

1-4244-0429-0/06/$20.00 ©2006 IEEE

Flexible Definition and Resolution of Conflicts
through Multi-level Editing

Claudia-Lavinia Ignat and Moira C. Norrie
Institute for Information Systems, ETH Zurich

CH-8092, Zurich, Switzerland
Email: {ignat, norrie}@inf.ethz.ch

Abstract— Version control systems are widely used to support
a group of people working together on a set of documents
over a network by merging their changes into the same source
repository. The existing versioning systems offer limited support
concerning conflict resolution and tracking of user activity. In
this paper we propose a multi-level editing approach that keeps
the editing operations that refer to an element of a hierarchical
document associated with that element. In this way, customisable
merging is achieved, where the conflicts can be specified and
resolved at different granularity levels.

I. I NTRODUCTION

Asynchronous collaborative editing systems support a group
of people concurrently editing documents by allowing mem-
bers of the group to modify copies of a document in isolation,
working in parallel and afterwards synchronising their copies
to reestablish a common view of the data. Versioning systems
offer users the possibility to merge their changes into the same
source repository.

Well known versioning systems such as CVS [1], RCS [26]
and Subversion [3] offer limited support concerning conflict
resolution and tracking of user activity. These systems do not
offer a flexible means of specifying the possible forms of
conflict. Merging is performed on a line by line basis with
the basic unit of conflict therefore being the line. This means
that the changes performed by two users are deemed to be
in conflict if they refer to the same line regardless of what
these changes are. Concurrent changes on different lines are
merged automatically. Therefore, these systems cannot handle
multiple changes within a single line.

These version control systems adopt state-based merging
where only the information about the states of the documents
and no information about the evolution of one state into
another is used. An operation-based merging approach [13],
[22] keeps information about the evolution of one document
state into another in a buffer containing a history of the
operations performed between the two states of the document.
Merging is done by executing the operations performed on one
copy of a document on another copy of the same document.
Therefore, complex differentiation algorithms for text such as
diff [18] or for XML [2], [11], [27], [28] do not have to be
applied in order to compute the delta between documents.
Merging based on operations also offers better support for
conflict resolution by having the possibility of tracking user
operations [13]. State-based approaches take into accountjust

the final and initial states of the document and lose information
about the process of transformation from one state to the other,
such as the order of execution of the operations. Moreover,
there is usually more than one function that can be used
to transform an initial state of document into a final one.
Operation-based merging records the operations performed,
and, therefore, the actual function is well known.

Most of the existing approaches for merging based on
operation transformation such as [5], [21], [25], [23], [12]
adopt a linear structure of the document. For instance, text
documents are seen as a sequence of characters. The definition
and resolution of conflicts does not take into account the
structure of the document, such as paragraphs, sentences or
words.

Some of the operation transformation approaches for merg-
ing have been defined for hierarchical documents such as
SGML [4] and XML [14]. Even if the structure of the docu-
ments is hierarchical, the operational transformation approach
is similar to the approach for linear structures and it does
not take advantage of the tree structure of the documents.
Existing operation-based approaches maintain a single history
buffer where a record of the executed operations is kept.
Operations are not associated to the structure of the document
and therefore it is difficult to select which operations refer
to a certain node in the document. The execution of the
operations from the history buffer determines the final state
of the document. However, the position of the target node of
an operationO from the history buffer might have changed
due to the execution of the operations that followO in the
history buffer. Therefore, the approach of selection of the
operations from the history buffer that refer to a certain node
cannot be done by a simple analysis of the operations in the
history buffer. This fact has limitations for the definitionand
resolution of conflicts. Moreover, the approaches described in
[4], [14] adopt only automatic resolution of conflicts where
the effect of all operations is maintained and they do not offer
the user the possibility of defining and resolving conflicts in a
flexible way. For instance, it is not possible to define that any
operations that refer to the same node are conflicting and let
a user choose one of the versions of the node.

In this paper we propose a multi-level editing approach
for a hierarchical representation of documents as support for
the flexible definition and resolution of conflicts. Multi-level
editing involves keeping editing operations that refer to an

element associated with that element. In this way, conflicting
operations that refer to the same subtree of the document are
easily detected by the analysis of the histories associatedwith
the nodes belonging to the subtree. Therefore, the detection of
conflicts is simplified compared to the approach using a single
history buffer. Moreover, conflict levels can be dynamically
varied and conflict units can be presented in the context
in which they occurred or at a higher level. For instance,
if conflict was defined at the level of an element, meaning
that two operations changing that element are in conflict, the
conflict can be presented at the level of the element or at the
level of one of the ancestor elements. The proposed approach
is general for any document conforming to a hierarchical
structure, such as XML documents. However, throughout the
paper, for a simpler explanation of the approach, we will use
text documents as an example. We modeled text documents as
consisting of paragraphs, sentences, words and characters. In
this way, conflicts can be defined and resolved by using the
semantic units - paragraphs, sentences, words and characters.
For instance, a rule specifying that concurrent insertionsin the
same sentence are conflicting can easily be defined.

In [9] we presented our multi-level editing approach for
real-time communication where the changes performed by
one user are immediately seen by other users. We showed
how our multi-level editing approach recursively applies an
existing operational transformation linear algorithm over the
hierarchical structure of the document. However, when applied
for asynchronous communication over a central repository,
a linear merging algorithm that offers support for conflict
handling has to be recursively applied over the document
levels. Therefore, in this paper we show the issues that have
to be considered for the adaptation of our multi-level editing
approach from real-time to asynchronous collaboration and
present our approach for asynchronous communication over
a shared repository. We focus on how our approach allows
a multi-granularity definition and resolution of conflicts.An
asynchronous text editing system has been implemented based
on the ideas described in this paper.

The paper is structured as follows. We begin in section
II by presenting a motivation of our work. In section III
we present an overview of the previous work related to the
definition and resolution of conflicts. In section IV we describe
the document model that we adopted for supporting multi-
level editing. In section V we present the requirements for
synchronisation over a shared repository and then in section VI
we describe our merging algorithm for hierarchical structures
as support for achieving a multi-granularity definition and
resolution of conflicts. In section VII we show how conflicts
can be defined and resolved from the application interface.
Concluding remarks are presented in section VIII.

II. M OTIVATION

In what follows we motivate our approach by means of
a scenario, analysing how flexible granularity and policiesfor
the resolution of conflicts could help users in the collaborative
editing process. Consider the example of two PhD students

writing a research paper together with their professor. At the
beginning, they decide on the structure of the paper and divide
the work of writing sections. Initially, after writing different
sections, their work is easily merged because the parts thatthey
have been working on do not overlap. Even though they were
assigned separate parts of the document to work on, some parts
of the document such as the bibliography or the introduction
may be edited together. Moreover, at a later stage, the sections
written by one of the authors will be read by the other authors.
In the early stages of writing the paper, the maximum number
of modifications performed in parallel should be possible. In
this case, it would be appropriate that conflict is detected only
if modifications have been performed on the same word.

Suppose that the two students concurrently edit a version of
a document consisting of a set of paragraphs. For simplicity
we are going to analyse the concurrent work performed on
the following paragraph of the document:“In the case of
operation merging, when a conflict occurs, the operation
causing the conflict is presented in context in which it was
performed. CVS and Subversion present the conflict in line
order of the document.”

Suppose that the first student modifies the word“operation”
to “operational” and adds the article“the” before the word
“context” in order to obtain the following version of the
document: “In the case of operational merging, when a
conflict occurs, the operation causing the conflict is presented
in the context in which it was performed.[...]”

Concurrently, the second user modifies the word“opera-
tion” to “operation-based” and adds the word“originally”
in order to obtain the following version of the document:“In
the case of operation-based merging, when a conflict occurs,
the operation causing the conflict is presented in context in
which it wasoriginally performed.[...]”

Suppose that the first user commits the changes to the repos-
itory. When the second user wants to commit their changes to
the repository, they have to first update the local version of
the document. Before performing an update, a user should be
able to specify the conflict level in the updating process, i.e.
the level of granularity where conflicts should be detected.As
previously mentioned, in the early stages of writing a paper,
it should be appropriate that a user defines conflict at the
word level. This means that changes performed in the same
word are detected as conflicting and changes performed in
different words are not considered conflicting. Concerningthe
resolution policies for merging, the user should be able to
specify whether their changes or the changes in the repository
should be kept in the case of conflict. Another possibility for
the resolution of conflicts is to let users choose between the
two modified conflicting units of the document. Suppose that
in our example the second user chooses the word granularity
unit for conflict and to manually decide on the version of
the document to be kept in the case of conflict. In this
case the second user should be asked to choose between the
conflicting words“operation-based” and “operational” . The
other operations executed by the two users are not conflicting
and they can all be integrated in the merged version of the

document. Suppose that the second user chooses the local
modification when presented with the two versions of the
conflicting word. Therefore, the local version of the document
of the second user becomes:“In the case of operation-based
merging, when a conflict occurs, the operation causing the
conflict is presented inthe context in which it wasoriginally
performed.[...]”. Further, if the first user updates the local copy
of the document, this will be the version of the document in
the local workspace.

Note that systems such as CVS and Subversion that use the
diff tool for merging will detect the conflicts between the two
versions of the document as each version spans a single line
and the conflict unit defined in these systems is the line. The
user has then to choose one of the two versions. In the case that
a combined effect of the changes that have been performed is
desired, the user has to manually add the changes performed
on the version that was not selected.

Let us continue with our example and the requirements of
a versioning tool supporting users collaboratively editing text
documents over a shared repository. In a later stage of writing
the paper, when changes are critical, the conflict resolution
could be set at the sentence or paragraph level. If two
modifications have been performed in the same sentence or
paragraph respectively, the author committing the changeshas
to carefully read the two versions of the sentence or paragraph
and decide which version to keep. Suppose that each version in
the repository is associated with the user who committed that
version. In the case that the last version from the repository
was committed by the professor, the students might choose
to synchronise their local workspaces in accordance with the
automatic policy of keeping the changes from the repository
in the case of a conflict. In this way, if conflict is detected,
the changes of the professor included in the last version in the
repository are taken rather than the changes of the students.

In order to illustrate how merging is done at the sentence
level, let us continue with our example. Suppose that the
two users continue to concurrently edit the last committed
version of the document. Suppose that the first user changes
the second sentence of the paragraph“CVS and Subversion
present the conflict in line order of the document.”to “State-
based merging systems such as CVS and Subversion present
the conflict in the line order of the final document, the state
of a line possibly incorporating the effect of more than one
conflicting operation.”Concurrently, the second user changes
the same sentence in the paragraph to“For instance, CVS
and Subversion present the conflict in line order of the final
document.”Assume that the first user commits their changes to
the repository first. When the second user updates the changes
from the repository, suppose that they choose the sentence
as the granularity level for the definition of conflicts and
the conflict unit comparison for the resolution of conflicts.
The user will then be presented with the two versions of the
modified sentence and can choose one of these versions.

Further, consider the case of collaborative editing of XML
documents when one user adds some spaces before some
element for reformatting purposes, while another user in

parallel performs some changes to this element. Versioning
systems such as CVS and Subversion will detect conflict since
the same line of the document has been modified, even though
there is no semantic conflict. Such situations can be avoided
if the resolution conflict is set at the level of the element.

As seen from the above examples, there is a need to
adopt a flexible means of defining conflicts, as opposed to
the fixed unit of conflict (the line) adopted by versioning
systems such as RCS [26], CVS [1] and Subversion [3].
Users should be allowed to define conflicts using semantic
units such as paragraph, sentence, word or character in the
case of text documents. Concerning resolution policies, not
only manual resolution for conflicts should be offered, but
also other automatic resolution policies, such as, if conflict is
detected, to keep the changes in the repository or in the local
workspace.

III. R ELATED WORK

Due to advantages of operation-based over state-based
merging, we adopted a merging approach based on operations.

An operation-based merging approach that uses a flexible
way of defining conflicts has been used in FORCE [22]. How-
ever, the FORCE approach assumes a linear representation of
the document, the operations being defined on strings and not
taking into account the structure of the document.

The hierarchical structure is a general model for a large
class of documents and it allows flexible means of defining
and resolving conflicts. Moreover, the algorithms for main-
taining consistency in collaborative editing based on the tree
representation of documents achieve an improved efficiency
compared to other approaches that use a linear representation
of the documents, as shown in [9] and shortly explained in
what follows. The existing operation-based linear merging
algorithms maintain a single log in the local workspace where
the locally executed operations are kept. When the operations
from the repository need to be integrated in turn into the local
log, the entire local log has to be scanned and transformations
need to be performed even though changes refer to completely
different sections of the document and do not interfere with
each other. In our approach, we keep the log distributed
throughout the tree. When an operation from the repository is
integrated into the local workspace, only those local logs that
are distributed along a certain path in the tree are scanned and
transformations performed. The same reduction in the number
of transformations is achieved when the operations from the
local workspace have to be transformed against the operations
from the repository in order to compute the new difference to
be kept in the repository. Our merging algorithm recursively
applies over the different document levels any existing merging
algorithm relying on the linear structure of the document. In
this paper, we show how the histories of operations associated
to the nodes in the tree can be used to support a flexible
solution for the definition and resolution of conflicts.

At the same time, we have extended our approach to cater
for XML documents as well as text documents [8]. Some state-
based approaches for merging XML documents have been

proposed in [2], [11], [27], [28]. A state-based approach for
merging text documents is the flexible diff [19] approach that
finds and reports differences between two versions of text. The
PREP writing environment which relies on the diff approach
is flexible, allowing users to indicate the granularity of the
changes they want to find, the choices being word, phrase,
sentence or paragraph. Moreover, the users can control the
granularity of how the changes are shown when they are
reported, the choices being again word, phrase, sentence or
paragraph. If the user chooses a pinpointing granularity of
sentence, then any word differences are shown as an old
sentence deleted and a new sentence inserted. In contrast to
the above mentioned approaches, our approach is operation-
based and, as previously described, this yields a number of
advantages over state-based merging.

An operational transformation approach for merging file
systems was proposed in [15]. File systems have a hierarchical
structure, however, for merging of text documents, the authors
proposed using a fixed working unit, i.e. the block unit
consisting of several lines of text. Other operational transfor-
mation approaches for merging hierarchical documents, such
as SGML [4] or XML [14] documents, have been proposed.
The approaches offer an automatic solution for merging and do
not allow the user to customise the definition and resolution
of conflicts. We offer both automatic and manual solutions
for merging and a multi-level granularity for the definition
and resolution of conflicts. Moreover, our approach achieves
better efficiency than the approaches described in [15], [4],
[14] since the log is distributed throughout the tree ratherthan
being linear.

A flexible object framework that allows the definition of the
merge policy based on a particular application was adopted by
the Suite collaboration system [16]. Merging can be automatic,
semi-automatic or interactive. The objects subject to collabora-
tion are structured and therefore semantic fine-grained policies
for merging can be specified. A merge matrix defines merge
functions for the possible set of operations. The paper provides
as an example the merge matrix for a sequence object, where
the operations considered are the deletion of an element, the
insertion of an element after another element in the sequence
and the modification of an element. The work described in
[16] presents how conflicts are handled between two versions
of a document, but does not provide a solution for an n-
way merging, such as a synchronisation mechanism against
a repository.

A follow-up work of [16] is the Sync application [17] that
provides high-level primitives in the form of predefined classes
that enable programmers to create synchronised, replicated
data objects. The Sync approach for merging is based on the
merge-model described in [16]. An application of Sync for a
drawing-based collaborative tool has been proposed in [17].
Sync allows a merge of a user’s change with the server, but
requires that the server’s change always wins in a conflict. In
our approach, various policies for merging can be specified
for resolving conflicts, such as executing the local changes,
or the changes on the repository or let the user decide on the

changes to be kept.
Our approach follows the same idea of a flexible defin-

ition and resolution of conflicts as described in [16], [17].
However, we implemented the flexibility for the definition
and resolution of conflicts in the context of an operational
transformation algorithm for maintaining the order between
the semantic units of the document. We identified the semantic
units of the document by their position in the tree and we
provide exact algorithms for maintaining the order between
the semantic units in the presence of concurrent operations.
Moreover, we proposed complete merging algorithms for the
synchronisation against a shared repository. The approaches
proposed in [16], [17] do not provide any correctness criteria
that should be satisfied by the proposed merging matrices
when used for n-way merging. The criteria for correctness
of the transformation functions which have the same meaning
as the merging matrices are well defined [21], [23]. In our
approach we can use any existing transformation functions
that satisfy the correctness properties.

IV. M ULTI -GRANULARITY DOCUMENT MODEL

Structuring the document into different semantic units offers
users the possibility to define and resolve conflicts in a natural
way.

We model a document as a hierarchical structure having
the following levels of granularity: document (0), paragraph
(1), sentence (2), word (3) and character (4), document being
the highest granularity level and character being the lowest
granularity level. Each workspace stores locally a copy of the
tree structure of the document. The hierarchical structureis
created when the document is checked out from the repository
and modified while changes are performed locally. Each node
(excluding leaf nodes) keeps a history of insertion or deletion
operations associated with its child nodes. The structure of the
document is illustrated in Figure 1.

Level 3

…

…

Pa 2

Se 2.2

C 2.1.2.1

“c”

…

…

…

C 2.1.2.2

“o”

Doc. Hist.

History for

operations at

paragraph level

W 2.1.3 Hist.W 2.1.3

C 2.1.2.3

“n”

C 2.1.2.4

“f”

C 2.1.2.5

“l”

Levels of

Granularity

Paragraph

Sentence

Word

Character

Document

Se 2.2 Hist.

History for

operations on

sentences in

paragraph Pa 3

Level 0

Level 1

Level 2

Level 4

Pa 1 Hist. Pa 2 Hist. Pa 3 Hist.

Se 2.1 Hist.

W 2.1.1 Hist. W 2.1.2 Hist.W 2.1.2

Document

Pa 3

Se 2.1

W 2.1.1

Pa 1

C 2.1.2.6

“i”

C 2.1.2.7

“c”

C 2.1.2.8

“t”

Fig. 1. Structure of the document

The set of operations that can be performed are insertion and
deletion of the semantic units composing the document, i.e.
paragraphs, sentences, words or characters. For instance,the
operation InsertWord(“CollaborateCom”,2,2,3)denotes the
insertion of word“CollaborateCom” into the 2nd paragraph,
2nd sentence, as the 3rd word. This operation is kept in the
history of sentenceSe 2.2. We are going to refer to the ordered

list of positions composing the path from the root to the target
element of the operation as the position vector.

As previously mentioned, our approach is general and can
be applied to any document conforming to a hierarchical
structure. For example, it can be applied to documents repre-
senting books, the hierarchical structure consisting of chapters,
sections, paragraphs, sentences, words and characters. The
proposed approach can also be applied to XML documents,
as shown in [7].

V. SYNCHRONISATION OVER A SHARED REPOSITORY

In this section we present the synchronisation mechanism
over a shared repository by describing the basic methods that
should be offered by a version control system. We then present
the basic operational transformation mechanism in order to
understand the basic steps of the update procedure. We also
describe the requirements of an algorithm for dealing with
conflicts.

A. Checkout, Commit, Update

The three basic methods supported by a version control
system are: checkout, commit and update. A checkout method
creates a local working copy of an object from the repository.
A commit method creates in the repository a new version of
the corresponding object by validating the modifications done
on the local copy of the object. The condition of performing
this method is that the repository does not contain a more
recent version of the object to be committed than the local
copy of the object. An update method performs the merging
of the local copy of the object with the last version of that
object stored in the repository.

In what follows we present the requirements of an
operation-based implementation of the commit, checkout and
update methods in asynchronous communication with a shared
repository.

In the commit phase, a check is first performed as to whether
the user can commit the changes to the repository. If the
base version of the document in the local workspace, i.e. the
last version from the repository that the user started working
on, is equal to the last version in the repository, a commit
can be performed. Otherwise, an update is necessary before
committing the data. In the case that a commit is allowed,
the repository should simply store the operations that were
performed in the local workspace.

In the checkout phase, a request should be sent to the
repository to specify the version of the document that is
intended to be checked out. Using the set of operations stored
in the repository as delta, the system should be able to provide
to the local workspace either the state of the required version
of the document or the set of operations that are the support
for computing the state of the required version.

In the updating phase, the repository should send to the local
workspace a list of operations representing the delta between
the latest version in the repository and the base version in
the local workspace. Upon receiving the list of operations
from the repository, the local workspace should perform a

merging algorithm to update the local version of the document.
Consider the scenario where the local user started working
from version Vk on the repository but cannot commit the
changes because meanwhile the version from the repository
has been updated to versionVk+n. Let us denote byLL the
list of operations executed by the user in their local workspace
and byDL the list of operations representing the delta between
versionsVk+n andVk. Two basic steps have to be performed.
The first step consists of applying the operations fromDL

on the local copy of the user in order to update the local
document by integrating the changes included inVk+n. The
operations from the repository, however, cannot be executed
in their original form as they have to be transformed in order
to include the effect of all the local operations before theycan
be executed in the user workspace. The second step consists
of transforming the operations inLL in order to include
the effects of the operations inDL. The resulting list of
transformed local operations represents the new delta to be
saved in the repository.

B. Operational Transformation

In this subsection we present the general operation transfor-
mation mechanism that has been used to maintain consistency
in real-time collaborative editing [5], [21], [25], [23], [12] as
well as in asynchronous collaborative editing [22], [14].

Firstly, we present the notion of context [22] of an operation
O denoted asCTO as being the document state on whichO is
defined. Two operationsOa andOb having the same context,
CTOa

= CTOb
, are denotedOa =CT Ob. An operationOa

is context precedingoperationOb denoted asOa →CT Ob if
CTOb

= CTOa
· Oa, i.e. the state of the document on which

Ob is defined is equal to the state of the document after the
application ofOa.

Next, we explain one of the basic mechanisms of the
operational transformation approach, called inclusion trans-
formation. TheInclusion Transformation -IT (Oa, Ob) trans-
forms operationOa against operationOb such that the effect
of Ob is included in Oa. Consider the following scenario.
Suppose the repository contains the document consisting of
one sentence“We present the merge.”and two users check-
out this version of the document and perform some operations
in their workspaces. Further, supposeUser1 performs the
operationO11 =InsertWord (“procedure”,5). It is an operation
to insert the word“procedure” at the end of the sentence,
as the 5th word, in order to obtain“We present the merge
procedure.” Note that due to the fact that the document
contains only one sentence, we simplified the form of an
operation targeting this sentence by skipping the number of
the paragraph and of the sentence. Afterwards,User1 commits
the changes to the repository and the repository stores the
list of operations performed byUser1 consisting of O11.
Further assume that, concurrently,User2 executes operation
O21 =InsertWord(“next”,2) of inserting the word“next” as
the 2nd word into the sentence in order to obtain“We next
present the merge.”Before performing a commit,User2 needs
to update their local copy of the document. The operationO11

stored in the repository needs to be transformed in order to
include the effect of operationO21. Because operationO21

inserts a word before the insertion position ofO11, O11 needs
to increase its position of insertion by 1. In this way, the
transformed operation will become an insert operation of the
word “procedure” as the 6th word, the result being“We next
present the mergeprocedure.” The condition of performing
IT (Oa, Ob) is thatOa =CT Ob.

Another form of operation transformation used in the
process of updating a local copy of the document is exclusion
transformation. TheExclusion Transformation- ET (Oa, Ob)
transformsOa against the operationOb that precedesOa such
that the impact ofOb is excluded fromOa. The condition of
performingET (Oa, Ob) is thatOb →CT Oa.

C. Dealing with Conflicts

Not all operations belonging toDL can be executed in the
local workspace as some of these operations may be in conflict
with some of the operations fromLL. Let us consider that
DL = [Od1, ..., Od(i−1), Odi, Od(i+1), ..., Odm]. In the case
thatOdi is in conflict with at least one operation fromLL and
Odi cannot be executed in the local workspace, a mechanism
for undoingOdi should be provided such that the effect ofOdi

is excluded from the operations that follow it inDL. The effect
of undoingOdi should be reflected on the repository by storing
a new operation after the operations fromDL that cancels the
effect ofOdi. The reason thatOdi should be excluded from the
operationsOdj that follow Odi in DL is that whenOdj has to
be transformed against the listLL, the form ofOdj has to be
adapted to illustrate the fact thatOdi was cancelled. The fact
that the undoing ofOdi should be obtained by executing some
new operations following the operations fromDL is required
by the fact that the listDL is already stored in the repository
and cannot be modified as it represents the delta between two
versions in the repository. The effect of cancellingOdi in the
repository due to a conflicting local operation can be made
visible in the repository only after the local user commits their
changes to the repository. When a commit is performed, the
new delta should contain the operations whose effect cancel
Odi.

In the case that a conflict betweenOdi and an operation
in the local logLL occurs and the local operation has to be
cancelled, the cancelled local operation should be excluded
from the operations that follow it inLL. Then when these
local operations are transformed against operations inDL they
reflect the fact that an operation preceding them was cancelled.

Therefore, a mechanism for performing the integration of
an operation into the log and the cancellation of an operation
from the log in the way described above has to be provided.

In [20], [24], [6] mechanisms for performing undo have
been proposed, so one of these mechanisms could be used
for the cancellation of an operation. For the integration of
an operation into a log, one of the algorithms working for
real-time communication such as SOCT2 [23] or GOTO
[25] could be applied. However, specialised algorithms for

asynchronous communication such as FORCE [22] achieve
a better performance as shown below.

Suppose thatDL = [Od1, ..., Od(i−1), Odi, Od(i+1), . . . ,

Odm] and LL = [Ol1, ..., Ol(i−1), Oli, Ol(i+1), ..., Oln]. The
operations inDL and in LL are contextually preceding and
Od1 andOl1 have the same initial context and all operations in
DL are concurrent with the operations inLL. Let us analyse
the number of transformations that have to be performed to
integrate each operation belonging toDL into LL and each
operation belonging toLL into DL using the SOCT2 [23]
algorithm. Let us analyse first the integration of the opera-
tions belonging toDL into LL. When Od1 is transformed
against all operations inLL, n inclusion transformations will
be performed, the result being operationO′

d1. When Od2

has to be integrated into the transformed local logLL′ =
[Ol1, · · · , Oln, O′

d1], the operations in the log have to be
reordered such that the first part of the log contains the opera-
tions that precedeOd2 and the last part of the log contains the
operations that are concurrent withOd2. Therefore,O′

d1 has to
be transposed at the beginning of the history buffer. Each step
of the transposition involves the computation of an inclusion
and exclusion transformation and, therefore, the transposition
process requires2 ∗ n transformations. Afterwards,Od2 has
to be transformed against the concurrent operations and, in
this case,n inclusion transformations will be performed.
Therefore, the integration ofOd2 requires3∗n transformations.
The integration of all operations inDL into LL requires
thereforen+3∗n∗(m−1) = 3∗n∗m−2∗n transformations
to be performed. Similarly, the integration of all operations
belonging toLL into DL requires3∗n∗m−2∗m operations to
be performed. Therefore, the total number of transformations
are6 ∗ n ∗ m − 2 ∗ m − 2 ∗ n.

The FORCE [22] approach transforms each operationOdi

in DL in turn with respect to each operationOlj in LL

and, after such a transformation is performed, the symmetric
transformation ofOlj with respect toOdi is also performed.
The approach requires2∗n∗m transformations to be performed
and the logs have to be traversed only once.

We therefore applied the FORCE algorithm for our merging
approach recursively over the document levels.

VI. OUR APPROACH

In this section, we describe our merging algorithm for
dealing with conflicts applied to hierarchical documents.

The commit phase in the case of the tree representation
of documents follows the same principles as in the case of
the linear representation. The hierarchical representation of
the history of the document is linearised using a breadth-first
traversal of the tree. In this way, the first operations in the
log will be the ones belonging to paragraph logs, followed by
operations belonging to sentence logs and finally operations
belonging to word logs.

In the checkout phase the operations from the repository are
executed in the local workspace.

The update procedure presented below achieves the actual
update of the local version of the hierarchical document with

the changes that have been committed to the repository by
other users and kept in the remote log. The remote log contains
a linearisation of the logs that were initially part of a tree
document structure. The goal of the update procedure is the
replacement of the local log associated with each node with
a new one which includes the effects of all non conflicting
operations from the remote log and the execution of a modified
version of the remote log on the local version of the document
in order to update it to the version in the repository. The update
procedure is now presented.

Algorithm update(CN, RL, ConfLevel, KeepLocal, Policy) {
LLL := getLog(CN);
bInd := |RL|;
RLL := [];
for(i = 0; i < |RL|; i + +){

O := RL[i];
if(getLevel(O) = getLevel(CN)) append(O, RLL);
else{bInd := i; break;}

}

updateOpInds(LLL, getInds(CN));

if(Policy = noMerge)
if (KeepLocal)

if (isEmpty(LLL)) NLL = inverse(RLL);
else(NRL, NLL):=merge(RLL, LLL);

else
if (isEmpty(RLL)) NRL = inverse(LLL);
else(NLL, NRL):=merge(LLL, RLL);

else
if(Policy = automatic or Policy = conflictChoice)

if(KeepLocal) (NRL, NLL):=merge(RLL, LLL);
else(NLL, NRL):=merge(LLL, RLL);

for(i = 0; i < |NRL|; i + +)
applyOperation(NRL[i]);

setLog(CN, NLL);

ChildRL := [];
for(i=0; i < getNoChildren(CN); i + +)

ChildRL[i] := [];
for(i = bInd; i < |RL|; i + +){

O := RL[i];
for(j = 0; j < |NLL|; j + +)

include(O, NLL[j]);
append(O, ChildRL[getInd(O, getLevel(CN))]);

}

for (i = 0; i < getNoChildren(CN); i + +) {
Childi = getChildAt(CN, i);
RLi = ChildRL[i];
if(level(Childi)! = Level)

update(Childi, RLi, ConfLevel, KeepLocal, Policy);
else

if(RLi = [])
update(Childi, RLi, ConfLevel, true, noMerge);

else
if(isEmpty(getLog(Childi)))

update(Childi, RLi, ConfLevel, false, noMerge);
else

if(Policy = automatic or Policy = noMerge)
update(Childi, RLi, ConfLevel, KeepLocal,
noMerge);

else{

update(Childi, RLi, ConfLevel, true, noMerge);
V1 = getChildAt(CN, i);
setChildAt(CN, i, Childi);
update(Childi, RLi, ConfLevel, false, noMerge);
V2 = getChildAt(CN, i);
setChildAt(CN, i, Childi);
if(chosen(V1, V2) = V1)

update(Childi, RLi, ConfLevel, true, noMerge);
else

update(Childi, RLi, ConfLevel, false, noMerge)
}

}
}

The CN argument of the update procedure represents the
current node in the tree traversal, and is equal to the root ofthe
document tree in the initial call. The parameterRL represents
the remote log.ConfLevel is the conflict level set by the user.
For text documents composed of paragraphs, sentences, words
and characters, the conflict level can be paragraph, sentence or
word. Two operations are in conflict if they refer to the same
subtree whose root has been defined to be a conflict unit. By
defining a conflict level, all nodes belonging to that level are
considered conflict units.KeepLocal is a boolean indicating
if the local operations or the remote operations are kept in
the case of a conflict. ThePolicy argument indicates the type
of the chosen resolution policy, i.e. automatic or manual, the
corresponding values beingautomaticandconflictChoice. The
policy is propagated down the tree for each recursive call. Dif-
ferent actions have to be taken if processing is done inside or
outside a conflict subtree, i.e. a subtree whose root is a conflict
unit. We introduced a third policy callednoMergeused when
processing is done inside a conflict subtree. ThenoMerge
policy chooses the local or remote operations depending on the
decision taken at the root of the conflict subtree and cancels
the remote or the local operations respectively.

The local level logLLL and the remote level logRLL

contain the parts of the local and remote logs referring to the
current node.RLL is initialised with the remote operations
pertaining to the current node, by iterating over the remote
log and keeping those operations whose level is identical to
the level of the current node. The level of an operation is
equal to the level of the node in whose history the operation
is kept. For instance, anInsertParagraphoperation belongs
to the document history and is of level 0, anInsertSentence
operation is of level1, an InsertWordoperation is of level2
and anInsertCharoperation is of level3. The bInd variable
stores the index of the first operation that refers to a lower
level than the level of the current node.

The next step is the update of the indices of all the
operations inLLL so that they correspond to the current
position in the tree of the node to whose log they belong.
During the update algorithm, nodes might get inserted or
deleted from the tree, as we apply the modified remote
operations on the local version of the tree. As the positions
of the nodes change, it is clear that all operations belonging
to the log of the nodes whose positions have changed will
no longer have valid indices. For example, if the local level

log contains the operationDeleteChar(“d”,1,3,4,5), denoting
an insertion of character“d” into paragraph 1, sentence 3,
word 4, at position 5 in the word, and paragraph 1 has been
shifted two positions to the right by the insertion of two new
paragraphs before it, the operation has to be transformed to
DeleteChar(“d”,3,3,4,5).

Depending on the chosen policy, the merge procedure used
in FORCE [22] is called in order to mergeRLL and LLL

and generate two new logs, the new remote logNRL and
the new local logNLL, each of which is modified to include
the effects of the operations in the other log. If the policy is
noMergewith the decision to keep local operations and cancel
remote operations, the merge procedure is called in its original
form. If the local log associated with the current node is empty,
remote operations have to be cancelled. This is achieved by
keeping in NLL inverses of the operations in the remote
log. The case whenKeepLocal is false is symmetric to the
previously described case. In this case, the merge procedure is
called with the local and remote log arguments switched, such
that, if conflict is detected, remote operations are considered.
Note that for anoMerge policy, all local operations are in
conflict with the remote operations. If the policy isautomatic
or conflictChoice, the FORCE merge procedure is called in its
original form.

Afterwards, the operations inNRL are applied to the local
copy of the document in order to update it and the local log
of the current node is then replaced withNLL. We mention
that for our merging algorithm we can use any existing linear
approach for merging two lists of operations. However, in our
current implementation, we have used the FORCE merging
algorithm.

Next, the remaining part of the remote log, i.e. the opera-
tions frombInd on, needs to be divided among the children of
the current node and the update method called recursively for
each child. Each operation in the remote log, starting from
position bInd on, will be transformed in order to include
the effects of all operations inNLL. This is necessary as
operations in the new local log are of higher level than the
ones remaining in the remote log and thus can influence
the context of the remote operations. For instance, suppose
that when merging is performed at the paragraph level,NLL

contains an operation of insertion of a paragraph as the first
paragraph in the document and the remote log contains the
operationO = InsertWord(“conflict”, 3, 2, 2) of insertion
of word “conflict” into the third paragraph, second sentence
as the second word. In this case,O should be transformed to
reflect that word“conflict” should be inserted into the fourth
paragraph and not into the third paragraph.

Afterwards, the transformed remote operations will be
added to the correspondingChildRL lists chosen by analysing
the modified index corresponding to the level of the current
node. The functiongetInd(O,L)returns the index of operation
O corresponding to the levelL. By the end of the iteration,
all remote operations will have been transformed and placed
in the correct list.

Finally, the update method is recursively called for each

child of the current node and its corresponding previously
created remote log. However, the resolution method propa-
gated to children depends on the resolution method applied
on CN and on the level of the child nodes. If the level of
a child of the current node is not equal with the level of
conflict, the call of update applied onCN is propagated to
its child. If the level of the child node is equal with the level
of conflict, the following checking is performed. If the remote
list associated to the child node is empty or if there are no
local operations targeting the subtree rooted at the child node,
it means that no conflicting operations are targeting the child
node. The update procedure is then called with the resolution
policy of noMerge, with the indication to keep only the local
or the remote operations, respectively. ThenoMergepolicy, as
well as theautomaticpolicy applied on a node whose level is
equal with the conflict level is propagated as anoMergepolicy.
If the resolution policy isconflictChoice, two versions of the
subtree rooted atCN have to be computed, one containing
the execution of only the local operations and the other one
containing the execution of only the remote operations. The
two versions are then presented to the user and the one selected
is recomputed.

Transformation functions adapted for linear structures can
be used in our approach as explained in what follows. As
shown in the update procedure, when merging is performed
at the level of the current node of granularityi, the local
level log LLL contains operations of granularity leveli and
the remote log contains both operations of granularity level
i from the remote level logRLL and other operations that
refer to the current node but are of a finer granularity than
i. Transformations between the operations inLLL andRLL

have to be performed. As these operations are of different
levels of granularity, the inclusion and exclusion transforma-
tion functions have to deal with operations of different levels
of granularity. However, in what follows we explain how
transformation functions for operations of the same level of
granularity are used in our approach.

Operations fromLLL andRLL are of the same granularity
level i, so the transformations of the operations fromLLL

against the operations fromRLL and conversely modify the
ith index of the position vector of the operations.

Each operation fromLLL and RLL can be transformed
into a simple operation of leveli, the position parameter of
the simple operation representing theith index of the position
vector of the corresponding original operation. We refer to
operations characterised by a position vector as composite
operations and to operations referring to a certain level inthe
tree as simple operations. The same idea of transforming a
composite operation into a simple one has been applied for our
algorithm for the real-time communication [9], [10]. Inclusion
and exclusion transformation functions for simple operations
can then be applied to compute the transformed positions for
level i of the composite operations. The transformed position
of the simple operations will represent theith index of the
position vector of the transformed form of the corresponding
composite operation.

The operations inRL that follow the operations inRLL are
of a finer granularity thani and they have to include the effect
of the operations in the new local logNLL. The operations
in NLL are of granularityi and they might affect only the
position of the operations inRL corresponding to leveli.
The operations inRL are transformed into simple operations
corresponding to leveli. Transformation functions working for
linear structures can be then applied to find the transformed
form of the simple operations. The simple operations can be
then reverted to their corresponding complex operations by
modifying theith index in the position vector of the composite
operation with the position parameter of the transformed form
of the simple operation.

Therefore, the same transformation functions working for
linear structures, such as the ones in the SOCT2 [23] or GOTO
[25] algorithms, can be recursively applied in our approach.
Our approach is general and can apply any merging algorithm
and any transformation functions working for linear structures
of the document recursively over the hierarchical structure of
the document.

VII. D EFINING AND RESOLVING CONFLICTS FROM THE

APPLICATION INTERFACE

In this section, we show how our approach can be used to
define and resolve conflicts in a flexible way. Due to the tree
model of the document, the conflicts can be defined at different
granularity levels: paragraph, sentence, word or character. In
our current implementation, we defined that two operations
are conflicting in the case that they modify the same semantic
unit: paragraph, sentence, word or character. The semantic
unit is indicated by the conflict level chosen by the user from
the graphical interface. The conflicts can be visualised at the
chosen granularity levels or at a higher level of granularity.
For example, if the user chooses to work at the sentence level,
it means that two concurrent operations modifying the same
sentence are conflicting. The conflicts can be presented at the
sentence level such that the user can choose between the two
versions of the sentence. It may happen that in order to choose
the right version, the user has to read the whole paragraph
to which the sentence belongs, i.e. the user can choose to
visualise the conflicts also in the context of the paragraph or
at an upper level.

We allow different policies for conflict resolution, such
as automatic resolution where the local changes are kept in
the case of a conflict or manual resolution, where the user
can choose the modifications to be kept. Concerning manual
resolution policies, the conflict unit comparison policy gives
a user the possibility to choose between the set of all local
operations and the set of all remote operations affecting the
selected conflict unit (word, sentence or paragraph). The user
is therefore presented with the two units that are in conflict.
The policies for the resolution of conflicts can be specified in
the graphical interface. The rules for the definition of conflict
and the policies for conflict resolution can be specified by each
user before an update is performed and they do not have to be
uniquely defined for all users. Moreover, for different update

steps, users can specify different definition and resolution
merge policies.

Consider the example described in section II where two
users concurrently modify the document:“In the case of oper-
ation merging, when a conflict occurs, the operation causing
the conflict is presented in context in which it was performed.
CVS and Subversion present the conflict in line order of the
document.[...]” The concurrent modifications performed by
the two users as described in the example in section II are
illustrated in Figure 2.

Fig. 2. Concurrent changes of two users

Suppose that the first user commits the changes to the
repository. When the second user updates the local version
of the document, a conflict level and resolution method have
to be specified. Suppose that the user chooses word as the
granularity level for the definition of conflicts, meaning that
changes performed in the same word are conflicting. Further
suppose that the user chooses conflict unit comparison as the
resolution method, meaning that when a conflict occurs, the
user is asked which of the two versions to keep, the one from
the repository or the one from the local workspace.

When an update is performed by the second user, as shown
in Figure 3, the non-conflicting changes from the repository
are executed and the user is presented with a dialog box to
choose between the conflicting words“operation-based”and
“operational” . The user can choose to expand the context
for conflict, i.e. to visualise the context where the conflict
occurred, both in the local workspace and the repository. In
this way, the user can visualise the sentences, the paragraphs
or even the whole document where the changes occurred.
Suppose that the local modification is chosen, and, therefore,
after a commit to the repository, the form of the paragraph for
the last version of the document is:“In the case of operation-
based merging, when a conflict occurs, the operation causing
the conflict is presented in the context in which it was
originally performed. CVS and Subversion present the conflict

Fig. 3. Conflict resolution for word granularity

in line order of the document.[...]”If the first user updates
the local document, this will be the version of the document
in their local workspace.

VIII. C ONCLUSIONS

In this paper we proposed a multi-level editing approach
for hierarchical documents that offers support for the de-
finition and resolution of conflicts at different granularity
levels corresponding to the document levels. The proposed
algorithm recursively applies the same basic mechanism as
the existing operation-based merging algorithms working for
linear structures over the different document levels.

Our future plans include developing a multi-level undo
operation to enable users to undo operations referring to a
particular node of the hierarchical document structure.

An asynchronous collaborative editor working for text doc-
uments has been implemented in our group. We also imple-
mented an XML editor based on the same ideas described in
this paper [7].

REFERENCES

[1] B. Berliner, “CVS II: Parallelizing software development”, Proc. of
USENIX, Washington D.C., USA, 1990, pp. 341-352

[2] G. Cobena, S. Abiteboul, and A. Marian, “Detecting changes in XML
documents”,Proc. of the Intl. Conf. on Data Engineering, San Jose,
California, USA, Feb. 2002, pp. 41-52

[3] B. Collins-Sussman, B.W. Fitzpatrick, and C.M. Pilato,Version Control
with Subversion, O’Reilly, 2004

[4] A. H. Davis, C. Sun, and J. Lu, “Generalizing operationaltransformation
to the standard general markup language”,Proc. of CSCW, New Orleans,
Louisiana, USA, Nov. 2002, pp. 58-67

[5] C.A. Ellis and S.J. Gibbs, “Concurrency control in groupware systems”,
Proc. of the ACM SIGMOD Conf. on Management of Data, Portland,
Oregon, USA, May 1989, pp. 399-407

[6] J. Ferríe, N. Vidot, and M. Cart, “ Concurrent Undo Operations in
Collaborative Environments Using Operational Transformation”, Proc.
of CoopIS, Larnaca, Cyprus, Oct. 2004, pp. 155-173

[7] C.-L. Ignat and M.C. Norrie, “Flexible Collaboration over XML Docu-
ments”,Proc. of CDVE, Mallorca, Spain, Sept. 2006, pp. 267-274.

[8] C.-L. Ignat and M.C. Norrie, “Supporting Customised Collaboration
over Shared Document Repositories”,Proc. of CAiSE, Luxembourg,
Grand-Duchy of Luxembourg, June 2006, pp. 190-204.

[9] C.-L. Ignat and M.C. Norrie, “Customizable Collaborative Editor Rely-
ing on treeOPT Algorithm”,Proc. of ECSCW, Helsinki, Finland, Sept.
2003, pp. 315-334

[10] C.-L. Ignat and M. C. Norrie, “Tree-based model algorithm for maintain-
ing consistency in real-time collaborative editing systems”, Workshop on
Collaborative Editing, CSCW 2002, New Orleans, Louisiana, USA, Nov.
2002

[11] La Fontaine, R., “A Delta Format for XML: Identifying Changes in XML
Files and Representing the Changes in XML”,XML Europe, Berlin,
Germany, May 2001

[12] D. Li and R. Li, “Preserving Operation Effects Relationin Group
Editors”, Proc. of CSCW, Chicago, Illinois, USA, Nov. 2004, pp. 457-
466

[13] E. Lippe and N. van Oosterom, “Operation-based merging”,Proc. of the
5th ACM SIGSOFT Symposium on Software development environments,
1992, ACM SIGSOFT Softw. Eng. Notes, Vol. 17, No. 5, pp. 78-87

[14] P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain, “Sams: Synchronous,
asynchronous, multi-synchronous environments”,Proc. of CSCWD, Rio
de Janeiro, Brazil, Sept. 2002, pp.80-85

[15] P. Molli, G. Oster, H. Skaf-Molli, and A. Imine, “Using the transforma-
tional approach to build a safe and generic data synchronizer”, Proc. of
Group, Sanibel Island, Florida, USA, Nov. 2003, pp. 212-220

[16] J.P. Munson and P. Dewan, “A flexible object merging framework”, Proc.
of CSCW, Chapel Hill, North Caroline, USA, 1994, pp. 231-242

[17] J. P. Munson and P. Dewan, “Sync: A Java Framework for Mobile
Collaborative Applications”,Computer, 30(6), 1997, pp. 59-66

[18] E. Myers, “An O(ND) difference algorithm and its variations”, Algorit-
mica, 1(2), 1986, pp. 251-266

[19] C. M. Neuwirth, R. Chandhok, D. S. Kaufer, P. Erion, J. Morris, and
D. Miller, “Flexible diff-ing in a collaborative writing system”,Proc. of
CSCW, Toronto, Ontario, Nov. 1992, pp. 147–154

[20] A. Prakash and M. J. Knister, “A framework for undoing actions in
collaborative systems”,ACM Transactions on Computer-Human Inter-
action, 1(4), 1994, pp. 295-330

[21] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser”, ”An Integrating,
Transformation-Oriented Approach to Concurrency Control and Undo in
Group Editors”,Proc. of CSCW, Boston, Massachusetts, Nov. 1996, pp.
288-297

[22] H. Shen and C. Sun, “Flexible merging for asynchronous collaborative
systems”,Proc. of CoopIS, California, Irvine, USA, Nov. 2002, pp. 304-
321

[23] M. Suleiman, M. Cart and J. Ferrié, “Serialization of Concurrent Op-
erations in a Distributed Collaborative Environment”,Proc. of GROUP,
Phoenix, Arizona, USA, Nov. 1997, pp. 435-445

[24] C. Sun, “Undo as concurrent inverse in group editors”,ACM Trans.
Comput.-Hum. Interact., 9(4), 2002, pp. 309-361

[25] C. Sun and C.Ellis, “Operational transformation in real-time group
editors: Issues, algorithms, and achievements”,Proc. of CSCW, Seattle,
Washington, USA, Nov. 1998, pp. 59-68

[26] W.F. Tichy, “RCS- A system for version control”,Software - Practice
and Experience, 15(7), Jul. 1985, pp. 637-654

[27] O. Torii, T. Kimura, and J. Segawa, “The consistency control system
of XML documents”, Symposium on Applications and the Internet,
Orlando, Florida, USA, Jan. 2003, pp. 102-110

[28] Y. Wang, D.J. DeWitt, and J.Y. Cai, “X-Diff: An Effective Change
Detection Algorithm for XML Documents”,Proc. of ICDE, Bangalore,
India, March 2003, pp. 519- 530

