
Flexible Merging of
Hierarchical Documents

Claudia-Lavinia Ignat and Moira C. Norrie
Institute for Information Systems, ETH Zurich

CH-8092 Switzerland
{ignat,norrie}@inf.ethz.ch

ABSTRACT
Existing versioning systems offer limited support
concerning the definition and resolution of conflicts as well
as tracking of user activity. In this paper we propose a
flexible hierarchical-based merging approach based on
operations, where the conflicts can be specified and
resolved at different semantic units corresponding to the
document levels. Our algorithm applies an existing
operation-based merging approach for linear structures
recursively over the different document levels. Our
approach also achieves better efficiency compared to
existing approaches for merging documents with linear
structures.

Keywords
Asynchronous collaborative editing, version control
systems, hierarchical documents merging, operational
transformation

INTRODUCTION
Asynchronous collaborative editing systems have been
developed to support a group of people collaboratively
editing documents by allowing members of the group to
modify copies of a document in isolation, working in
parallel and afterwards synchronising their copies to
reestablish a common view of the data.
Well known versioning systems such as CVS [1], RCS [13]
and Subversion [3] offer limited support concerning
conflict resolution and tracking of user activity. In these
systems there is no flexible way of specifying the possible
forms of conflict and merging is performed on a line by
line basis with the basic unit of conflict therefore being the
line. This means that the changes performed by two users
are deemed to be in conflict if they refer to the same line.
Concurrent changes on different lines are merged
automatically. Therefore, these systems cannot handle
multiple changes within a single line.
The above mentioned version control systems adopt state-
based merging where only the information about the states
of the documents and no information about the evolution of
one state into another is used. The operation-based
merging approach [7,11] keeps information about the
evolution of one document state into another in a buffer
containing a history of the operations performed between
the two states of the document. The merging is done by
executing the operations performed on a copy of the

document onto the other copy of the document to be
merged. In contrast to the state-based approach, the
operation-based approach does not require that the
documents are transferred over the network between the
local workspaces and the repository. Moreover, merging
based on operations achieves a better responsiveness of the
system since no complex differentiation algorithms for text
such as diff [10] or for XML [2] have to be applied in order
to compute the delta between the documents. It also offers
better support for conflict resolution by having the
possibility of tracking user operations. When a conflict
occurs, the operation causing the conflict is presented in
the context in which it was originally performed. In
contrast, in the state-based merging approach, the conflicts
are presented in the order in which they occur within the
final structure of the object. For instance, CVS, RCS and
Subversion present the conflicts in the line order of the
final document, the state of a line possibly incorporating
the effect of more than one conflicting operation.
In this paper we propose a flexible operation-based
merging algorithm that works on a hierarchical
representation of documents, allowing the possibility of
defining and resolving conflicts by using different semantic
units corresponding to the document levels. Our approach
is general for any document conforming to a hierarchical
structure, such as XML documents. However, throughout
the paper, for a simpler explanation of the approach, we
will use text documents modeled as consisting of
paragraphs, sentences, words and characters. The approach
allows conflicts to be defined and resolved by using the
semantic units - paragraphs, sentences, words and
characters. For instance, a rule specifying that concurrent
insertions in the same sentence are conflicting can easily be
defined. The approach proposed in this paper has been
implemented in our group as part of a framework for
synchronous and asynchronous collaborative editing.
The paper is structured as follows. We begin by presenting
an existing linear based merge algorithm that is applied
recursively over the document levels by our tree-based
merging approach. We then describe our approach for
merging and relate our work to other existing approaches
for merging. Concluding remarks are presented in the last
section.

OPERATIONAL TRANSFORMATION LINEAR-BASED
MERGING
In this section we first present the basic notions of the
operational transformation mechanism when applied in the
merging process. Afterwards, we present the FORCE
algorithm [11] which uses operational transformation for
the merging of linear representations of text documents.

Merging Operations
The basic operations supported by most configuration
management tools are: checkout, commit and update. A
checkout operation creates a local working copy of a
document from the repository. A commit operation creates
a new version of the corresponding document in the
repository by validating the modifications done on the local
copy of the document. The condition of performing this
operation is that the repository does not contain a more
recent version of the document to be committed than the
local copy of the document. An update operation performs
the merging of the local copy of the object with the last
version of that object stored in the repository.

Operational Transformation Mechanism
Operation transformation has been used for maintaining
consistency in real-time collaborative editing [4, 12, 14] as
well as in asynchronous collaborative editing [8, 11].
Firstly, we present the notion of context of an operation O
denoted as CTO as being the document state on which O is
defined. Two operations Oa and Ob having the same
context, CTOa =CTOb, are denoted Oa=CT Ob. An operation
Oa is context preceding operation Ob denoted as Oa→CT Ob
if CTOb=CTOa ◦Oa, i.e. the state of the document on which
Ob is defined is equal to the state of the document after the
application of Oa.
The basic operations of the operational transformation
mechanism are the inclusion and exclusion
transformations. The inclusion transformation - IT(Oa,Ob)
transforms operation Oa against operation Ob such that the
effect of Ob is included in Oa. Consider the following
scenario illustrated in Figure 1. Suppose the repository
contains the document consisting of one sentence “We
present the merge.” and two users check-out this version of
the document and perform some operations in their
workspaces. Further, suppose User1 performs the operation
O11=InsertWord (“procedure”,5) intending to insert the
word “procedure” at the end of the sentence, as the 5th
word, in order to obtain “We present the merge
procedure.” Afterwards, User1 commits the changes to the
repository and the repository stores the list of operations
performed by User1 consisting of O11. Concurrently, User2
executes operation O21=InsertWord(“next”,2) of inserting
the word “next” as the 2nd word into the sentence in order
to obtain “We next present the merge.” Before performing
a commit, User2 needs to update the local copy of the
document. The operation O11 stored in the repository needs

to be transformed in order to include the effect of operation
O21. Because operation O21 inserts a word before the
insertion position of O11, O11 needs to increase its position
of insertion by 1. In this way the transformed operation will
become an insert operation of the word “procedure” as the
6th word, the result being “We next present the merge
procedure.” The condition of performing IT(Oa,Ob) is that
Oa=CT Ob.

The exclusion transformation - ET(Oa,Ob) transforms Oa
against the operation Ob that precedes Oa such that the
impact of Ob is excluded from Oa.
Consider that a user performs some modifications in the
local workspace starting from the version of the document
consisting of the sentence “Our proposed approach was
implemented.” The user performs the operations
O1=DeleteWord(“proposed”,2) of deleting the 2nd word
“proposed” from the sentence and
O2=InsertWord(“successfully”,4) of inserting the word
“successfully” as the 4th word into the sentence resulting
after the execution of O1, as shown in Figure 2.

In the updating process, in the case that a local operation
performed in the workspace is in conflict with an operation
from the repository, one of the conflicting operations needs
to be cancelled. The chosen conflict resolution policy
decides which operation needs to be cancelled. Suppose
that the operation O1 is in conflict with an operation from
the repository and it has to be cancelled. The operation O2

Figure 2. Exclusion Transformation

Figure 1. Inclusion Transformation

O1=DeleteWord(2)

Local Workspace

O2=InsertWord(“successfully”,4)

conflict

Cancel O1=DeleteWord(2)

Repository

Our proposed approach was implemented.

Our proposed approach was
implemented.

ET(InsertWord(“successfully”,4),
 DeleteWord(2))=
InsertWord(“successfully”,5)

commit

We present the merge. We present the merge.

Repository

O11=InsertWord(“procedure”,5)

commit (3)

O21=InsertWord(“next”,2)

We next present the merge.

update (4)

IT(InsertWord(“procedure”,5),
 InsertWord(“next”,2))=
InsertWord(“procedure”,6)

We next present the merge procedure.

checkout (2)

Site 1 Site 2

We present the merge procedure.

checkout (1)

Our proposed approach was
successfully implemented.

Our approach was successfully
implemented.

needs to exclude the effect of operation O1, i.e. to adapt its
position as if operation O1 had not been executed. By
excluding the effect of O1, the position of insertion of O2
would become 5, the result being “Our proposed approach
was successfully implemented.” The condition of
performing ET(Oa,Ob) is that Ob→CT Oa.

Linear-based Merging
In this subsection we are going to present the principles of
the FORCE [11] merging algorithm applied to a linear
representation of the documents.
In the commit phase of merging, a commit is allowed to be
performed only if the base version of the document in the
local workspace, i.e. the last version from the repository
that the user started working on, is equal to the last version
in the repository. Otherwise, an update is necessary before
committing the data. In the case that a commit is allowed to
be performed, the latest version from the repository is
replaced with the received operations from the local
workspace and the new version of the document in the
repository is obtained by sequentially executing the local
operations on the last state of the document. Additionally,
the corresponding base version number from the local
workspace, as well as the latest version number from the
repository, is increased and the local log from the local
workspace is emptied.
In the checkout phase, a request is sent to the repository
including the version number of the document that is
intended to be checked out. In the case that the requested
version number is larger than the latest version number in
the repository, the repository sends a rejective reply. In the
case that the requested version number equals the latest
version number in the repository, the repository sends the
full state of the last version of the document to the local
workspace. In the case that the requested version number is
less than the latest version number from the repository, the
repository generates the state of the requested version by
executing the inverses of the operations representing the
deltas between the latest version in the repository and the
requested version. In the case of a positive reply from the
repository, the local site makes the sent document the
working copy and sets the base version number to be equal
to the version number of the document that was sent.
In the updating phase, the site sends to the repository the
number of the base version. The repository sends to the site
a list of operations representing the delta between the latest
version in the repository and the base version in the local
workspace. Upon receiving the list of operations from the
repository, the local workspace performs the merging
algorithm and updates the base version number. The
merging algorithm has to be performed for the following
scenario. The local user started working from version Vk on
the repository but cannot commit the changes because
meanwhile the version from the repository has been

updated to version Vk+n. Let us denote by LL the list of
operations executed by the user in the local workspace and
by DL the list of operations representing the delta between
versions Vk+n and Vk.
Two basic steps have to be performed. The first step
consists of applying the operations from DL to the local
copy of the user in order to update the local document to
version Vk+n. The operations from the repository, however,
cannot be executed in their original form as they have to be
transformed in order to include the effect of all the local
operations before they can be executed in the user
workspace. The second step consists of transforming the
operations in LL in order to include the effects of the
operations in DL, the list of the transformed local
operations representing the new delta into the repository.
In addition to the operational transformation algorithms
that solve the syntactic inconsistency problems in
collaborative text editing, the approach proposed in [11]
introduces a semantic level of merging by the definition of
a semanticConflict function that determines whether two
concurrent operations are semantically conflicting.
From the list of operations in the list DL not all of them can
be executed in the local workspace because some of these
operations may be in conflict with some of the operations
from LL. Let us consider that DL=[Od1,..., Od(i-1), Odi,
Od(i+1), ..., Odm], where Od1→CT ... →CT Odm. In the case that
Odi is in conflict with at least one operation from LL, Odi
cannot be executed in the local workspace. Moreover, all
operations following it in the list DL need to exclude its
effect from their context. But, the condition to exclude an
operation Oa from an operation Ob is that Oa→CT Ob.
Therefore, in order to exclude the effect of operation Odi
from the context of all the operations following it in the list
DL, we need to transpose operation Odi towards the end of
the list DL. As a result of this transposition the following
condition should be fulfilled: Od1→CT Od2→CT ... →CT Od(i-

1)→CT Od(i+1)→CT ... →CT Odm→CT Odi.
The Transpose function that changes the execution order of
the operations Oa and Ob and transforms them such that the
same effect is obtained as if the operations were executed
in their initial order and initial form is defined below. The
condition of performing the Transpose function is that
Oa→CT Ob and after the call of Transpose(Oa,Ob), O'b →CT
O'a, where O'b and O'a are the transformed forms of Ob and
Oa, respectively.
Transpose(Oa,Ob){

O := ET(Ob,Oa);
Ob := IT(Oa,O);
Oa := O;

}

In order to combine the two steps of the merging, i.e. the
transformations of the operations from the repository
against the operations from the local log and the
transformations of the operations from the local log against

the repository, the symmetric inclusion operation has been
defined:
SymmetricInclusion(Oa,Ob){
 O := IT(Oa,Ob);
 Ob := IT(Ob,Oa);
 Oa := O;
}

The basic merge procedure takes as input arguments two
logs, the remote log RL containing the operations from the
repository and the local log LL containing the local
operations and the base version number V.bv at the local
site. The merge procedure generates as output two other
logs, the new remote log NRL and the new local log NLL,
logs that have been modified in order to include the effects
of the operations in the other log. The new remote log NRL
will contain the list of operations that should be executed
sequentially on the current document state of the working
copy in order to update it. It will contain the non
conflicting operations from the original remote log,
modified in order to include the effects of the operations in
the local log. The new local log NLL will store the list of
operations which has to be sent to the repository and
represents the delta between the new version and the old
version in the repository. It contains the operations in the
local log transformed in order to include the effect of the
operations in the remote log. Additionally, it might also
include the inverse of the conflicting operations from the
remote log. The implementation of the merge procedure is
given below.

Algorithm merge(RL,LL,V.bv):(NRL,NLL){
 RCT:=V.bv;
 for(i=1;i#|RL|;i++){
 CLL:=makeCopy(LL);
 CRLi:=makeCopy(RL[i]);
 LCT:=RCT;
 for(j=1;j#|LL|;j++){

if semanticConflict(SMR,RL[i],LL[j],LCT){
 LL:=CLL;
 RL[i]:=CRLi;
 O:=removeOperation(i,RL);
 i:=i-1;
 append(makeInverse(O),NLL);
 break;
} else { LCT:=execute LL[j] on LCT;
 symmetricInclusion(RL[i],LL[j]);

 }
 }
 if(j>|LL|) { append(RL[i],NRL);

 RCT:=execute CRLi on RCT;
 }
 }
 append(LL,NLL);
 return (NRL, NLL);
}

In order to perform the correct transformations, the local
and remote contexts need to be updated accordingly.
Initially the remote context equals the base version of the
document in the repository. For each operation in the
remote log, a sequence of steps is performed. At the

beginning of the iteration, a copy of the local log is saved
in case the local log needs to be restored later. Also, a copy
of the current operation from the remote log is saved for
possible restoration later. All operations in the local log
are iterated and a check for conflict between the local
operation and the remote one is performed. Two cases are
distinguished depending on the existence of conflict.
In the case that the two operations are not in conflict, the
symmetric inclusion procedure is called in order to
transform the remote operation against the local operation
and vice-versa. The local context is updated in order to
include the last local operation. If the remote operation is
not in conflict with any of the local operations, by the end
of the iteration over the local log, the remote operation will
have orderly included the effect of each of the local
operations and each of the local operations will have
included its effect. Therefore, the remote operation is added
at the end of the new remote log NRL and the remote
context is updated in order to include the initial form of the
remote operation. By the time all operations in the remote
log have been iterated, each of the operations in the local
log will have included the effect of each of the operations
in the remote log. Therefore, the transformed operations
from the local log can be added to the new local log NLL,
as their context includes all operations from the repository.
In the case that the remote and local operations are in
conflict, according to the resolution conflict policy
adopted, one of these two operations is kept and the other
one cancelled. In the merge procedure presented above, the
local operation is chosen automatically as the winner of the
conflict. Therefore, the remote operation should be
eliminated from the remote log. The local log has to be
restored to its form before some of the local operations
included the effect of the remote operation to be removed.
The remote operation needs to be reset to its original form
before including the effect of the local operations up to the
current conflicting local operation. Next, the
removeOperation procedure has to be applied in order to
successively transpose the remote operation to the end of
the remote log. In this way, the remote operation includes
the effect of the operations that follow it in the remote log
and its inverse can be safely added to the beginning of the
new local log NLL. The inverse operation simply cancels
the effect of the original operation from the repository.
Once the iterations are finished, the operations from the
local log need to be added to the new local log.

MERGING OF HIERARCHICAL DOCUMENTS
In this section we present our merging approach working
for hierarchical structures of the document as a
generalisation of the merging applied for linear structures.

Model of the Document
We model a document as a hierarchical structure having
the following levels of granularity: document (0),

paragraph (1), sentence (2), word (3) and character (4),
document being the highest granularity level and character
being the lowest granularity level. Each workspace stores
locally a copy of the tree structure of the document. Each
node (excluding leaf nodes) will keep a history of insertion
or deletion operations associated with its children nodes as
illustrated in Figure 3.

The hierarchical structure is a general model for a large
class of documents and it allows a flexible means of
defining and resolving the conflicts. Our approach can be
applied on documents representing books, the hierarchical
structure consisting of chapters, sections, paragraphs,
sentences, words and characters. The proposed approach
can also be applied to XML documents.
Moreover, the algorithms for maintaining consistency in
collaborative editing based on tree representations of
documents achieve an improved efficiency compared to
other approaches that use a linear representation of the
documents [5]. The existing operation-based linear
merging algorithms maintain a single log in the local
workspace where the locally executed operations are kept.
When the operations from the repository need to be
integrated in turn into the local log, the entire local log has
to be scanned and transformations need to be performed
even though the changes refer to completely different
sections of the document and do not interfere with each
other. In our approach we keep the log distributed
throughout the tree. When an operation from the repository
is integrated into the local workspace, only those local logs
that are distributed along a certain path in the tree are
spanned and transformations performed. The same
reduction in the number of transformations is achieved
when the operations from the local workspace have to be
transformed against the operations from the repository in
order to compute the new difference to be kept on the
repository. Our merging algorithm recursively applies over
the different document levels any existing merging
algorithm relying on the linear structure of the document.

The merging algorithm
In this subsection we describe the generalisation of the
FORCE merge algorithm presented in the previous section

to work on a hierarchical structure of the document. Our
merging algorithm recursively applies the FORCE linear
approach for merging over the document levels.
The commit phase in the case of the tree representation of
the documents follows the same principles as in the case of
the linear representation. The hierarchical representation of
the history of the document is linearised using a breadth-
first traversal of the tree: first the operations in the log
belonging to the paragraph logs, followed by the operations
belonging to the sentence logs and finally the operations
belonging to the word logs.
In the checkout phase, the local workspace is emptied and
all the operations from the repository representing the delta
between the version of the document the user wants to
work on and the initial version of the document are
executed into the local workspace of the user. The
checkout phase could also be implemented as described for
the linear representation of the documents. The main
difference is that, in the FORCE approach, the latest
version in the repository is the state of the document and
the previous versions are represented by the set of
operations constituting the delta between the versions. In
our approach, all the versions are represented by the delta
set of operations and only the first version in the repository
contains the state of the document.
The update procedure presented in what follows achieves
the actual update of the local version of the hierarchical
document with the changes that have been committed by
other users to the repository and kept in the remote log.
The remote log contains a linearisation of the logs that
were initially part of a tree document structure. The goal of
the update procedure is the same as of the merge procedure
generalised for the level of the entire document tree, i.e. the
replacement of the local log associated with each node with
a new one which includes the effects of all non conflicting
operations from the remote log and the execution of a
modified version of the remote log on the local version of
the document in order to update it to the version on the
repository. The update procedure is next presented.
Algorithm update(CN, RL){
 LLL:=getLog(CN);
 bInd:=|RL|;
 RLL:=[];
 for(i=0;i<|RL|;i++){
 O:=RL[i];
 if(getLevel(O) = getLevel(CN)) append(O,RLL);
 else{ bInd:=i;

 break;
 }

 }
 updateOpInds(LLL,getInds(CN));
 (NRL,NLL):=merge(RLL,LLL);
 for(i=0;i<|NRL|;i++) applyOperation(NRL[i]));
 setLog(CN,NLL);
 ChildRL:=[];
 for(i=0;i<getNoChildren(CN);i++) ChildRL[i]:=[];
 for(i=bInd;i<|RL|;i++){

Figure 3. Structure of the document

…

…

Document

Pa 1 Pa 2 Pa 3

Se 3.1 Se 3.2

W 3.1.1 W 3.1.2

C 3.1.2.3
“r”

Doc. Hist.

Se 3.1 Hist. …

…

C 3.1.2.4
“g”

History for operations
at paragraph level

C 3.1.2.1
“m”

C 3.1.2.2
“e”

Levels

Paragraph

Sentence

Word

Pa 1 Hist. Pa 2 Hist. Pa 3 Hist.

Se 3.2 Hist.

W 3.1.1 Hist. W 3.1.2 Hist.

Character

Document

C 3.1.2.5
“e”

History for operations
on sentences in
paragraph Pa3

 O:=RL[i];
 for(j=0;j<|NLL|;j++) include(O,NLL[j]);
 append(O,ChildRL[getInd(O,getLevel(CN))]);
 }
 for (i=0;i<getNoChildren(CN);i++)

update(getChildAt(CN,i),ChildRL[i]);
}

The CN argument of the update procedure represents the
current node in the tree traversal, for the initial call of the
procedure the current node being equal with the root of the
document tree. The parameter RL represents the remote
log. The local level log LLL and the remote level log RLL
have the same purpose as in the basic merge algorithm, the
only difference being that they contain only the part of the
remote and local logs referring to the current node. The
RLL is initialised with the remote operations pertaining to
the current node, by iterating over the remote log and
keeping those operations whose level is identical to the
level of the current node. The level of an operation is equal
to the level of the node in whose history the operation is
kept. For instance, an InsertParagraph operation belongs
to the document history and is of level 0. The bInd variable
will contain the index of the first operation that refers to a
lower level than the level of the current node.
The next step consists of updating the indices of all the
operations in the LLL so that they correspond to the current
position in the tree of the node whose log they belong to.
During the update algorithm, nodes might get inserted or
deleted from the tree, as we apply the modified remote
operations on the local version of the tree. As the positions
of the nodes change, it is clear that all operations belonging
to the log of the nodes whose position have changed will
no longer have valid indices. For example, in the case of a
text document, if the local level log contains the operations
DeleteChar(“d”,1,3,4,5) and paragraph 1 has been shifted
two positions to the right by the insertion of two new
paragraphs before it, the operation has to be transformed to
DeleteChar(“d”,3,3,4,5). The basic merge algorithm is
called in order to merge the RLL and the LLL and generate
two new logs, NRL and NLL. In the version of the update
procedure presented in this paper, due to the merge
procedure, local operations are kept in the case of conflicts.
In our current implementation of the asynchronous text
editing system, other policies for merging have also been
implemented, as described later.
Afterwards, the operations from the NRL are applied on the
local copy of the document in order to update it and the
local log of the current node is then replaced with the NLL.
We mention that for our merging algorithm we can use any
existing linear approach for the merging of two lists of
operations. However, in our current implementation, we
have used the FORCE merging algorithm. Next, the
operations in the remote log starting from bInd need to be
divided among the children of the current node and the
update method called recursively for each child. Each

operation in the remote log starting from position bInd will
be transformed in order to include the effects of all the
operations in the NLL. This is necessary as operations in
the new local log are of higher level than the remaining
operations in the remote log and thus can influence the
context of the remote operations. Afterwards, the
transformed remote operations will be added into the
corresponding ChildRL elements chosen by analysing the
modified index corresponding to the level of the current
node. By the end of the iteration, all remote operations will
have been transformed and placed in the correct list.
Finally, the update method is recursively called with each
of the previously created lists of operations as remote logs.

Log Compression
We apply a log compression procedure by which we reduce
the size of the log by means of transforming several lower
level operations into a single higher level operation. The
compression procedure is called before an update or
commit is performed. For instance, several InsertChar
operations which insert characters in the same word, can be
grouped into one single InsertWord operation inserting the
word formed by the target characters of the InsertChar
operations.

Conflict Definition and Resolution
Because of the tree model of the document, the conflicts
can be defined at different granularity levels: paragraph,
sentence, word or characters. In our current implementation
we have defined that two operations are conflicting in the
case that they modify the same semantic unit: paragraph,
sentence, word or character. The semantic unit is indicated
by the working granularity level chosen by the user. The
conflicts can be visualised at the chosen granularity levels
or at a higher level of granularity. For instance, if the user
chooses to work at the sentence level it means that two
concurrent operations modifying the same sentence are
conflicting. The conflicts can be presented at the sentence
level such that the user can choose between the two
versions of the sentences. But the user may choose to
visualise the conflicts also in the context of the paragraph
to which the sentences belong or at an upper level.
However, other rules for defining the conflicts can be
specified by the implementation of the semanticConflict
function, such as checking some grammar rules by using
the semantic units defined by the hierarchical model.

The conflict resolution policies that we offer in our
implementation are automatic or manual, depending on
whether conflicts are resolved automatically without the
user being prompted for a decision regarding any kind of
conflict or manually with the user being asked to choose
one version or the other. For automatic resolution we offer
two policies for resolving conflicts: to automatically keep
only the local operations or only the remote operations in
the case of conflict. Concerning the manual resolution
policies the user can choose to be presented with each pair

of conflicting operations or he can choose to be presented
with the two different effects achieved by applying either
all the local operations or all the remote operations
pertaining to the conflict unit where the conflict appeared.
The user can then choose between the two alternatives.

Example
In what follows we illustrate the asynchronous
communication by means of an example. Consider that the
repository contains as version V0 the document illustrated
in Figure 4, the document being divided into sections,
paragraphs, sentences, words and characters.

Suppose a conflict is defined between two operations
concurrently modifying the same word and the policy of
merging is that, in the case of conflict, local modifications
are kept automatically. Further, assume two users check out
version V0 from the repository into their private
workspaces. Assume users are concurrently editing the
first paragraph of the Conclusions, namely “Our algorithm
applie a linear merging procedure.” For the sake of
simplicity, we will omit the specification of paragraph p
and section s in the following description of operations
performed. The first user performs the operations O11 and
O12, where O11=InsertChar(“d”,1,3,7) and
O12=InsertWord(“recursively”,1,4). Operation O11 inserts
the character “d” in the first sentence, third word and
operation O12 inserts the word “recursively” into first
sentence, as the fourth word in order to obtain the version

where […] denotes the other sections of the document that
have not been modified. The second user performs the
operation O21, O21=InsertSentence(“The approach offers
an increased efficiency.”,2) and O22=InsertChar(“s”,1,3,7)
in order to obtain

Suppose that both users try to commit, but User1 gets
access to the repository first, while User2's request is
queued. After the commit operation of User1, the last
version in the repository is V1=“[…]Our algorithm applied

recursively a linear merging procedure.[…]”. DL10
representing the difference between V1 and V0 in the
repository is obtained as a result of the linearisation of the
history buffer distributed throughout the tree,
DL10=[O12,O11].
When User2's request is processed, the repository sends to
User2 a message to update the local copy. Therefore the
update procedure is applied, the local tree generated at the
site of User2 being traversed in a top-down manner. Firstly
the document level history is analysed. But there are no
remote operations of section level to be merged. The
update is then applied to the section level. Since the
operations in our example refer to section s, the log
referring to section s is analysed. But there are no remote
operations of paragraph level to be merged. The update is
then applied to the paragraph level. Since there are no
remote operations of sentence level in paragraph p, the
processing is applied to the sentence level. The local
document contains two sentences, but there are no
operations referring to sentence 2, so the merging for
sentence 1 will be analysed. Operation O12 is of word level,
and because there are no local operations of word level, O12
will keep its original form. The update procedure will be
recursively applied for each of the words belonging to
sentence 1. We will analyse only the update applied to the
third word of sentence 1, since the remote logs
corresponding to the other words in the sentence are empty.
The merge procedure will be applied between the list of
operations consisting of O11 and the list consisting of O22.
O11 and O22 are conflicting and according to the assumed
policy the local operation will be kept. As result of this
merging, the list of operations to be transmitted to the
repository is [inv(O11),O22] and the list of operations to be
applied on the local copy of the document is empty.
Therefore, the new local version of the document in the
workspace of User2 will be “[...]Our algorithm applies
recursively a linear merging procedure. The approach
offers an increased efficiency. [..]” This will also be the
new version V2 of the document in the repository after
User2 commits. D21 will become D21=[O21, inv(O11), O22].
When User1 updates his local version of the document, the
update procedure will be called in order to merge the
history buffers distributed along the local tree with the
corresponding operations from D21. We are not going to
describe the steps of the update procedure in detail, but just
remark that, according to our algorithm, the operations of
higher level granularity do not need to be transformed
against the operations of lower level granularity. For
instance, in our example, the operation O21 of sentence
level does not need to be transformed against any of the
local operations in the workspace of User1.
This example illustrated the fact that only a small number
of transformations have to be performed using a tree-model
of the text document where the local log is distributed

Figure 4. Example document

 Our algorithm applies a linear merging procedure. The approach offers
an increased efficiency.

…

…

Abstract

Version control systems are widely used to support a group of people
working together on a set of documents over a network. […]

Conclusions
…

Our algorithm applie a linear merging procedure.
…

Customisable Operation-based Merging of Hierarchical
Documents

Our algorithm applied recursively a linear merging procedure.
…

…

throughout the tree. The operations of a specific granularity
do not need to be transformed against the operations of
lower level granularity. The performance gain obtained by
using a tree representation compared to using the linear
representation of the text documents increases with the
number of operations to be merged. In this example we
have also seen that it is easy to define generic conflict rules
involving different semantic units, such as specifying that
concurrent insertions in the same word are conflicting.
We mention that in the case of versioning systems such as
CVS and Subversion, when User2 is updating the local
copy a conflict between the line “Our algorithm applied
recursively a linear merging procedure.” from the
repository and the line “Our algorithm applies a linear
merging procedure. The approach offers” from the
workspace is detected, as well as the addition of the line
“an increased efficiency.” User2 has to manually choose
between the two conflicting lines and to add the additional
line. Most probably User2 will decide to keep his changes
and choose the line he edited, as well as adding the
additional line. In order to obtain a combined effect of the
changes, User2 has to add manually the word “recursively”
in the local version of the workspace.

RELATED WORK
An operation-based merging approach that uses a flexible
way of defining conflicts has been used in FORCE [11].
However, the FORCE approach assumes a linear
representation of the document, the operations being
defined on strings and not taking into account the structure
of the document.
Another approach that uses the principle of transformation
of the operations has been proposed in [9]. Although file
systems have a hierarchical structure, for the merging of
text documents, the authors proposed using a fixed
working unit, i.e. the block unit consisting of several lines
of text.
Even though other approaches for merging hierarchical
documents, such as XML and CRC (Class, Responsibility,
Collaboration) documents, have been proposed [8] using
the operational transformation approach, our approach
achieves a better efficiency since the log is distributed
throughout the tree rather than being linear.

CONCLUSIONS
In this paper we proposed a tree based mechanism for
maintaining consistency in the case of asynchronous
collaborative text editing. Our approach offers an increased
efficiency compared to the existing approaches that use a
linear structure for representing the document and the
possibility of defining and resolving the conflicts at

different granularity levels corresponding to the document
levels. The proposed algorithm applies the same basic
mechanism as the existing operation-based merging
algorithms working for linear structures but it is recursively
applied over the different document levels.

REFERENCES
1. Berliner, B. CVS II: Parallelizing software

development. Proc. of USENIX, 1990.
2. G. Cobena, S. Abiteboul, and A. Marian. Detecting

changes in xml documents. In Proc. Int. Conf. on Data
Engineering, 2002.

3. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.
Version Control with Subversion, O'Reilly, 2004

4. Ellis, C.A., Gibbs, S.J. Concurrency control in
groupware systems. Proc. of the ACM SIGMOD Conf.
on Management of Data, May 1989, pp. 399-407.

5. Ignat, C.-L., Norrie, M.C. Customizable Collaborative
Editor Relying on treeOPT Algorithm. Proc. of
ECSCW’03, Helsinki, Finland, Sept. 2003, pp. 315-334.

6. Li, D., Li, R. Ensuring Content and Intention
Consistency in Real-Time Group Editors. Proc. of
ICDCS, March 2004.

7. Lippe, E., van Oosterom, N. Operation-based merging.
Proc. of the 5th ACM SIGSOFT Symposium on
Software development environments, 1992, pp. 78-87.

8. Molli, P., Skaf-Molli, H., Oster, G. and Jourdain, S.
Sams: Synchronous, asynchronous, multi-synchronous
environments. Proc. of CSCW in Design, 2002.

9. Molli, P., Oster, G., Skaf-Molli, H., and Imine, A.
Using the transformational approach to build a safe and
generic data synchronizer. Proc. of Group’03, 2003.

10. Myers, E. An O(ND) difference algorithm and its
variations. Algoritmica, 1(2), pp. 251-266, 1986

11. Shen, H., Sun, C. Flexible merging for asynchronous
collaborative systems. Proc. of CoopIS, 2002

12. Sun, C., Ellis, C. Operational transformation in real-
time group editors: Issues, algorithms, and
achievements. Proc. of CSCW, Seattle, Nov. 1998, pp.
59-68.

13. Tichy, W.F. RCS- A system for version control.
Software - Practice and Experience, 15(7), Jul. 1985,
pp. 637-654.

14. Vidot, N., Cart, M., Ferrie, J., Suleiman, M. Copies
convergence in a distributed real-time collaborative
environment. Proc. of CSCW, 2000

