
Draw-Together: Graphical Editor for Collaborative Drawing
Claudia-Lavinia Ignat and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{ignat, norrie}@inf.ethz.ch

ABSTRACT
Collaborative object-based graphical editors offer good support
for design teams to work concurrently on their design. However,
not much research has been done on maintaining consistency
when complex operations such as the grouping of objects or
working on layers are involved. In this paper, we propose a novel
operation serialisation algorithm for consistency maintenance
based on the reordering of nodes in a graph. The nodes of a graph
represent operations and the edges represent ordering constraints
between operations. Users can specify types of conflicts between
operations and the policy for the resolution of conflicts.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications; D.2.2 [Software
Engineering]: Design Tools and Techniques; H.1.2 [Models and
Principles]: User/Machine Systems – Human factors; I.7.1
[Document and Text Processing]: Document and Text Editing

General Terms
Algorithms, Design, Human Factors

Keywords
Graphical collaborative editing, consistency maintenance,
serialisation of operations, topological sort

1. INTRODUCTION
Drawing is a primary activity in many design domains, such as
architectural and product design, and computer tools should help
design teams manage and work concurrently on design drawings.
Collaborative graphical editing systems support a group of people
concurrently editing graphical documents over a computer
network. In the case of object-based graphical editing, the shared
information space central to the collaboration is a scene of
objects. Previous approaches in the collaborative graphical editing
field can be classified into locking, serialisation and multi-
versioning.
In the locking approach adopted by systems such as Aspects [17],
Ensemble [10] and GroupDraw [2], concurrency is restricted as
concurrent editing is allowed only if users are locking and editing

different objects. Moreover, responsiveness is affected due to
delays for lock acquisition.
Serialisation as implemented by LICRA [5] and GroupDesign [6]
ensures that the effect of executing a group of concurrent
operations is the same as if the operations were executed in the
same total order at all sites. If there is any conflict among
concurrent operations, only the effect of the last operation in the
total ordering is maintained. In [3] an operation serialisation
mechanism has been proposed based on the definition of conflicts
between the operations and of an order of execution of conflicting
operations such that a combined intention of users is obtained.
The multi-versioning approach tries to achieve all operation
effects, preserving the intentions of all operations. For each
concurrent operation targeting a common object as in TIVOLI [7]
or a common property of the object as in GRACE [15], a new
version of the object is created. However, the multi-versioning
approach raises some issues related to the graphical user interface,
such as how the versions of an object are related to the base object
or the way the navigation through the versions of an object is
realised. CoGroup[18] is a multi-versioning approach that adopts
the multi-version single display, meaning that only one version is
displayed in the user interface according to user assigned
priorities.
With the exception of [3] and [18], none of the other approaches
have implemented the operations of grouping and ungrouping
which are fundamental operations required in the editing process
of graphical documents. Moreover, none of the existing
approaches discussed the issues concerning concurrency in multi-
page documents or documents involving layers.
In this paper, we extend the approach proposed in [3] by
providing a novel solution for consistency maintenance that uses
an algorithm for the serialisation of operations based on the
reordering of nodes in a graph. The nodes of the graph represent
executed operations and the edges of the graph represent ordering
constraints between these operations. We have classified conflicts
into real and resolvable, depending on whether an ordering of
execution between pairs of operations can be established or not.
We allow an additional set of operations to those proposed in
previous systems. The set of operations that we have implemented
satisfy the requirements of architectural and product design. For
example, in addition to complex operations of group/ungroup, we
support concurrent operations targeting different pages and layers
of objects. In contrast to [3] and [18], we allow users to define the
types of conflicts between the operations and the policy for the
resolution of conflicts. In this way, conflict handling can be
customised to suit the requirements of specific applications.
We structure the paper as follows. In section 2 we present the
model that we adopted for the representation of graphical
documents and the set of operations that can be performed on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW’06, November 4–8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011…$5.00.

scene of objects. We classify the types of conflicts between
operations and explain the problem of maintaining the combined
effect of the intentions of users. In section 3 we describe our
serialisation-based mechanism for maintaining consistency.
Comparison of our approach with related work is presented in
section 4. Concluding remarks and some future work directions
are provided in section 5.

2. MODEL AND PROBLEMATIC
The scene of objects can be modeled by a hierarchical structure:
groups are represented as internal nodes, while simple objects are
represented as leaves. A group can contain other groups or simple
objects.
A node N of a document is a structure of the form N=<parent,
children>, where

• parent is the parent node for the current node. Except for the
topmost node, parent is a valid reference to a node in the tree.

• children is an unordered list [child1,...,childn] of child nodes
The children of an internal node, i.e. a group of objects, are the
objects contained in the group. The order between the child nodes
of a group does not matter. A node is identified by its identifier
and not by its position in the parent structure. A leaf node does
not have any children, and it can be any type of simple object.
The simple objects supported by our system are the following:
rectangles, circles, ellipses, lines, text boxes, polylines
(open/closed), freehand polylines and bitmaps. The freehand
polylines are defined by a set of points connected by lines. The
large number of points composing the polyline gives the
impression of a freehand shape.
The document contains multiple pages and each page contains a
set of layers. Each layer has a root object that references the scene
of objects containing groups and simple objects. The layers may
be set to be visible or not, which determines whether or not the
objects that belong to them appear in the displayed scene of
objects. The structure of the document is illustrated in Figure 1.

Document

Page1 Page2

Layer1m

G112Obj111

...

Layer11

Pagen

...

...

...

...

Layer12

Root11

Obj1121 G1122

... Layer2p

G213Obj211

Layer21

...

Root21

Obj212

...

...

...

The operations that can be performed on the scene of objects are
as follows:

• create(Obj) to create an object Obj

• delete(Obj) to delete an object or group of objects Obj

• group([Obj1,Obj2,…,Objn],G) to group the objects
Obj1,Obj2,…,Objn into the group G. Obj1, Obj2,…, Objn can be
objects or groups of objects.

• ungroup(G) to ungroup the group G

• move(Obj,dx,dy) to move object Obj to a relative position given
by the distances dx and dy on the x and y axes respectively

• scale(Obj,rx,ry) to scale the object or group Obj with the ratio rx
and ry on the x and y axes respectively

• rotate(Obj,angle) to rotate the object or group Obj in
counterclockwise direction with angle angle

• chgColour(Obj,colour) to change the fill colour of the object or
group Obj to colour colour

• chgLineColour(Obj,colour) to change the line colour of the
object or group Obj to colour colour

• chgStroke(Obj,width) to set the width of the line of the object
or group Obj with the value width

• chgText(Obj,text) to change the text contained in the textbox
Obj to text

• chgTextSize(Obj,size) to change the font size of the text
contained in the textbox to size

• sendToBack(Obj) and sendToFront(Obj) operations that move
the object or group Obj to the back or to the front of the scene
of objects. These operations use an auxiliary function
setZPosition(Obj,zPos) to set the depth of the object or group
Obj to the value zPos.

• movePoint(Obj,index,dx,dy) to move the point given by the
index index belonging to the polyline Obj to a relative position
given by the distances dx and dy on the x and y axes
respectively.

• createPage(P,name,nextPage) to create a page identified by P
with the name name before the page identified by nextPage.

• removePage(P) to remove the page identified by P.

• createLayer(L,P,name) to create a layer identified by L in the
page P with the name name.

• removeLayer(L) to remove the layer identified by L

• moveToLayer(Obj,L) to move the object or group identified by
Obj to the layer L.

• createAnnotation(A,Obj) creates an annotation A that is
attached to the object Obj.

Each operation has an associated state vector [1] and an identifier
of the site which generated the operation.
A replicated architecture has been used where each user works on
a copy of the document. Local operations are executed on the
local copy of the document immediately after their generation and
then transmitted to the other sites. When a remote operation
arrives at a site, some of the operations that have been performed
at that site might be undone and re-executed together with the
remote operation in order to satisfy a combined effect of the
concurrent operations. Two operations generated at different sites
are said to be concurrent if, at the moment of generation of one of
the operations, the other operation was not executed at that site.

Figure 1. Structure of the graphical document

As specified in [3], we consider that two concurrent operations
are conflicting if they modify the same property of a common
target object to different values or one operation targets an object
that is destroyed by deletion or ungrouping by the other operation.
In order to illustrate the types of conflict that we defined, let us
consider the following scenario where two users concurrently edit
a scene of objects. The first user groups a group G with another
object O and the second user ungroups the group G. A solution to
this scenario is to consider that the two operations are in conflict
as they target the same group and that only one of them can be
executed. If this solution is desired to be obtained, the two
operations have to be defined as being in a real conflict relation.
Another solution is to obtain a combined effect of the two
operations such as the grouping of individual objects in G with
the object O. This solution can be obtained by specifying that the
two operations are in a resolvable conflict and that the group
operation should be executed first followed by the ungroup
operation. In the case that the ungroup operation would be
executed first, the group operation would target the group G that
does not belong to the structure of the document. Each application
can specify according to its needs the types of conflict between
operations. In what follows we define the real and resolvable
conflicts between operations used in our approach.
Real conflicting operations are those conflicting operations for
which a combined effect of their intentions is not desired or
cannot be established. As we have seen, the scenario presented
above gives an example of two concurrent operations that can be
defined as real conflicting. The class of real conflicting operations
includes those operations for which a serialisation order of
execution of these operations cannot be obtained to preserve the
intentions of the operations: executing one operation will make
the execution of the other operation impossible or will completely
mask the execution of the other one. An example of this kind of
real conflicting operations is the two concurrent operations
chgColour(id1,red) and chgColour(id1,blue), both targeting the
same object and changing the colour of that object to different
values. The operation that wins the conflict is decided according
to a priority scheme, in our case according to priorities assigned
to users, with the operation generated by the user with the highest
priority being the one that wins the conflict.
Resolvable conflicting operations are those conflicting operations
for which a partial combined effect of their intentions can be
obtained by serialising those operations. Consequently, ordering
relations can be defined between the two concurrent operations.
Any two resolvable conflicting operations can be defined as being
in the right order or in the reverse order. Note that conflicting
operations that can be classified as resolvable conflicting
operations may be defined as being real conflicting operations by
certain applications.
For maintaining consistency between the copies of the document
we adopted the operation serialisation mechanism based on the
reordering of the operations from the history buffer. In the process
of reordering operations, the precedence relation between the
operations has to be maintained. An operation Ox precedes Oy if
Oy was generated after Ox was executed.
An operation O2 from the history buffer is said to depend on O1
(O2 depends on O1) if O1 creates an object or group that belongs
to the target list of O2. An operation cannot be executed before the
operation on which it depends. Moreover, an operation has to be

cancelled if the operation it depends on is cancelled. If two
operations are in a depends on relation, they are also in a precedes
relation.

3. SERIALISATION-BASED MECHANISM
FOR MAINTAINING CONSISTENCY
In this section we present the operation serialisation mechanism
that we adopted for maintaining consistency. We first give an
intuitive explanation of the issues that occur in the reordering of
operations in the presence of real and resolvable conflicts. We
then present the algorithms for the integration of an operation into
the history buffer containing the previous executed operations at
that site. We describe how conflicts are defined in our system, and
provide some information about our application.

3.1 An Intuitive Explanation of the Algorithm
Operation serialisation is the mechanism by which operations in
the history buffer HB are re-executed in an order such that the
partial combined effect of the intentions of users is achieved. The
serialisation order takes into account the ordering constraints
between the operations. The conflicts as well as the precedes
relations between the operations have to be considered. In the
case of two real conflicting operations, depending on the policy
for resolving conflicts, at most one of them can be executed. In
the case of resolvable conflicting operations, operations are
executed in the order defined by the ordering relation between the
operations. The serialisation order has to conform to the precedes
relations between the operations.
The main idea of the serialisation mechanism that we used for
maintaining consistency can be described as follows. Given the
current history buffer HB=[O1,O2,…,On], the remote operation
Onew has to be integrated into HB such that, by re-executing the
operations in the HB in a certain order, the partial combined
intention of the users is obtained. We reduced the task of finding a
serialisation order between O1,O2,…,On and Onew to a graph
problem. The operations are represented as nodes of a directed
graph. Between two operations Ox and Oy there is a directed arc
from Ox to Oy if Ox has to be executed before Oy. The resolvable
conflicting operations are therefore represented by means of arcs
in the graph. The real conflicting operations are cancelled
according to the resolution policy. If an operation is cancelled, its
dependent operations also have to be cancelled. In their turn, the
cancelled dependent operations cancel their dependent operations.
Due to the fact that relations of real conflict between the
operations do not impose any ordering between the operations, as
opposed to the precedes and resolvable conflict relations between
the operations, two directed graphs are constructed: the real-
conflict and serialisation graphs. The real-conflict graph
determines which operations have to be cancelled due to real
conflicts between operations. If there is a real conflict between
operations O1 and O2 and operation O2 has a lower priority than
O1, then the real conflict graph contains an edge directed from O1
to O2. The serialisation graph determines the order of execution of
the operations.
Additional care has to be taken concerning conflicting operations
in order to maintain consistency. Suppose that three users
concurrently edit the scene of objects illustrated in Figure 2.
Suppose that the first user groups the objects identified by id4 and
id6 into the group identified by id7. Further, the user groups the

newly created group id7 with the object id8, the result being the
group id9. Concurrently, the second user groups the objects
identified by id1 and id4 into the group id5 and changes the colour
of this group to red. Concurrently with the operations executed by
the first two users, the third user groups the objects identified by
id1 and id2 into the group identified by id3 and changes the colour
of group id3 to blue. Suppose that the priorities of the sites Site1,
Site2 and Site3 are 1, 2 and 3 respectively and, in the case of
conflict, the concurrent operation generated from the site with the
highest priority wins the conflict. The highest priority corresponds
to the lowest integer value assigned. For instance, priority 1 is
higher than priority 2. The operations O1 and O3 as well as O3 and
O5 are real conflicting operations as they target common objects.
The editing scenario is illustrated in Figure 3.

id6

id1

id4

id2

id8

Site 3Site 2Site 1
(Priority 1) (Priority 2) (Priority 3)

O1=group([id4,id6],id7)

O2=group([id7,id8],id9)

O3=group([id1,id4],id5) O5=group([id1,id2],id3)

O6=chgColour(id3,blue)O4=chgColour(id5,red)

Let us analyse the steps for the construction of the graphs at Site1.
Due to space limitations, we have drawn the edges of both the real
conflict and serialisation graphs for sites 1 and 3, respectively, as
single graphs in Figures 4 and 5. The edges of the serialisation
graph are drawn using continuous lines, while the edges of the
real conflict graph are drawn using dashed lines. After O1 and O2
are generated, the corresponding graph illustrated in Figure 4a)
contains the edge from O1 to O2 as O2 depends on O1. When
operation O3 arrives at the site, the real conflict between O3 and
O1 is detected. As O1 has a higher priority than O3, O3 is
cancelled, as illustrated in Figure 4b). When operation O4 arrives
at the site, it is cancelled, as O3, the operation it depends on, was
cancelled. The resulting graph is illustrated in Figure 4c). When
O5 arrives at the site no conflict is detected. When O6 is received,
as illustrated in Figure 4d), the edge from O5 to O6 is added to the
graph due to the fact that O6 depends on O5.
At Site3, after O5 and O6 are generated, the edge between O5 and
O6 is added to the graph, as illustrated in Figure 5a). When O3
arrives at the site, the real conflict between O3 and O5 is detected
and operation O5 is cancelled as O3 has a higher priority than O5.
As O5 is cancelled, its dependent operation O6 is also cancelled.
After O4 arrives at the site, the dependent edge between O3 and O4
is added to the graph, as illustrated in Figure 5b). If cancelled
operations are not reconsidered, when operation O1 arrives at the
site, the real conflict between O1 and O3 is detected and operation

O3 is cancelled as O1 has a higher priority than O3. Due to the fact
that O3 is cancelled, O4 is cancelled too, as O4 depends on O3. The
graph obtained at this step is illustrated in Figure 5c). When O2
arrives at the site, the dependent edge between O1 and O2 is added
to the graph, as illustrated in Figure 5d).

O1=group([id4,id6],id7)

dep

O2=group([id7,id8],id9)

Site 1
O3=group([id1,id4],id5)O1=group([id4,id6],id7)

dep

O2=group([id7,id8],id9)

dep

O4=chgColour(id5,red)

dep

O2=group([id7,id8],id9)

dep

O4=chgColour(id5,red)

O5=group([id1,id2],id3)

dep
O6=chgColour(id3,blue)

dep

O2=group([id7,id8],id9)

a) After O1 and O2 are generated b) O3 arrives at the site and is cancelled due to
the real conflicting operation O1

c) O4 arrives at the site and as O4 depends on
O3 and O3 is cancelled, O4 is cancelled, too

d) After O5 and O6 arrive at the site

O3=group([id1,id4],id5)O1=group([id4,id6],id7) O3=group([id1,id4],id5)O1=group([id4,id6],id7)

dep
O5=group([id1,id2],id3) O6=chgColour(id3,blue)

Site 3
O3=group([id1,id4],id5)

a) After O5 and O6 are generated

O3=group([id1,id4],id5)

O4=chgColour(id5,red)

O1=group([id4,id6],id7)
O3=group([id1,id4],id5)

dep

O4=chgColour(id5,red)

dep

O2=group([id7,id8],id9)

O1=group([id4,id6],id7)

dep

O4=chgColour(id5,red)

b) O3 cancels O5 and its dependent operation O6; the
dependent edge between O3 and O4 is added to the graph

c) O1 cancels O3 and O4, the dependent operation of
O3, is cancelled, too

d) The dependent edge between O1 and O2 is added
to the graph

dep
O5=group([id1,id2],id3) O6=chgColour(id3,blue)

dep
O5=group([id1,id2],id3) O6=chgColour(id3,blue)

dep

dep

O5=group([id1,id2],id3) O6=chgColour(id3,blue)

As we can see, the set of operations that are not cancelled at Site1
and Site3 are not the same, which leads to inconsistency of the
shared document at the two sites. The reason is that, due to the
order of execution of the real conflicting operations, the
maximum set of real conflicting operations that can be executed
according to the priorities of the operations has not been
considered. The solution to this issue is that the operations that
are real conflicting with an operation have to be considered even
if they have been cancelled. If an operation is in real conflict with
other operations and it has the highest priority, the real conflicting
operations having lower priorities have to be cancelled. By
cancelling an operation, their dependent operations have to be
cancelled recursively. If an operation is cancelled, the operations
in real conflict with it have to be reconsidered as some of the
cancelled operations in real conflict might be reactivated. By
uncancelling an operation, its dependent operations might be
reaccepted if they are not cancelled by other operations. The
process for the cancellation and reactivation of an operation is
repeatedly applied throughout the graph.

Figure 2. Scene of objects

Figure 3. Scenario involving real conflicting operations

Figure 4. Steps in the construction of the graph at Site1

Figure 5. Steps in the construction of the graph at Site3

In our example, when operation O1 arrives at Site3, it cancels
operation O3 and its dependent operation O4, as shown in Figure
5c). By the cancellation of O3, the real conflicting operation O5
previously cancelled due to O3 should be reactivated. Due to the
reactivation of O5, O6 should be reactivated too. In this way, the
set of operations executed at Site1 and Site3 are the same and
therefore consistency is achieved.

3.2 Integration of an Operation
We next present the procedure for the integration of an operation
into the history buffer.
Procedure integrate(O,SGraph,RCGraph,History){
 addNode(O,SGraph);
 addNode(O,RCGraph);
 //add the edges corresponding to the relations
 //between O and the other operations in History
 for(i:=0;i<size(History);i++)
 if(concurrent(O,History[i]))
 if(realConflict(O,History[i]))
 if(priority(O)>priority(History[i]))
 addEdge(O,History[i],RCGraph);
 else
 addEdge(History[i],O,RCGraph);
 else
 if(rightOrderConflict(O,History[i]))
 addEdge(O,History[i],SGraph);
 else
 if(reverseOrderConflict(O,History[i]))
 addEdge(History[i],O,SGraph);
 else
 if(dependsOn(O,History[i])){
 addEdge(History[i],O,SGraph);
 markDependentEdge(History[i],O,SGraph);
 }
 else
 if(precedes(History[i],O))
 addEdge(History[i],O,SGraph);
 //recursively cancel and reactivate nodes in the graph
 propagateCancelOps(O,SGraph,RCGraph);
 //compute the topological sort
 TopSort:=topologicalSort(SGraph,History);
 //find the maximum set of operations from History that
 //conform to the computed topological order
 i:=0;
 while(i<size(History) and History[i]==TopSort[i] and
 not(changedStatus(History[i])))
 i:=i+1;
 //undo the last operations in History that need to be
 //reordered
 for(j=size(History)-1;j>=i;j--) undo(History[j]);
 //redo the undone operations in the order specified by
 //the computed topological sort
 for(j=i;j<size(TopSort);j++) redo(TopSort[j]);
 setHistory(TopSort);
}

The procedure integrate integrates operation O into the history
buffer History, by taking into account the real conflict graph
RCGraph and the serialisation graph SGraph constructed from the
nodes in History. The new node O is added to RCGraph and
SGraph. For each concurrent operation in History, History[i], an
edge between O and History[i] is added in RCGraph or SGraph,
depending on the type of conflict between them. If the two
operations O and History[i] are not concurrent, a check is done
whether O depends on History[i] or whether History[i] precedes
O and the corresponding edges are added to SGraph. Due to the
insertion of node O and the insertion of various types of edges
between O and other nodes in the graph, some nodes might
change their status from accepted to cancelled or the other way

around. The recursive propagation of the cancellation and
reactivation of nodes is performed in the procedure
propagateCancelOps presented later on in this subsection.
The topological sort of the nodes in SGraph that maintains the
maximum set of ordered operations in History starting with the
first operation is saved into the list TopSort. Therefore, the first
parts of the lists History and TopSort are common and the
remaining operations in History have to be undone and re-
executed in the order specified by TopSort. The starting index for
the process of undoing the operations is determined by traversing
the list History from left to right and finding the first operation
that does not conform to the ordering in TopSort or changed its
status from accept to reject or the other way around.
We next present the procedure propagateCancelOps that
recursively propagates the cancellation and reactivation of nodes.
Procedure propagateCancelOps(Onew,SGraph,RCGraph) {
 Nodes:=[];
 addFirst(Onew,Nodes);
 setStatus(Onew,cancel);
 //process each node from the list Nodes and check if
 //its status has to be changed
 while(!isEmpty(Nodes)) {
 O:=removeFirst(Nodes);
 changed:=false;
 //if O has status accept
 if(getStatus(O)==accept){
 //suppose the final status of O remains accept
 isFinalState:=true;
 //if other operations cancel O, the status of O
 //becomes cancel
 DepOps:=getNeighbours(filterDependent(
 getInboundEdges(O,SGraph)));
 for(i=0;i<size(DepOps);i++)
 if(getStatus(DepOps[i])==cancel) {
 setStatus(O,cancel);
 isFinalState:=false;
 break;
 }
 if(isFinalState) {
 RCOps:=getNeighbours(getInboundEdges(O,RCGraph));
 for(i=0;i<size(RCOps);i++)
 if(getStatus(RCOps[i])==accept) {
 setStatus(O,cancel);
 isFinalState:=false;
 break;
 }
 }
 //if an operation cancelled O, O changed its status
 if(!isFinalState) changed:=true;
 }
 else {
 //if O has status reject, assume O changes its status
 isFinalState:=false;
 //if other operations cancel O, O keeps its status
 DepOps:=getNeighbours(filterDependent(

 getInboundEdges(O,SGraph)));
 for(i:=0;i<size(DepOps);i++)
 if(getStatus(DepOps[i])==cancel) {
 isFinalState:=true;
 break;
 }
 if(!isFinalState) {
 RCOps:=getNeighbours(getInboundEdges(O,RCGraph));
 for(i=0;i<size(RCOps);i++)
 if(getStatus(RCOps[i])==accept) {
 isFinalState:=true;
 break;
 }
 }
 //if no operation canceled O, O has to change its
 //status to accept

 if(!isFinalState){
 changed:=true;
 setStatus(O,accept);
 }
 }
 //if status of O changed, add to Nodes the operations
 //that might change their status due to O
 if(changed) {
 setChangedStatus(O);
 for(O in getNeighbours(filterDependent(
 getOutboundEdges(O,SGraph))))
 addLast(O,Nodes);
 for(O in getNeighbours(getOutboundEdges(O,RCGraph)))
 addLast(O,Nodes);
 }
 }
}

The first argument of procedure propagateCancelOps is operation
Onew that was added to the SGraph and RCGraph graphs. It might
be cancelled or generate the cancelling of other operations. The
second and third arguments of the procedure are the graphs
SGraph containing the ordering relations between operations and
RCGraph containing the real conflicting operations.
The idea of the algorithm is to add the nodes that might change
their status to a list and check, for each node in the list, whether it
can keep its current status and then add to the list the nodes that it
might in turn cause to change their status.
The list Nodes contains the nodes whose status has to be checked.
At the beginning, operation Onew is added to the list with the
status of a cancelled operation.
A set of iterations is performed over the list Nodes and, at each
step, the first element in the list is checked to determine if it can
keep its status. If the operation has to change its status from
accepted to cancelled or the other way around, its dependent
nodes and its real conflicting nodes that have a lower priority are
added to the list Nodes. No more iterations have to be performed
when the list Nodes is empty. For the first operation O in the list
Nodes, two cases are distinguished depending on whether the
status of O is accept or cancel.
The flag isFinalState indicates whether operation O can keep its
status. In the case that the status of O is accept, we make the
assumption that the final state of O is accept and therefore set the
flag isFinalState to true. A check has to be done whether SGraph
contains a cancelled operation on which O depends that cancels O
or RCGraph contains an active conflicting operation that cancels
O. If it is the case, O has to be cancelled and therefore
isFinalState has to be set to false. This means that O changed its
status and therefore the flag changed is set to true.
In the case that the status of O is cancel we make the assumption
that this is not the final state of O and therefore set the flag
isFinalState to false. A check is done whether SGraph contains a
cancelled operation on which O depends that cancels O or
RCGraph contains an active conflicting operation that cancels O.
If it is the case, O has to be cancelled. Therefore, O keeps its
original state and the flag isFinalState has to be set to true. If
there is no operation that cancels O, i.e. isFinalState remains set
to false, it means that our assumption that the final state of O is
accept holds. Therefore, O changed its status and flag changed
has to be set to true.
If, as result of the verifications, operation O changed its status, all
operations that might change their status due to the changing of

the status of O are the dependent operations on O and the real
conflicting operations of a lower priority than the priority of O.
The serialisation order of the operations is the topological sort of
the serialisation graph. If the graph has a cycle there is no solution
for the serialisation order. As a graph has a set of corresponding
topological sort orders, there are different ways of reordering the
operations. To find an order between O1, O2,…,On, Onew, we chose
the topological sort that maintains the maximum set of ordered
operations in HB=[O1,O2,…,On] starting with the first operation.
Therefore, a minimum number of operations from HB have to be
undone in order to perform the reordering of operations.
The topologicalSort function together with the auxiliary
procedure addResult&Update that it calls are now presented.
Function topologicalSort(Graph,History):Result {
 Result:=[];
 Nodes:=getNodes(Graph);
 //NoEdges is a hashmap containing pairs between nodes
 //and the in-degrees of those nodes
 for (i=0;i<size(Nodes);i++)
 put(NoEdges,(Nodes[i],getInDegree(Nodes[i],Graph)));
 k:=0;
 //add those nodes belonging to History to Result
 //if their in-degrees=0 and their status did not change
 while(k<size(History) and get(NoEdges,History[k])==0
 and not(changedStatus(History[k]))){
 addResult&Update(Result,History[k],Graph,NoEdges);
 k++;
 }
 //sort the remaining nodes in their topological order
 //iterate size(Nodes)-k times over Nodes and choose
 //each time a node of in-degree 0
 for(i=0; i<size(Nodes)-k; i++) {
 ind=-1;
 for(j=0; j<size(Nodes); j++)
 if(get(NoEdges,Nodes[j])==0)
 if(ind==-1) ind:=j;
 else
 if(getId(Nodes[j])<getId(Nodes[ind])) ind:=j;
 //if there is no node having the in-degree=0,
 //no topological order exists
 if (ind==-1){
 Result:=null;
 return Result;
 }
 addResult&Update(Result,History[ind],Graph,NoEdges);
 }
 return Result;
}

Procedure addResult&Update(Result,Node,Graph,NoEdges) {
 append(Result,Node);
 //mark Node to not be considered in the next step of
 //the topological order
 put(NoEdges,(Node,-1));
 //decrease the in-degree of the neighboring nodes
 //corresponding to the outgoing edges of Node
 for(NeighbourNode in getOutNeighbours(Graph,Node)) {
 NeighbourInDegree:=get(NoEdges,NeighbourNode);
 put(NoEdges,(NeighbourNode,NeighbourInDegree-1));
 }
}

The topologicalSort function takes as arguments the serialisation
graph Graph that is used for the reordering of operations and the
old history buffer History before the integration of the new
operation. The function reorders the nodes in the graph according
to the ordering relations between the operations represented by
the edges in the graph. Note that Graph contains the new
operation that has to be integrated in the history buffer, while
History does not contain it. The function returns the reordered list

of operations in the serialisation graph. Therefore, Result will
represent the new history buffer.
The process of building a topological sort of a graph implies
considering, in turn, the nodes that have the in-degree 0. After a
node that has the in-degree 0 is considered, the edges from that
node to the neighbouring nodes are removed.
Nodes is initialised with the list of nodes in the graph and
NoEdges is a hash map containing, for each node in the graph, the
in-degree of the node, i.e. the number of edges having that node
as target. The history is traversed from left to right and, as long as
an operation History[k] has the in-degree 0 and has not changed
its status in the recursive process of cancellation of operations, it
is considered in the topological sort. During the process of
cancellation, some operations might have changed their status
from being cancelled to being accepted or the other way around
and, therefore, the ordering between these operations and the
other operations might have changed and it no longer conforms to
the ordering in History. The procedure addResult&Update
appends the operation History[k] to Result and, in order that
History[k] is no longer considered in the ordering process, the
operation is marked to have the in-degree -1. The neighbouring
operations of History[k] in the graph corresponding to the
outgoing edges have to have their in-degree decreased by 1, as
operation History[k] has been already considered in the
topological sort and its neighbouring edges have to be eliminated.
After the operations in History have all been considered or an
operation is encountered that either has in-degree≠0 or has its
status changed, the other operations in the graph that were not
considered have to be added to the topological sort. The number
of nodes that still have to be added to the topological sort is equal
to the number of total nodes minus the number of operations in
History that have been included in the topological sort.
A node can be added to the topological sort list when it has an in-
degree equal to 0. But, there are more nodes that may have an in-
degree equal to 0. The history buffers that would be obtained by
different topological sorts would be equivalent. Obtaining the
same history that contains the operations in a global order is
useful in the undo process of global operations. In order to obtain
the same history at all sites, we use the criteria that, when two
nodes have their in-degree equal to 0, we choose to execute first
the operation that was generated from the site with the lowest
identifier. Note that it is not possible for two operations generated
at the same site to have an in-degree equal to 0, as, between the
two operations, a precedes relation exists and thus one of the two
operations has an in-degree greater or equal to 1.
A number of iterations equal to the difference between the total
number of nodes in the graph and the number of operations in
History that have been included in the topological sort have to be
performed. In each iteration, a node that has an in-degree equal to
0 has to be chosen and it has to be the operation generated from
the site with the lowest identifier from the set of operations that
have not been considered and have an in-degree equal to 0. In the
case that, in one of these iterations, no operation with in-degree 0
is found, the returned result is null, meaning that there exists no
topological sort. This case occurs if the set of conflicts between
the operations was not correctly defined. In the case that an
operation satisfying the above-mentioned conditions is found
during the iteration, the procedure addResult&Update is called.
By the call of the procedure, the operation is appended to Result,

its corresponding entry in the hashtable NoEdges is updated with
value -1 and the in-degree of its neighbours in the graph is
updated as result of the deletion of the outgoing edges of the
operation.
In what follows we point out some issues encountered for
maintaining consistency in graphical editing. The first issue was
working with pages. The pages of the document conform to a
linear structure and special attention had to be given to
maintaining consistency in the presence of concurrent operations
that insert and delete pages. We defined the operation of deletion
of a page as DeletePage(PageId), where PageId is the identifier
of the page to be deleted. The operation of insertion of a page is
defined as InsertPage(BeforePageId), where BeforePageId is the
identifier of the page before which the insertion has to be
performed. The problem occurs if one user inserts a page, while
another user concurrently deletes the page before which the
insertion has been performed. The solution to this problem was to
find a serialisation order between the two concurrent operations of
insertion and deletion of a page, such that an insertion of a page is
performed before the deletion of a page.
The same solution that we applied for maintaining consistency
over the pages of a document could be applied for maintaining
consistency over text documents. Text documents are viewed as a
sequence of characters, each character having assigned a unique
identifier. The set of operations that can be performed on text
documents are insertions and deletions of characters. The
operation of deletion of a character specifies as argument the
character to be deleted and the operation of insertion of a
character takes as arguments the character to be inserted and the
character identifier before which the insertion has to be
performed.
As for the consistency maintenance for document pages, the cases
that need special attention are the concurrent insert operation of a
character and the deletion of the character before which the
insertion has to be performed. The solution is to establish a
serialisation order between the two operations, to execute first the
insertion of the character followed by the deletion of the
character. Another special case is the one when two concurrent
operations insert characters at the same position. The solution is
to establish a serialisation order between the two operations, to
execute first the insert operation generated from the site with the
lower identifier followed by the insert operation generated from
the site with the higher identifier.
Another issue that we mention here is that objects and groups
have an associated z-order. The case that needs special attention is
when two concurrent operations create a new object. The solution
is to execute these operations in a certain order at all sites. We
adopted a serialisation order between concurrent operations based
on the identifier of the sites where the operations were generated.
Layers also have an associated z-order and the same issues and
solutions apply.

3.3 Definition of Conflicts
The list of types of conflicts is specified by users in a separate
document and can be modified according to various applications.
A conflict is given by the specification of the type of the two
operations in conflict, the condition for conflict and the type of
conflict. We illustrate this by means of some examples showing
how conflicts can be defined.

A delete operation o1 is in a resolvable conflict with a group
operation o2 if the target object of o1 belongs to the target list of
o2. The conflict is resolved by executing first the o2 operation
followed by the o1 operation.

conflict {
 operation o1:delete o2:group
 condition o1.id in o2.inlist
 resolution reverse
}

Two concurrent operations moving the same point of a polyline
are in real conflict. The resolution policy is specified to be none,
meaning that the conflict is a real conflict.

conflict {
 operation o1:pointmove o2:pointmove
 condition o1.id=o2.id and o1.pointid = o2.pointid
 resolution none
}

Two change colour operations o1 and o2 are in conflict if the
target of operation o1 belongs to the group targeted by operation
o2. The resolution policy is to execute operation o2 first followed
by operation o1. An additional condition has to be stated that the
target objects of the two operations are different. The case when
the two change colour operations target the same object is
specified as being a real conflict in another conflict rule.

conflict {
 operation o1:changecolor o2:changecolor
 condition o1.id != o2.id and o1.id childof o2.id
 resolution reverse
}

3.4 Draw-Together Application
An editor based on the algorithms described in this paper has been
implemented. A screenshot of our Draw-Together application
interface is given in Figure 6. The interface illustrates the
collaborative work of three users performing a brainstorming
session about the organisation of the Collaborative Editing
Workshop. One can notice the set of primitives that can be used
for drawing, such as rectangles, lines, ellipses, polylines, text
boxes, bitmaps and annotations and the set of operations that can
be performed by means of the various buttons included in the
toolbars. Note also the use of multi-pages and layers. The
Workshops and Organisers layers can be set visible or invisible,
depending on whether the details about the related workshops and
organisers of the workshop want to be shown or hidden.

The Draw-Together application is based on requirements for
collaborative drawing as specified by a research group in the
engineering department of our university who are especially

interested in supporting the early stages of product development
involving product sketching and brainstorming sessions.

4. RELATED WORK
As our algorithm is based on the serialisation mechanism, in the
first part of this section, we relate our algorithm to other
serialisation approaches, such as Bayou[16], Sync[9],
IceCube[11] and the ACF framework[12]. In the second part of
this section we relate our approach to other graphical editors.
Bayou[16] is a replicated database system. A site applies
operations tentatively as they are received from the local or
remote sites. A tentative timestamp is assigned by a site to an
operation as it arrives at that site. The final timestamp is the time
the operation is accepted by the primary site. Bayou produces a
schedule in timestamp order. Operations are first executed by a
site in their tentative order and then undone and redone in the
final order. Conflicts are detected by an explicit precondition
called dependency check attached to an operation and they are
resolved by an application-defined merge procedure also attached
to each operation. The primary site orders the operations and
resolves the conflicts as they arrive and then propagates the
decisions to the other sites. As opposed to the Bayou system that
requires a primary site for deciding the final order between
operations, our approach is distributed and the final order is
incrementally built by each site.
IceCube [11] is a generic system for reconciliation which is
viewed as an optimisation problem of scheduling a maximum
number of concurrent actions, given a set of constraints. The
constraints can be static or dynamic. In the case of static
constraints, they are evaluated without using the current state of
objects. In the case of dynamic constraints, the success or failure
of a single action depends on the current state of objects. A
scheduling stage produces schedules that satisfy the static
constraints. The schedules obtained in this phase are verified in a
simulation stage, where actions are executed against a copy of the
state to check the dynamic constraints. At the end, a selection
stage chooses the schedules that satisfy the dynamic constraints.
In order to achieve convergence of the n sites involved in the
collaboration, in the IceCube approach, a common site is
responsible for achieving the reconciliation. All the other sites
have to send all operations executed since the last synchronisation
to this site. The reconciliation mechanism is applied and the
combined log is sent to all sites. The reconciliation phase is NP-
hard. In our approach, the constraints are defined by the relations
between the operations: preceding, right order, reverse order,
dependence and real conflict. We do not distinguish between
static and dynamic constraints. As opposed to the centralised
approach of IceCube, our approach is distributed. Moreover, the
algorithm that we designed is incremental and it integrates a new
operation into an already computed schedule by reusing a
maximal set of orderings that remain valid after the integration of
the remote operation. The new schedule satisfies the total set of
constraints between the remote operation and the previously
integrated operations. Bayou and IceCube approaches do not
describe their application for graphical editing.
Sync[9] application provides high-level primitives in the form of
predefined classes that enable programmers to create
synchronised, replicated data objects. The Sync approach for
merging is based on the merge-model described in [8]. The merge

Figure 6. Draw-Together application

matrix defines merge functions for the possible set of operations,
such as deletion of an element, the insertion of an element after
another element in the sequence and the modification of an
element. An application of Sync for a drawing-based
collaborative tool has been proposed in [9]. Sync allows a merge
of a user’s change with the server, but requires that the server’s
change always wins the conflict. Our approach does not require a
server for the synchronisation, but an operation generated at a site
is propagated immediately to the other sites and at each site an
incremental process for the integration of an operation is applied.
Moreover, the graphical application proposed in [9] does not deal
with operations of grouping and ungrouping that would change
the structure of the tree.
In [12] a formalism for modelling replication in a distributed
system where users concurrently work on shared data has been
proposed. The approach is based on actions representing
operations executed by users and a set of constraints representing
scheduling relations between actions. The approach offers support
for reasoning about consistency properties of replication
protocols. The Action-Constraint Framework [13] is a
continuation of the work in [12] and it defines the three
dimensions for consistency by mapping to three problems on
subgraphs of a multilog: conflict breaking, agreement and
serialisation. Each site has a local view called a multilog of
known actions and constraints. The constraints defined for the
multilog are the following:

• “α Before β” indicating that α should be executed before β. A
schedule that executes neither α nor β, or only α or only β or both
α and β in this order is correct with respect to this constraint.

• “α MustHave β” indicating that if α is executed then β must also
be executed, although not necessarily in this order. A schedule
that executes only β, or that executes neither α nor β is correct
with respect to this constraint.

• “α non-commuting β” indicating that α does not commute with
β. Two actions commute if by executing them in either order an
equivalent state is obtained.
An initial graph is constructed, where the nodes of the graph
represent actions and the edges represent the before, mustHave
and non-commuting relations between actions. As previously
mentioned, the consistency problem is divided into three
subproblems by the division of the initial graph into three other
graphs: before, mustHave and serialisation graphs. The before
graph contains the before edges from the initial graph, the
mustHave graph contains the mustHave edges from the initial
graph and the serialisation graph contains the before and non-
commuting edges from the initial graph. The processing of these
graphs offers support for reasoning about the correctness of
different consistency protocols.
We can map our problem for maintaining consistency to the ACF
framework. Our precedes and resolvable conflicting relations
between the operations can be mapped to the before relations in
the ACF framework. A depends relation between two operations
in our approach is mapped to both a before and a mustHave
relation. The operations excluding the ones that are in a real
conflict, resolvable conflict or are dependent are considered
commuting. The cancelled operations correspond to the set of
dead actions in ACF, i.e. actions that are not executed in any
schedule. In our approach, we adopted an incremental way of

integrating remote operations in the schedule that was built from
the previous set of operations. The approach of ACF framework
rather considers the whole set of actions that have to be taken into
account in building the schedule. Our approach also deals with a
graph that contains the operations as nodes and the relations
between nodes as edges, similar to the serialisation graph.
Therefore, our approach based on a graph and constraints between
operations can be mapped to the ACF framework that represents a
theoretical formalism for modeling replication. However, in this
paper we provided detailed algorithms for the incremental process
for the integration of an operation applied for graphical editing.
Most of the existing collaborative object-based graphical editors
such as the ones presented in [4,5,6,7,15] do not consider
grouping operations. We therefore do not compare our approach
with these systems, but instead relate our work with previous
collaborative editing approaches dealing with group/ungroup
operations [18,3].
The CoGroup [18] approach is an alternative solution to our
operation serialisation mechanism for the grouping of graphical
objects. It uses an operational transformation (OT) mechanism
proposed in the context of the Transparent Adaptation (TA)
approach to convert existing single-user editing applications into
real-time collaborative applications without changing their source
code. In the TA approach, the shared single-user application is
replicated at all sites and the API of the single user applications
can intercept the user operations. The intercepted operations are
then processed by an OT framework that achieves a combined
effect of the multi-user interactions. The transformed operations
are then sent back to the API of the single-user applications that
generates the corresponding operations for the single-user
applications. In the case of two conflicting operations, the MVSD
(Multi-Version Single-Display) technique has been applied,
according to which, multiple versions of the common target
objects are created to accommodate the effects of all conflict
operations, but only one version is displayed. Users are allowed to
choose to display any version at a time by using the system undo
facility. However, no solution is provided for the navigation
between the versions associated to an object.
The advantage of the operational transformation approach is that
no undo/redo mechanism is required. However, our serialisation
mechanism undoes the minimum number of operations in the
integration process of a new remote operation in order to satisfy
the set of constraints. The advantage of our approach is that it
offers a flexible way of defining conflicts according to application
needs. Conflicts were classified into real and resolvable. For
instance, if an application wants to define that a group operation
is conflicting with another operation that has a common target, it
can do this by defining the two types of operations as real
conflicting. A combined effect of these operations can be
obtained by defining them as being in a resolvable conflict, i.e.
specifying an order of execution, such as group operation
followed by the other operation.
In the case of two concurrent operations that target a set of
objects, versions of the targeted objects are created, but only one
of the versions according to operation priorities is displayed. The
same solution displayed for solving conflicts between any pairs of
operations can be achieved in our approach by defining a
serialisation order between operations. However, some
applications need to restrict concurrent operations targeting some

common objects and our approach offers the possibility to define
these operations as real conflicting.
The work proposed in this paper extends the approach described
in [3] where the policies for handling conflicts are fixed, by
allowing a flexible definition and resolution of conflicts according
to various application needs. To achieve a flexible handling of
conflicts and the possibility of defining various ordering
constraints between operations, a novel serialisation mechanism
has been applied. The serialisation mechanism is based on a graph
and performs the reordering of nodes in a graph based on the
ordering constraints between operations. The mapping of the
serialisation mechanism to a graph problem offers support for a
formalisation of the consistency maintenance approach, for an
optimisation of the number of operations that have to be undone
and for proving correctness [13]. Moreover, the set of primitives
subject to collaboration and the operations that can be performed
on the scene of objects have been extended compared to [3]. For
instance, we allow multi-page documents and working with
layers.

5. CONCLUSIONS
In this paper, we propose a novel operation serialisation approach
for maintaining consistency in collaborative object-based
graphical editing. Our approach relies on the topological sort of
nodes in a graph where the nodes of the graph represent executed
operations and edges of the graph represent ordering constraints
between operations. A collaborative graphical editor has been
implemented based on the algorithms described in this paper.
According to various applications, the users can specify resolution
policies for concurrent operations depending on whether the
operations are considered to be in conflict and only the operation
with the highest priority should be executed or whether an order
of execution between the operations should be specified. The
graph approach offers support for proving the correctness of the
consistency maintenance algorithm.
In our future work, we are going to identify the set of conditions
that have to be fulfilled by the set of defined conflicting
operations for the existence of a topological sort. One of our next
directions for future work is to perform user studies together with
our engineering colleagues on the use of the Draw-Together
application in collaborative product design.

6. REFERENCES
[1] Ellis, C.A., Gibbs, S.J. Concurrency control in groupware

systems. Proc. of the ACM SIGMOD Conf. on Management
of Data, Portland, Oregon, USA, May 1989, 399-407.

[2] Greenberg, S., Roseman, M., Webster, D. and Bohnet, R.
Issues and experiences designing and implementing two
group drawing tools. Proc. of the 25th Annual Hawaii Intl.
Conference on the System Science, Kuwaii, Hawaii, January
1992, 138-150.

[3] Ignat, C.L. and Norrie, M.C. Grouping in Collaborative
Graphical Editors. Proc. of CSCW, Chicago, Illinois, USA,
2004, 447-456.

[4] Ionescu, M. and Marsic, I. An Arbitration Scheme for
Concurrency Control in Distributed Groupware. The 2nd
Intl. Workshop on Collaborative Editing Systems, CSCW,
Philadelphia, Pennsylvania, USA, December 2000.

[5] Kanawati, R. LICRA: a replicated-data management
algorithm for distributed synchronous groupware application.
Parallel Computing, 22, 1992, 1733-1746.

[6] Karsenty, A., and Beaudouin-Lafon, M. An algorithm for
distributed groupware applications. Proc. of Conf. on
Distributed Computing Systems, Pittsburg, Pennsylvania,
USA, May 1993, 195-202.

[7] Moran, T., McCall, K., van Melle, B., Pedersen, E. and
Halasz, F. Some design principles for sharing in tivoli, a
whiteboard meeting-support tool. Groupware for Real-Time
Drawings: A designer's Guide, S. Greenberg, Ed. McGraw-
Hill International(UK), 1995, 24-36.

[8] Munson, J.P. and Dewan, P. A flexible object merging
framework. Proc. of CSCW, Chapel Hill, North Carolina,
USA, 1994, 231-242.

[9] Munson, J.P. and Dewan, P. Sync: A Java Framework for
Mobile Collaborative Applications. Computer, 30(6), 1997,
59-66.

[10] Newman-Wolfe, R.E., Webb M., and Montes, M. Implicit
locking in the Ensemble concurrent object-oriented graphics
editor. Proc. of CSCW, Toronto, Canada, 1992, 265-272.

[11] Preguica, N., Shapiro, M., Matheson, C. Semantics-Based
Reconciliation for Collaborative and Mobile Environments.
Proc. of CoopIS, Catania, Italy, 2003.

[12] Shapiro, M., Bhargavan, K., Krishna, N. A Constraint-Based
Formalism for Consistency in Replicated Systems. Proc. of
OPODIS, Grenoble, France, December 2004, 331-345.

[13] Shapiro, M., Krishna, N. The three dimensions of data
consistency. Journées Francophones sur la Cohérence des
Données en Univers Réparti (CDUR), Paris, France, 2005,
54-58.

[14] Suleiman, M., Cart, M. and Ferrié, J. Concurrent Operations
in a Distributed and Mobile Collaborative Environment.
Proc. of ICDE, Orlando, Florida, USA, February 1998,
36-45.

[15] Sun, C. and Chen, D. Consistency Maintenance in Real-
Time Collaborative Graphics Editing Systems. Trans. on
CHI, vol.9, no.1, March 2002, 1-41.

[16] Terry, D. B., Theimer, M. M., Petersen, K., Demers, A. J.,
Spreitzer, M. J. and Hauser, C. H. Managing update conflicts
in Bayou, a weakly connected replicated storage system,
Symposium on Operating Systems Principles, Copper
Mountain Resort, Colorado, USA, December 1995, 172-182.

[17] von Biel, V. Groupware Grows Up. MacUser, June 1991,
207-211.

[18] Xia, S., Sun, D., Sun, C., Chen, D. Collaborative Object
Grouping in Graphics Editing Systems. Proc of
CollaborateCom, San Jose, CA, USA, December 2005.

