
Operation-based versus State-based Merging in
Asynchronous Graphical Collaborative Editing

Claudia-Lavinia Ignat and Moira C. Norrie
Institute for Information Systems, ETH Zurich

CH-8092 Switzerland
{ignat,norrie}@inf.ethz.ch

ABSTRACT
In this paper we present and compare two approaches for
asynchronous communication in object-based collaborative
graphical editing. The operations allowed to be performed
on the shared graphical document are not only simple
operations such as create, delete, move, change colour or
position, but also group/ungroup operations. We present an
operation-based merging approach that was also used in a
real-time mode of collaboration, as well as a state-based
merging approach and compare the two approaches. The
private working space can be synchronised against a
central repository or against another private workspace.

Keywords
collaborative graphical editors, consistency maintenance,
asynchronous communication, operation-based/state-based
merging

INTRODUCTION
Collaborative graphical editing systems support a group of
people concurrently editing shared graphical documents.
Object-based graphical editing systems are a particular
class of collaborative graphical editing systems, where the
shared objects subject to concurrent accesses are graphic
objects such as lines, rectangles, circles and text boxes.
The collaboration can be synchronous or asynchronous.
Synchronous collaboration means that members of the
group work at the same time on the same documents and
modifications are seen in real-time by the other members of
the group. Asynchronous collaboration means that
members of the group modify the copies of the documents
in isolation, working in parallel and afterwards
synchronizing their copies to reestablish a common view of
the data.
The existing synchronous collaborative graphical editing
systems are based on one of the following approaches:
locking, serialisation or multi-versioning.
In the locking approach [2] concurrent editing is allowed
only if users are locking and editing different objects.
Aspects [14], Ensemble [9] and GroupDraw [3] are
systems relying on the locking technique.
Serialisation ensures that the effect of executing a group of
concurrent operations is the same as if the operations were
executed in the same total order at all sites. If there is any
conflict among concurrent operations, only the effect of the

last operation in the total ordering is maintained. LICRA
[5] and GroupDesign [6] are examples of prototypes
implementing this technique. LICRA relies on dependency
relations between the operations and on the operational
transformation mechanism, while GroupDesign uses an
undo/redo mechanism for maintaining consistency. We
also implemented a real-time graphical editor [4] that relies
on operation serialisation and deals not only with simple
operations such as create, delete, move, change colour or
position, but also with group/ungroup operations. Based on
the classification of conflicts into real and resolvable, an
undo/redo mechanism is used in order to re-execute the
operations in an imposed serialisation order.

In the multi-versioning approach, for each concurrent
operation targeting a common object, a new version of the
object is created. GRACE [11] and TIVOLI [8] are two
prototype systems that rely on multi-versioning.
Asynchronous collaborative systems have been developed
for the case that the shared documents subject to
collaboration are text [1,12,10], HTML or CRC cards [7].
The consistency maintenance mechanisms use either a
state-based [1,12] or operation-based [10,7] merging. The
state-based merging relies on the information about the
states of the documents and no information about the
evolution of one state into another is used. The operation-
based merging approach keeps the information about the
evolution of one state of the document into another in a
buffer containing the operations performed between the
two states of the document. The merging is done by
executing the operations performed on a copy of the
document onto the other copy of the document to be
merged. To our knowledge, there has not yet been
implemented any asynchronous collaborative graphical
editor.
In this paper we propose a mechanism for maintaining the
consistency in the case of the asynchronous object-based
graphical editing. We propose two approaches, one relying
on operation-based merging and the other on state-based
merging. The operation-based approach is based on the
same basic ideas that we used for the real-time
communication [4].
We start our paper by describing the copy/modify/merge
paradigm used in the asynchronous communication. We
then present the model of the document and the set of

operations that can be performed. We go on to present the
operation-based approach and the state-based approach and
make a comparison between the two mechanisms. We then
compare our approach with some related work. Concluding
remarks and the main directions of our future work are
presented in the last section.

THE ASYNCHRONOUS COMMUNICATION
Most configuration management tools support the
copy/modify/merge paradigm. It consists basically of three
operations applied on a shared repository storing
multiversioned objects: checkout, commit and update. A
checkout operation creates a local working copy of an
object from the repository. A commit operation creates in
the repository a new version of the corresponding object by
validating the modifications done on the local copy of the
object. The condition of performing this operation is that
the repository does not contain a more recent version of the
object to be committed than the local copy of the object.
An update operation performs the merging of the local
copy of the object with the last version of that object stored
in the repository.
In Figure 1 a scenario is illustrated in order to show the
functionality of the Copy/Modify/Merge paradigm. User1
and User2 checkout the document from the repository and
create local copies in their private workspaces (operations
1 and 2, respectively). User1 modifies the document
(operation 3) and afterwards commits the changes
(operation 4). User2 modifies in parallel with User1 the
local copy of the document (operation 5). Afterwards,
User2 attempts to commit their changes (operation 6). But,
at this stage, User2 is not up-to-date and therefore cannot
commit their changes on the document. User2 needs to
synchronise their version with the last version, so he/she
downloads the last version of the document from the
repository (operation 7). A merge algorithm will be
performed in order to merge the changes performed in
parallel by User1 and User2 (operation 8). Afterwards,
User2 can commit their changes to the repository (operation
9).

Figure 1. The Copy/Modify/Merge paradigm

DOCUMENT AND OPERATIONS REPRESENTATION
A tree model was used for representing the scene of
objects. Groups are represented as internal nodes, while
simple objects are represented as leaves. A group can
contain other groups or primitive objects. Each object has
assigned a unique identifier. The primitive objects

supported by our system are: lines, rectangles, ellipses and
textboxes.
The graphical objects have associated the following
attributes: colour- the colour of the foreground of the
object; bckColour- the colour of the background of the
object; depth – the depth at which the object is drawn, the
objects with a higher depth being drawn first; topLeftPoint
and bottomRightPoint – the left upper and bottom right
corners of the minimal rectangle that covers the object,
these attributes being needed in the scaling process.
Additionally to these attributes, the line objects have
startPoint and endPoint representing the starting and
ending points that define the line. The textBox object
contains the additional attribute content representing the
content of the text box.
The operations performed on the graphical objects are the
following ones: create(P,S) - adds the shape S to the
document, as a child of P; delete(P,S) - removes the shape
S from the document, P being the parent of S;
translate(S,dx,dy) - translates shape S with (dx,dy); scale(S,
xref,yref,tx,ty) - scales shape S with the scaling factors tx and ty
respectively, (xref,yref) being the reference point;
ungroup(G,S1,…,SN) - ungroups group G consisting of the
components S1,…,SN; group(G,S1,…,SN) - creates a new
group G by grouping the shapes S1,…,SN; setColour(S,c) -
changes the colour of shape S, c being the new colour;
setBckColour(S,b) - changes the background color of shape
S, b being the new background colour; setText(T,s) -
modifies the content of the textBox T, s being the new text;
setZ(S, z) - changes the depth of shape S, z being the new
depth of the shape.
In the case of the operation-based approach, the notion of
the inverse of an operation as well as the notions of follow
and masking relations among operations will be used for
describing the algorithms underlying the asynchronous
communication. Therefore, in what follows we are going to
define these notions.
The inverse of an operation is defined as the list of
operations that cancel the effects of the initial operation.
Table 1 illustrates the inverse function for each type of
operation.

O inverseO
create(P,S) {delete(P,S)}
delete(P,S) {create(P,S)}
translate(S,dx,dy) {translate(S,-dx,-dy)}
scale(S,xref,yref,tx,ty) {scale(S,xref,yref,1/tx,1/ty)}
ungroup(G,S1,...,SN) {group(G,S1,...,SN)}
group(G,S1,...,SN) {ungroup(G,S1,...,SN)}
setColour(S,c) {setColour(L,coldL)|L∈leaves(S)}
setBckColour(S,b) {setBckColour(L,coldL)|L∈leaves(S)}
setText(T,s) {setText(T,sold)}
setZ(S,z) {setZ(S,zold)}

Table 1. Inverse operations
The inverse function for setColour(S,c) is formed by the
list of the setColour operations that reset the original
colours for each leaf belonging to S. In the particular case

Repository

(1) checkout (2) checkout

(3) modify

(4) commit

(5) modify

(6) commit

not

(8) merge

(9) commit

Private

Workspace
User 1

Private

Workspace
User 2

(7) update

commited

of S being a primitive object, the result is the list formed by
a single operation, i.e. the setColour operation that resets
the original colour of that object. The inverse function for
setBckColour is generated in a similar way as setColour.
The inverse function applied on a sequence of operations
returns the list of operations that need to be executed right
after the execution of the given sequence of operations in
order to cancel all their effects. Therefore,
inverse([O1,...,ON])=[inverse(ON),...,inverse(O1)]
An operation O2 from the history buffer is said to follow a
preceding operation O1 from the history buffer (O2 follows
O1 or O1 followed by O2) if either O2 depends on O1, i.e. O1
creates an object or group that belongs to the target list of
O2 or O2 destroys (by deleting or ungrouping) the target of
O1. A follow operation cannot be executed before the
operation it follows.
An operation O2 from the history buffer is masking an
operation O1 preceding O2 in the history buffer if O1 and
O2 are of the same type (except create, delete, ungroup),
both targeting the same object/group and O2 overwriting
the effect of O1. A masking operation cannot be executed
before the masked operation. For example, consider
HB=[group([id1,id2],id3), move(id3), setColour(id4,red),
setColour(id4,green)]. Operation move(id3) follows the
operation group([id1,id2],id3) that created its target object.
Operation setColour(id4,green) masks the effect of
setColour(id4, red).

OPERATION-BASED APPROACH
In the operation-based approach, all the operations
performed by the user are kept in a log at the client side.
The repository keeps for each version the list of operations
that transform the previous version into the current version.
The repository stores the following information: version,
representing the version of the document stored in the
repository; delta[1..version], where delta[i] is a list of
operations representing the difference between version i+1
and version i.
On the client side, the following data structures are stored:
version, representing the version of the local document;
doc, representing the local document; lastSynchDoc,
representing the last version from the repository that was
integrated into doc; log, consisting of the list of operations
executed locally and not yet committed, representing the
difference between doc and lastSynchDoc.
In what follows we are going to describe the basic
operations of checkout, commit and update used for the
asynchronous communication.
Checkout, Commit and Update

The checkout operation creates a local working copy of the
requested version of the document from the repository. The
repository sends all the operations needed to transform an
empty document into the document associated with the
requested version.

The commit operation creates a new version of the
corresponding document in the repository by sending the
log of the client to the repository. This operation is
performed only if the local document is up-to-date, i.e. the
repository does not contain a new version committed by
other users.
The update operation performs the merge between the local
copy of the document and the last version of the document
from the repository.
In the following, the update procedure, both from the
repository and client side, is presented.
procedure client.update{
 for i = version to repository.version{
 ops = repository.update(i);
 mops = merge(log, ops)
 doc = lastSynchDoc;
 doc.apply(mops);
 lastSynchDoc.apply(ops);
 log = compress(inverse(ops) + mops)}
}
function repository.update(vrs){
 return delta[vrs];
}
The list of operations received from the repository is
merged with the list of operations from the local log, after
solving the possible conflicts between operations, by using
the merge procedure. The merge procedure integrates one
by one the operations from the repository by using a
serialisation mechanism, i.e. a reordering of the operations
in order to achieve a combined effect of the intentions of
the operations. The local document doc is modified to
include the effects of the operations from the repository.
lastSynchDoc must also be modified since a new version
from the repository is integrated into the local document.
The modifications on both doc and lastSynchDoc trigger
the change of log, since log represents the difference
between doc and lastSynchDoc. log is the list of operations
that will be sent to the repository in the case of a commit
operation, as representing the difference between the new
version that will be committed to the repository and the last
committed version. Therefore, log should include first the
operations that cancel the effects of the operations from the
repository, followed by the operations from mops. The
compress procedure presented in the next subsection is
applied for compressing the log.
Compression

The compression procedure transforms a list of operations
into another list with a smaller number of operations that
would have the same effects as the original list.
Various types of compression routines can be identified.
Operations with no effects can be removed. The operations
belonging to this category are: translate(S,0,0),
scale(S,xref,yref,1,1), setColour(S,c) and setBckColour(S,c)
in the case that the colour of S is already c, setZ(S,z) in the

case that the depth of S is already z and setText(T,s) in the
case that T already contains text s.
A pair of inverse operations can be removed. The pairs of
inverse operations that can be removed are the following:
group(G,S1,…,SN) and ungroup(G,S1,…,SN) with the
condition that there are no operations in the local log
referring to G between the given operations;
ungroup(G,S1,…,SN) and group(G,S1,…,SN), the group
operation being the inverse of the ungroup operation;
create(P,S) and delete(P,S); delete(P,S) and create(P,S),
the create operation being the result of the inversion of the
delete operation; translate(S,dx,dy) and translate(S,-dx,-dy);
scale(S,xref,yref,tx,ty) and scale(S,xref,yref,1/tx,1/ty).
Operations masked by other operations can be removed.
Operations of the same type could be combined into one
operation: translate(S,dx1,dy1) and translate(S,dx2,dy2) can
be combined into translate(S,dx1+dx2,dy1+dy2).
scale(S,xref,yref,tx1,ty1) and scale(S,xref,yref,tx2,ty2) can be
combined into scale(S,xref,yref,tx1⋅tx2,ty1⋅ty2).
Direct User Synchronisation

According to the direct user synchronisation process, two
clients can synchronise their workspaces without using the
repository. The direct synchronisation process presumes
that a direct connection between the clients can be
established and that the users work on the same version.
The direct synchronisation process is one way. If client C1
wants to synchronise with client C2, it must initiate the
process by sending a synchronisation request to C2. If the
request is accepted, C1 receives the log of C2 and merges it
with its local log.
After the execution of the synchronisation routine, the
operations from the other client will be stored in the local
log as if they were locally generated. This issue raises the
following problem. If the client C1 receives an operation O
from client C2 as a result of the direct synchronisation
process and then commits the changes, operation O would
be stored in the repository. When C2 is performing an
update, operation O needs to be executed in the workspace
of client C2. But operation O had already been executed.
Therefore, the re-execution of operation O would yield an
incorrect result. The solution that we have adopted in order
to resolve this problem is that each local workspace stores
the identifiers of the executed operations and, before the
execution of an operation, a test is performed to check
whether that operation has already been executed.
Another problem arising in the direct synchronisation
process is that the compression routine could combine an
operation that has already been sent to a peer with other
local operations. Let us assume that client C1 synchronises
with client C2, receives operation O1 and executes it. A new
operation O2 is generated by client C2. The compression
routine combines O1 with O2 resulting in O3. When client
C2 commits the changes, the operation O3 is copied in the
repository. When client C1 updates the version of the

document from the local workspace, operation O3 is
received from the repository and executed. The result of
the execution would yield an incorrect result since the
operation O3 contains the effect of O1 which has already
been executed on the copy of client C1. In order to solve
this problem, each operation stores the identifiers of the
operations that have been combined to form the current
operation, in a list called COMBINED_OPS. Previous to
the execution of an operation the effect of all the operations
included in the associated COMBINED_OPS list must be
cancelled.
Merging

The merging routine takes as arguments two lists of
operations and generates a new list by integrating the
operations from the second list into the first list of
operations and resolving the possible conflicts. The
merging is done by reordering the operations in order to
preserve the effects of all non-conflicting operations.
We start by defining the notion of conflict and giving a
classification of the existent types of conflicts.
Two concurrent operations O1 and O2 are conflicting if one
of the following cases occurs:
- O1 and O2 intend to modify the same property (colour,

background colour, position or depth coordinate) of a
common target object to different values

- O1 and O2 intend to destroy one of the common target
objects/groups (delete or ungroup operation)

- O1 or O2 intends to destroy one of the common target
objects/groups (it is a delete or ungroup operation), while
the other operation intends to modify that object or to use
it in a grouping operation.

Note that if an operation targets a group of objects, we
consider that it targets all the objects in the group.
Therefore, an operation targeting a group and modifying a
property of that group will be in conflict with any operation
that targets an object/group belonging to that group and
modifying the same property as the first operation.
Similarly, an operation destroying a group is in conflict
with any operation that either destroys an object from the
group, intends to modify an object from the group or uses it
in a grouping operation.
Real conflicting operations are those conflicting operations
for which a combined effect of their intentions cannot be
established. We have defined that a pair of operations is
real conflicting in the case that a serialisation order of
execution of these operations cannot be obtained to
preserve the intentions of the operations. One of the
following cases occurs:
• executing any of the two operations will not make

possible the execution of the other one
• executing any of the two operations will completely

mask the effect of the other one
• executing one of the operations will not make possible

the execution of the other operation and executing the

other operation will make completely invisible the effect
of the previous operation

An example of real conflicting operations are the two
concurrent operations changeColour(id1,red) and
changeColour(id1,blue), both targeting the same object and
changing the colour of that object to different values.
In Table 2, a list of the real conflicting operations is given.
The first column contains the local operations, the second
column the remote operations and the third column the
condition that a real conflict occurs between the local and
remote operations. The same real conflicting situations
occur if the first column of the table represents the remote
operations and the second column the local operations.

Local operation Remote operation Condition

delete(P,S) ungroup(G,S1,…,SN) S=G
group(G1,S1,…,SN) group(G1,R1,…,RM) {S1,…,SN}∩

{R1,…,RM}≠∅
setColor(S1,c) delete(P,S2) S1=S2 ∨ S1∈S2
setColor(S,c1) setColor(S,c2) c1≠c2

setBckColor(S1,c) delete(P,S2) S1=S2 ∨ S1∈S2
setBckColor(S,c1) setBckColour(S,c2) c1≠c2
translate(S1,dx,dy) delete(P,S2) S1=S2 ∨ S1∈S2
translate(S,dx1,dy1) translate(S,dx2,dy2) (dx1,dy1) ≠(dx2,dy2)
scale(S1,xref,yref,tx,ty) delete(P,S2) S1=S2 ∨ S1∈S2
scale(S,xref1,yref1,tx1,ty1) scale(S,xref2,yref2,tx2,ty2) (xref1,yref1,dx1,dy1)

≠(xref2,yref2,dx2,dy2)
setText(S1,text) delete(P,S2) S1=S2 ∨ S1∈S2
setText(S,text1) setText(S,text2) text1≠text2

setZ(S1,z) delete(P,S2) S1=S2 ∨ S1∈S2
setZ(S,z1) setZ(S,z2) z1≠z2

Table 2. Real conflicting operations

Resolvable conflicting operations are those conflicting
operations for which a partial combined effect of their
intentions can be obtained by serialising those operations.
Consequently, ordering relations can be defined between
any two concurrent operations. Any two resolvable
conflicting operations can be defined as being in the right
order, or in the reverse order. In the case of two setColour
operations: setColour(group1,red) and
setColour(id1,green), where the object with id1 belongs to
the group identified by group1, a combined effect could be
obtained by executing first the setColour(group1,red)
followed by setColour(id1,green). The result would be that
the object identified by id1 will have green color and the
other objects belonging to the group group1 except object
id1 will have red colour.
In Table 3, a list with resolvable conflicting operations is
given. The first column contains the local operations, the
second column the remote operations and the third column
the condition that a resolvable conflict occurs between the
local and the remote operations. The fourth column shows
the order of execution of the remote operation related to the
local operation. Right order indicates that the remote
operation should be executed after the indicated local

operation and reverse order indicates that the remote
operation should be executed before the local operation. As
in the case of the table of real conflicting operations,
symmetric cases of resolvable conflicting operations occur
if the first column of the table represents the remote
operations and the second column the local operations, but
the order of serialisation will be the reverse order specified
in the fourth column.

Local Operation Remote
Operation

Condition Order

delete(P,S) group(G,S1,…,SN) S∈{S1,…,SN} Reverse
delete(P1,S1) delete(P2,S2) S2∈S1 Reverse

ungroup(G,S1,…,SN) setColor(G,c) Reverse
ungroup(G,S1,…,SN) setBckColor(G,c) Reverse
ungroup(G,S1,…,SN) translate(G,dx,dy) Reverse
ungroup(G,S1,…,SN) scale(G,xref,yref,tx,

ty)
 Reverse

ungroup(G,S1,…,SN) setZ(G,z) Reverse

setColor(S,c1) setColor(G,c2) S∈G, c1≠c2 Reverse

setBckColor(S, c1) setBckColor(G, c2) S∈G, c1≠c2 Reverse

translate(S,dx1,dy1) translate(G,dx2,
dy2)

S∈G, (dx1,dy1)≠
(dx2,dy2)

Reverse

scale(S,xref1,yref1,tx1,
ty1)

scale(G,xref2,yref2,
tx2,ty2)

S∈G,
(xref1,yref1,dx1,dy1)
≠(xref2,yref2,dx2,dy2)

Reverse

setZ(S,z1) setZ(G,z2) S∈G, z1≠z2 Reverse
Table 3. Resolvable conflicting operations

The merging procedure consists of the integration of each
operation from the repository into the local log. The
integration of the remote operation into the local log is
done using the same algorithm that has been used for real-
time collaboration [4]. Given the local history buffer
HB=[O1,…,Om,…,On], the steps of the integration of the
operation Onew from the repository into HB are presented in
what follows.
Firstly, Onew is checked for whether it depends on any
cancelled operation from the repository. If it is the case,
Onew is cancelled too and it is not inserted into HB.
Otherwise, Onew needs to be integrated into HB and the
operations from HB need to be reordered in order to
preserve the intentions of as many as possible operations
among Onew and the operations from HB. A list
Real_Conflict containing the operations from HB in real
conflict with Onew is created. A list called Right_Order is
created to contain all the operations belonging to HB that
have to be executed before Onew, i.e. those operations that
are in a right order resolvable conflict relation with Onew.
The list of operations Reverse_Order is created to contain
all the operations belonging to HB that have to be executed
after Onew, i.e. the operations from HB that are in a reverse
order relation with Onew, the operations that are in a follow
relationship with the operations from Reverse_Order and
the operations for which a right order relationship has been
established with the operations from Reverse_Order.
Before inserting an operation into Right_Order or
Reverse_Order list, a check has to be performed whether

the operation belongs to Real_Conflict list. In the case the
operation belongs to Real_Conflict list, it will not be
inserted into Right_Order or Reverse_Order list,
respectively.
In the case that Real_Conflict is not empty, either the
remote operation or all the local conflicting operations will
be executed. The decision as to which of the operations is
to be executed, the remote operation or the operations
belonging to the Real_Conflict, depends on the policy
chosen by the merging mechanism. We have implemented
three main policies for merging: to always execute the local
operations, to always execute the operations from the
repository or to let the user manually choose which of the
conflicting operations is to be executed.
The reordering of the operations from HB should be done
in such a way that the operations from Right_Order are
positioned before Onew and the operations from
Reverse_Order are positioned after Onew.
If Real_Conflict is empty, Onew is added at the end of HB
and afterwards the operations from the Reverse_Order are
moved to the end of HB respecting their initial order in HB.
If Real_Conflict is not empty, either the remote operation is
chosen as the winning operation or the operations in the
Real_Conflict list are chosen as winning operations.
a) If the winning operation is not the remote operation

nothing has to be done.
b) If the winning operation is the remote operation, all

operations from the list Real_Conflict as well as the
operations that depend on them are removed from HB,
Onew is added at the end of HB and afterwards the
operations from the Reverse_Order are moved at the
end of HB respecting their initial order in HB.

The difference between the algorithm for the asynchronous
communication and the one for the real-time
communication [4] is that, in the case of the asynchronous
communication, the masked operations are not considered
since they are eliminated by the compression procedure.
The reader is referred to [4] for a discussion on the
correctness of the algorithm.

STATE-BASED APPROACH
In the state based approach the checkout routine consists of
the sending by the repository of the document
corresponding to the requested version. In the commit
routine, the client sends the local document to the
repository. In the update routine, the last version of the
document from the repository is merged with the local
document. In what follows we are going to describe the
merging procedure.
The merging routine has, as arguments, two graphical
documents - a copy of the local document Dlocal and the
remote document from the repository Dremote and returns a
new document resulting from the process of combining the
two given documents. The merging process is done relative

to the lastSynchDoc value, i.e. the last version from the
repository that was integrated into the local document. Two
different merging algorithms are used: one for the attributes
of the objects and the second for the tree structures. In the
following both algorithms are presented.
The merging of the object attributes is done only for the
case that the leaves are present in all three documents
lastSynchDoc, Dlocal and Dremote. Otherwise, a change in the
tree structure is detected and the case is handled by the
algorithm for merging the structures of the trees. In the
case that the structures of the trees are the same, if a certain
attribute from a leaf S was modified only in one document
Dlocal or Dremote, the modification is simply kept in the
resulting document. The changing of an attribute in both
documents is considered a conflict. In this case only one
modification is kept depending on the chosen policy.
The tree merging algorithm handles the changes related to
the tree structures. The graphical documents Dlocal, Dremote
and lastSynchDoc are transformed into directed acyclic
graphs (DAG), the graphical objects becoming vertices, the
edges being oriented from parents to children.
Three graphs, GL=(VL,EL), GR=(VR,ER) and GLS=(VLS, ELS)
are obtained as result of the transformation of Dlocal, Dremote
and lastSynchDoc documents, respectively.
For handling the conflicts that occur during the merging
process, a priority function is defined:

⎩
⎨
⎧

=
priority have in changes theif ,1
priority have in changes theif ,0

),(priority
1

2
21 doc

doc
docdoc

A cost is associated with each edge from GL and GR:

L
LSremotelocal

LS Eu
EuDD

Eu
u ∈

⎩
⎨
⎧

∉+
∈

= where
 if),,(priority1

 if ,0
)(cost

R
LSlocalremote

LS Eu
EuDD

Eu
u ∈

⎩
⎨
⎧

∉+
∈

= where
 if),,(priority1

 if ,0
)(cost

In what follows we describe the algorithm for merging.
Firstly, a new graph G=(VL∪VR,EL∪ER) is constructed
containing all the vertices and edges from both GL and GR.
In order to convert G to a graphical document, some edges
must be removed. A DAG is a tree if the in-degree of all
vertices is 1, i.e. every vertex has only one parent.
The vertices of the graph are connected either by one edge
or by two edges with their parent. The vertices connected
by one edge with their parent indicate the removal or the
addition of a graphical object from/to a document. If the
cost of the edge that connects the vertex with its parent is 0,
the edge is removed from the graph. Otherwise, no
modification is done. For the vertices connected by two
edges with their parent, the edge with lower cost that
connects the given vertex with its parent is removed from
the graph. In the end, all the vertices that are not in the
same connected component with the root vertex R are
removed from the graph.

Consider a scene of objects consisting of two groups, G1
and G2. Consider that group G1 contains two objects, L1
and L2 and group G2 is formed by group G3 and object L5.
Group G3 is composed by the objects L3 and L4. Further,
suppose that two users, User1 and User2, checkout the
version of the document representing this scene of objects
and concurrently modify it. For resolving the conflicts we
consider that the local changes have priority over the
remote changes. User1 adds an object L6 to the scene of
objects and commits the version of the document into the
repository. User2 groups the groups G1 and G2 into a new
group G4, adds the object L7 to the scene of objects and
deletes object L2. User2 tries to commit the changes into the
repository, but needs to first update the local workspace
with the changes from the repository. Figures 2a), 2b) and
2c) illustrate the graphs GLS, GR and GL respectively.

Figure 2a) GLS 2b) GR 2c) GL

The merging routine consists of the merging of the graphs
GR and GL. The intermediate graph resulting from the union
of the vertices and the edges of the graphs GR and GL is
shown in Figure 3a). The intermediate graph is then
transformed into the final graph shown in Figure 3b).

Figure 3a) Intermediate graph 3b) Final graph

OPERATION-BASED VERSUS STATE-BASED
APPROACHES IN GRAPHICAL EDITING
The state-based merging algorithm compares the states of
the documents to be merged in order to generate the result
of the merging, while the operation-based merging
algorithm uses the differences between the two documents
and a reference document.
The operation-based approach is more efficient than the
state-based approach in the case of large documents
because the number of operations that transform version i

into version i+1 would be statistically smaller than the
number of graphical objects.
The state-based approach is more efficient than the
operation-based approach for merging in the case of small
documents where the number of operations is comparable
with the number of objects from the graphical document.
The operation-based approach has some advantages over
the state-based approach for merging such as a better
resolution for conflicts by partially preserving the
intentions of the operations in conflict.
Consider a scene of objects consisting of a group G that
contains a rectangle R and an ellipse E, all having the
colour white. Consider that two users concurrently modify
this scene of objects. Suppose that User1 changes the
colour of G into blue and performs a commit.
Concurrently, User2 changes the colour of R into green and
tries to commit his changes. User2 needs to first update the
version of his document. In the case of state-based
merging, a conflict is detected between the two operations
performed by the two users, because the colour of R is
modified both locally and remotely. In the case of
operation-based merging, the two operations are detected
as resolvable conflicting operations and they will be
serialised, first the operation changing the colour of the
group G is performed then the operation of changing the
colour of the rectangle R. In the case of the operation-based
approach, the conflicts are detected only between real
conflicting operations and a partial preservation of the
intentions of the users is realised by a serialisation of the
resolvable conflicting operations. On the other side, in the
case of the state-based approach, the conflicts are generated
whenever a property of an object has different values in the
two documents to be merged. Moreover, in the case of
operation-based merging, rules for the definition and
resolution of conflicts can be defined. The real and
resolvable conflicts can be defined between pairs of
operations. In this paper we defined the pairs of operations
that are in a real or resolvable conflict, but the pairs of
conflicting operations can be defined depending on the
application. In the case of state-based merging, there is
only one way for the definition and resolution of conflicts,
i.e. when a property of an object has different values in the
two documents to be merged and the policies for dealing
with conflict are either to keep the local or remote changes
or to let the user choose manually the modification to be
kept.

RELATED WORK
To our knowledge, there are no other collaborative
graphical asynchronous editing systems. Therefore, in this
section, we are going to relate our operation-based
approach with other approaches for maintaining the
consistency in real-time graphical editing based on
serialisation. Also, we are going to relate our state-based
merging with other state-based approaches used in some
asynchronous editing systems.

R

G2 G1

L2 L1

L4

L5 G3

L3

L6

1 0
0

0 0 0 0

0 0

R

G2

G4

L1

G1

L4

L5 G3

L3

L7

0

2 2

2 2

0 0 0

0

R

G4

G2 G1

G3

L4

L5

L6
2

2

0

L3

L7

00

0

0 0

1
2

2

L1

R

G4

G2 G1

L2 G3 L1

L4

L5

L6
2

0

2

0 0

L3

L7

0

0

0
0

0

0 0 0
0

0 1
2

0

2

R

G1 G2

L1 L2 G3

L3 L4

L5

The main difference between our approach and other
approaches based on serialization such as GroupDesign[6]
and LICRA[5] is that we deal with operations of
grouping/ungrouping and we try to satisfy the intentions of
most users issuing concurrent operations including
group/ungroup operations. The intentions for concurrent
operations involving not only objects, but also groups of
objects, cannot be preserved in the way we propose here
using the mechanisms from GroupDesign and LICRA.
The same basic algorithm proposed in this paper has been
used for the real-time graphical editing [4].
Some of the version control systems such as CVS [1] and
RCS [14] adopt state-based merging for the concurrent
editing of text documents. The basic unit for conflict
definition and resolution is the line, meaning that the
changes performed by two users are in conflict if they refer
to the same line. In our state-based approach, the basic unit
for the conflict definition and resolution is the property of
an object in the scene of objects.
In [13] a state-based merging algorithm for XML
documents is proposed. As in our approach, graphs are
associated to tree representations of the two documents to
be merged. A merged graph is constructed by considering
the union of the nodes and edges of the two graphs. The
merged graph is then analysed and the result generated.
The proposed approach [13] also determines the difference
to be stored in the repository. In our approach we keep
whole documents in the repository, but we plan to
investigate storing only the differences between the
documents. However the approach of merging XML
documents is more complex than the approach of merging
object-based graphical documents, because the children of
an XML node are ordered, while there is no order among
the objects belonging to a group.

CONCLUSIONS AND FUTURE WORK
In this paper we proposed an approach for maintaining
consistency in the case of asynchronous object-based
graphical editing, which, to our knowledge, is the first
work in this direction. We proposed one merging algorithm
based on operations and another based on the states of the
documents and compared the two approaches. The
operation-based approach that we proposed is the same
approach that we have used for real-time communication.
The synchronisation of the private working space can be
performed against the repository or against another private
working space.
We are currently extending the system and adapting the
consistency maintenance algorithm to deal with other
objects such as polygonal lines, free forms, connecting
lines, as well as annotations, such that the system can be
used in the architectural or product data management
design.

REFERENCES
1. Berliner, B. CVS II:Parallelizing software development.

Proc. of USENIX, Washington D.C., 1990.
2. Greenberg, S. and Marwood, D. Real time groupware as

a distributed system: Concurrency control and its effect
on the interface. Proc. of the CSCW’94, North Carolina,
October 1994, pp. 207-218.

3. Greenberg, S., Roseman, M., Webster, D. and Bohnet,
R. Issues and experiences designing and implementing
two group drawing tools. Proc. of the 25th Annual
Hawaii International Conference on the System
Science, 1992, pp. 138-150.

4. Ignat, C. and Norrie, M.C. Grouping in Collaborative
Graphical Editors. Proc. of the CSCW’04, Chicago,
November 2004, to appear

5. Kanwati, R. LICRA: a replicated-data management
algorithm for distributed synchronous groupware
application. Parallel Computing 22, 1992.

6. Karsenty, A., and Beaudouin-Lafon, M. An algorithm
for distributed groupware applications, Proceedings of
the 13th International Conference on Distributed
Computing Systems, May 1993, pp.195-202.

7. Molli, P., Skaf-Molli, H., Oster, G. and Jourdain, S.
Sams. Synchronous, asynchronous, multi-synchronous
environments. Proc. of the 7th Int. Conf. on CSCW in
Design, Rio de Janeiro, Brazil, Sept. 2002

8. Moran, T., McCall, K., van Melle, B., Pedersen, E. and
Halasz, F. Some design principles for sharing in tivoli, a
whiteboard meeting-support tool. Groupware for Real-
Time Drawings: A designer's Guide, S. Greenberg, Ed.
McGraw-Hill International(UK), 1995, pp. 24-36.

9. Newman-Wolfe, R.E., Webb M., and Montes, M.
Implicit locking in the Ensemble concurrent object-
oriented graphics editor, Proc. of the ACM Conference
on Computer Supported Cooperative Work (CSCW’92),
New York, 1992, pp. 265-272.

10. Shen, H., Sun, C.: Flexible merging for asynchronous
collaborative systems. Proc. of CoopIS/DOA/ODBASE
2002, pp. 304-321.

11. Sun, C. and Chen, D. Consistency Maintenance in Real-
Time Collaborative Graphics Editing Systems, in ACM
Transactions on Computer-Human Interaction, vol.9,
no.1, March 2002, pp. 1-41.

12. Tichy, W.F. RCS-A system for version control.
Software-Practice and Experience, 15(7),1985.

13. Torii, O., Kimura, T., Segawa, J.: The consistency
control system of XML documents. Symposium on
Applications and the Internet, Jan. 2003.

14. von Biel, V. Groupware Grows Up, in MacUser, June
1991, pp. 207-21

