version of the
document in the repository becomes: “Our algorithm applies a linear merging
procedure. The approach offers an increased efficiency.”

In the case that the second user would have chosen the word level granu-
larity, the conflict would have been detected for the word “applie”. The two



Fig. 3. Conflict resolution

words in conflict would be “applied” and “applies”. Suppose that the variant
corresponding to their local version is chosen. After performing a commit, the
last paragraph of the new version of the document in the repository becomes:
“Our algorithm applies recursively a linear merging procedure. The approach

offers an increased efficiency.”

In this example, we see that it is easy to define generic conflict rules in-
volving different semantic units. We mention that, in the case of version control
systems such as CVS and Subversion, when User2 is updating the local copy,
a conflict between the line “Our algorithm applied recursively a linear merging
procedure.” from the repository and the line “Our algorithm applies a linear
merging procedure. The approach offers an increased” from the workspace will
be detected, as well as the addition of the line “efficiency.” User2 would have
to manually choose between the two conflicting lines and to add the additional
line. Most probably, User2 will decide to keep their changes and choose the line
they edited, as well as adding the additional line. In order to obtain a combined
effect of the changes, User2 has to add manually the word “recursively” in the
local version of the workspace.

For the case of XML documents, as for the case of text documents, the
editor provides a conflict resolution dialogue when concurrent changes have been
performed on the same granular unit, such as attribute, word or element. The
user then needs to decide whether they want to keep the local or the remote
version. In the case that a user wants to keep the local version of some parts of the
XML document when a merging is performed, they might use the functionality
to lock nodes of the document.



7 Conclusions

We have presented a customised approach for supporting collaboration over
shared repositories containing both text and XML documents. We have shown
that, by adopting a hierarchical model of the document, different semantic units
can be associated to the document levels and therefore conflicts can be defined
and resolved in a flexible way. Our merging approach is operation-based rather
than state-based and therefore provides a less complex and more appropriate
way of detecting and handling conflicts.

An asynchronous collaborative editor application that allows the editing of
both text and XML documents has been implemented in our group based on the
ideas described in this paper.

References

1. Berliner, B.: CVS II: Parallelizing software development. Proc. of USENIX, Wash-
ington D.C. (1990)

2. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in xml documents. Proc.
of the Intl. Conf. on Data Engineering (2002)

3. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Sub-
version. O’Reilly, ISBN: 0-596-00448-6 (2004)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. Proc. of the
ACM SIGMOD Conf. on Management of Data (1989) 399-407

5. Ignat, C.-L., Norrie, M.C.: Flexible Merging of Hierarchical Documents. Intl. Work-
shop on Collaborative Editing. GROUP’05, Sanibel Island, Florida (2005)

6. Ignat, C.-L., Norrie, M.C.: Operation-based Merging of Hierarchical Documents.
Proc. of the CAiSE’05 Forum, Porto, Portugal (2005) 101-106

7. Ignat, C.-L., Norrie, M.C.: CoDoc: Multi-mode Collaboration over Documents.
Proc. of the CAiSE’04, Riga, Latvia (2004) 580-594

8. Ignat, C.-L., Norrie, M.C.: Customisable Collaborative Editor Relying on treeOPT
Algorithm. Proc. of ECSCW’03, Helsinki, Finland (2003) 315-334

9. La Fontaine, R.: A Delta Format for XML: Identifying Changes in XML Files and
Representing the Changes in XML. XML Europe (2001)

10. Lippe, E., van Oosterom, N.: Operation-based merging. Proc. of the 5th ACM
SIGSOFT Symposium on Software development environments (1992) 78-87

11. Molli, P., Oster, G., Skaf-Molli, H., Imine, A.: Using the transformational approach
to build a safe and generic data synchronizer. Proc. of Group’03 (2003)

12. Molli, P., Skaf-Molli, H., Oster, G., Jourdain, S.: Sams: Synchronous, asynchronous,
multi-synchronous environments. Proc. of CSCWD, Rio de Janeiro, Brazil (2002)

13. Munson, J.P., Dewan, P.: A flexible object merging framework. Proc. of ACM Conf.
on CSCW (1994) 231-242

14. Myers, E.: An O(ND) difference algorithm and its variations. Algoritmica, 1(2)
(1986) 251-266

15. Shen, H., Sun, C.: Flexible merging for asynchronous collaborative systems. Proc.
of CoopIS/DOA/ODBASE (2002) 304-321

16. Vidot, N., Cart, M., Ferrié, J., Suleiman, M.: Copies convergence in a distributed
real-time collaborative environment. Proc. of CSCW (2000) 171-180

17. Wang, Y., DeWitt, D.J., Cai, J.Y.: X-Diff: An Effective Change Detection Algo-
rithm for XML Documents. Proc. of ICDE (2003)


