Flexible Definition and Resolution of Conflicts
through Multi-level Editing

Claudia-Lavinia Ignat and Moira C. Norrie
Institute for Information Systems, ETH Zurich
CH-8092, Zurich, Switzerland
Email: {ignat, norrig @inf.ethz.ch

Abstract— Version control systems are widely used to support the final and initial states of the document and lose infoionat
a group of people working together on a set of documents about the process of transformation from one state to ther,oth
over a network by merging their changes into the same source g, a5 the order of execution of the operations. Moreover,

repository. The existing versioning systems offer limited support . .
concerning conflict resolution and tracking of user activity. In there is usually more than one function that can be used

this paper we propose a multi-level editing approach that keeps t0 transform an initial state of document into a final one.
the editing operations that refer to an element of a hierarchical Operation-based merging records the operations perfqrmed
document associated with that element. In this way, customisable gnd, therefore, the actual function is well known.
merging is aphieved, where.the conflicts can be specified and Most of the existing approaches for merging based on
resolved at different granularity levels. operation transformation such as [5], [21], [25], [23], J12
adopt a linear structure of the document. For instance, text
documents are seen as a sequence of characters. The definitio
Asynchronous collaborative editing systems support agroend resolution of conflicts does not take into account the
of people concurrently editing documents by allowing menstructure of the document, such as paragraphs, sentences or
bers of the group to modify copies of a document in isolatiowords.
working in parallel and afterwards synchronising theiriesp ~ Some of the operation transformation approaches for merg-
to reestablish a common view of the data. Versioning systenng have been defined for hierarchical documents such as
offer users the possibility to merge their changes into #tees SGML [4] and XML [14]. Even if the structure of the docu-
source repository. ments is hierarchical, the operational transformatiorraggh
Well known versioning systems such as CVS [1], RCS [263 similar to the approach for linear structures and it does
and Subversion [3] offer limited support concerning conflimot take advantage of the tree structure of the documents.
resolution and tracking of user activity. These systemsato rExisting operation-based approaches maintain a singlerhis
offer a flexible means of specifying the possible forms djuffer where a record of the executed operations is kept.
conflict. Merging is performed on a line by line basis wittOperations are not associated to the structure of the dotume
the basic unit of conflict therefore being the line. This neearand therefore it is difficult to select which operations refe
that the changes performed by two users are deemed totdea certain node in the document. The execution of the
in conflict if they refer to the same line regardless of whaiperations from the history buffer determines the finalestat
these changes are. Concurrent changes on different liees agfrthe document. However, the position of the target node of
merged automatically. Therefore, these systems cannaolidharan operationO from the history buffer might have changed
multiple changes within a single line. due to the execution of the operations that follGwin the
These version control systems adopt state-based mergmigtory buffer. Therefore, the approach of selection of the
where only the information about the states of the documergerations from the history buffer that refer to a certaidano
and no information about the evolution of one state intcannot be done by a simple analysis of the operations in the
another is used. An operation-based merging approach [13ktory buffer. This fact has limitations for the definitiamd
[22] keeps information about the evolution of one documemngsolution of conflicts. Moreover, the approaches desdribe
state into another in a buffer containing a history of thgl], [14] adopt only automatic resolution of conflicts where
operations performed between the two states of the documehé effect of all operations is maintained and they do natroff
Merging is done by executing the operations performed on ot user the possibility of defining and resolving conflictai
copy of a document on another copy of the same documeihexible way. For instance, it is not possible to define that an
Therefore, complex differentiation algorithms for textBuas operations that refer to the same node are conflicting and let
diff [18] or for XML [2], [11], [27], [28] do not have to be a user choose one of the versions of the node.
applied in order to compute the delta between documentsin this paper we propose a multi-level editing approach
Merging based on operations also offers better support fior a hierarchical representation of documents as support f
conflict resolution by having the possibility of trackingeus the flexible definition and resolution of conflicts. Multivid
operations [13]. State-based approaches take into acg@int editing involves keeping editing operations that refer o a

I. INTRODUCTION

1-4244-0429-0/06/$20.00 ©2006 IEEE

element associated with that element. In this way, conilicti writing a research paper together with their professor.ht t
operations that refer to the same subtree of the document laeginning, they decide on the structure of the paper anddlivi
easily detected by the analysis of the histories associsittsad the work of writing sections. Initially, after writing diérent

the nodes belonging to the subtree. Therefore, the detestio sections, their work is easily merged because the partsitbat
conflicts is simplified compared to the approach using a sindlave been working on do not overlap. Even though they were
history buffer. Moreover, conflict levels can be dynamigallassigned separate parts of the document to work on, songe part
varied and conflict units can be presented in the contextthe document such as the bibliography or the introduction
in which they occurred or at a higher level. For instancepay be edited together. Moreover, at a later stage, theosscti

if conflict was defined at the level of an element, meaningritten by one of the authors will be read by the other authors
that two operations changing that element are in confli@, ttn the early stages of writing the paper, the maximum number
conflict can be presented at the level of the element or at themodifications performed in parallel should be possibfe. |
level of one of the ancestor elements. The proposed approduis case, it would be appropriate that conflict is detectg o

is general for any document conforming to a hierarchicél modifications have been performed on the same word.
structure, such as XML documents. However, throughout theSuppose that the two students concurrently edit a version of
paper, for a simpler explanation of the approach, we will ugedocument consisting of a set of paragraphs. For simplicity
text documents as an example. We modeled text documentsvasare going to analyse the concurrent work performed on
consisting of paragraphs, sentences, words and charaltterghe following paragraph of the documeritn the case of
this way, conflicts can be defined and resolved by using thperation merging, when a conflict occurs, the operation
semantic units - paragraphs, sentences, words and charactausing the conflict is presented in context in which it was
For instance, a rule specifying that concurrent insertiortee performed. CVS and Subversion present the conflict in line
same sentence are conflicting can easily be defined. order of the document”

In [9] we presented our multi-level editing approach for Suppose that the first student modifies the wojgkration”
real-time communication where the changes performed hy“operational” and adds the articlethe” before the word
one user are immediately seen by other users. We showedntext” in order to obtain the following version of the
how our multi-level editing approach recursively applies adocument: “In the case of operatioal merging, when a
existing operational transformation linear algorithm otlee conflict occurs, the operation causing the conflict is préseén
hierarchical structure of the document. However, wheniagdpl in the context in which it was performed.[...]"”
for asynchronous communication over a central repository,Concurrently, the second user modifies the wtogera-

a linear merging algorithm that offers support for confliction” to “operation-based” and adds the wordoriginally”
handling has to be recursively applied over the documentorder to obtain the following version of the documetih
levels. Therefore, in this paper we show the issues that hdiae case of operatichased merging, when a conflict occurs,

to be considered for the adaptation of our multi-level editi the operation causing the conflict is presented in context in
approach from real-time to asynchronous collaboration amdich it wasoriginally performed.[...]”

present our approach for asynchronous communication oveSuppose that the first user commits the changes to the repos-
a shared repository. We focus on how our approach allowsry. When the second user wants to commit their changes to
a multi-granularity definition and resolution of conflictdn the repository, they have to first update the local version of
asynchronous text editing system has been implemented bade document. Before performing an update, a user should be
on the ideas described in this paper. able to specify the conflict level in the updating process, i.

The paper is structured as follows. We begin in sectidhe level of granularity where conflicts should be detecfesl.

Il by presenting a motivation of our work. In section Illpreviously mentioned, in the early stages of writing a paper
we present an overview of the previous work related to thie should be appropriate that a user defines conflict at the
definition and resolution of conflicts. In section IV we déser word level. This means that changes performed in the same
the document model that we adopted for supporting multivord are detected as conflicting and changes performed in
level editing. In section V we present the requirements falifferent words are not considered conflicting. Concerrifrey
synchronisation over a shared repository and then in se®tio resolution policies for merging, the user should be able to
we describe our merging algorithm for hierarchical struesu specify whether their changes or the changes in the repgsito
as support for achieving a multi-granularity definition andhould be kept in the case of conflict. Another possibility fo
resolution of conflicts. In section VII we show how conflictdhe resolution of conflicts is to let users choose between the
can be defined and resolved from the application interfadeio modified conflicting units of the document. Suppose that
Concluding remarks are presented in section VIII. in our example the second user chooses the word granularity
unit for conflict and to manually decide on the version of
the document to be kept in the case of conflict. In this

In what follows we motivate our approach by means afase the second user should be asked to choose between the
a scenario, analysing how flexible granularity and polié@s conflicting words“operation-based” and “operational”. The
the resolution of conflicts could help users in the collabeea other operations executed by the two users are not confjictin
editing process. Consider the example of two PhD studemisd they can all be integrated in the merged version of the

Il. MOTIVATION

document. Suppose that the second user chooses the |peaallel performs some changes to this element. Versioning
modification when presented with the two versions of thg/stems such as CVS and Subversion will detect conflict since
conflicting word. Therefore, the local version of the docame the same line of the document has been modified, even though
of the second user becométn the case of operatiotbased there is no semantic conflict. Such situations can be avoided
merging, when a conflict occurs, the operation causing tliethe resolution conflict is set at the level of the element.
conflict is presented ithe context in which it wasriginally As seen from the above examples, there is a need to
performed.[...]". Further, if the first user updates the local copgdopt a flexible means of defining conflicts, as opposed to
of the document, this will be the version of the document ithe fixed unit of conflict (the line) adopted by versioning
the local workspace. systems such as RCS [26], CVS [1] and Subversion [3].

Note that systems such as CVS and Subversion that use tlsers should be allowed to define conflicts using semantic
diff tool for merging will detect the conflicts between theaw units such as paragraph, sentence, word or character in the
versions of the document as each version spans a single lbase of text documents. Concerning resolution policie$, no
and the conflict unit defined in these systems is the line. Thaly manual resolution for conflicts should be offered, but
user has then to choose one of the two versions. In the case Hiso other automatic resolution policies, such as, if coinfé
a combined effect of the changes that have been performedédected, to keep the changes in the repository or in the loca
desired, the user has to manually add the changes performexkspace.
on the version that was not selected.

Let us continue with our example and the requirements of
a versioning tool supporting users collaboratively edittaxt Due to advantages of operation-based over state-based
documents over a shared repository. In a later stage ofngritimerging, we adopted a merging approach based on operations.
the paper, when changes are critical, the conflict resaiutio An operation-based merging approach that uses a flexible
could be set at the sentence or paragraph level. If tweay of defining conflicts has been used in FORCE [22]. How-
modifications have been performed in the same sentenceewer, the FORCE approach assumes a linear representation of
paragraph respectively, the author committing the chahges the document, the operations being defined on strings and not
to carefully read the two versions of the sentence or paplgraaking into account the structure of the document.
and decide which version to keep. Suppose that each version iThe hierarchical structure is a general model for a large
the repository is associated with the user who committet] thdass of documents and it allows flexible means of defining
version. In the case that the last version from the repgsitaand resolving conflicts. Moreover, the algorithms for main-
was committed by the professor, the students might chodsining consistency in collaborative editing based on tee t
to synchronise their local workspaces in accordance wih thepresentation of documents achieve an improved efficiency
automatic policy of keeping the changes from the repositocpmpared to other approaches that use a linear representati
in the case of a conflict. In this way, if conflict is detectedyf the documents, as shown in [9] and shortly explained in
the changes of the professor included in the last versiohdn twhat follows. The existing operation-based linear merging
repository are taken rather than the changes of the studentdgorithms maintain a single log in the local workspace wher

In order to illustrate how merging is done at the sententke locally executed operations are kept. When the opegation
level, let us continue with our example. Suppose that tliem the repository need to be integrated in turn into thalloc
two users continue to concurrently edit the last committddg, the entire local log has to be scanned and transformstio
version of the document. Suppose that the first user changegd to be performed even though changes refer to completely
the second sentence of the paragraBWS and Subversion different sections of the document and do not interfere with
present the conflict in line order of the documerit’State- each other. In our approach, we keep the log distributed
based merging systems such as CVS and Subversion preteoughout the tree. When an operation from the repository is
the conflict in the line order of the final document, the staiategrated into the local workspace, only those local |dgs t
of a line possibly incorporating the effect of more than onare distributed along a certain path in the tree are scanmed a
conflicting operation.”Concurrently, the second user changesansformations performed. The same reduction in the numbe
the same sentence in the paragraph‘Ror instance, CVS of transformations is achieved when the operations from the
and Subversion present the conflict in line order of the finddcal workspace have to be transformed against the opegatio
document’Assume that the first user commits their changes fom the repository in order to compute the new difference to
the repository first. When the second user updates the chanigesept in the repository. Our merging algorithm recursivel
from the repository, suppose that they choose the senteapplies over the different document levels any existinggimer
as the granularity level for the definition of conflicts andlgorithm relying on the linear structure of the document. |
the conflict unit comparison for the resolution of conflictsthis paper, we show how the histories of operations assatiat
The user will then be presented with the two versions of thie the nodes in the tree can be used to support a flexible
modified sentence and can choose one of these versions. solution for the definition and resolution of conflicts.

Further, consider the case of collaborative editing of XML At the same time, we have extended our approach to cater
documents when one user adds some spaces before sn&ML documents as well as text documents [8]. Some state-
element for reformatting purposes, while another user based approaches for merging XML documents have been

Ill. RELATED WORK

proposed in [2], [11], [27], [28]. A state-based approach fachanges to be kept.
merging text documents is the flexible diff [19] approachttha Our approach follows the same idea of a flexible defin-
finds and reports differences between two versions of tdx. Tition and resolution of conflicts as described in [16], [17].
PREP writing environment which relies on the diff approachiowever, we implemented the flexibility for the definition
is flexible, allowing users to indicate the granularity oethand resolution of conflicts in the context of an operational
changes they want to find, the choices being word, phrasensformation algorithm for maintaining the order betwee
sentence or paragraph. Moreover, the users can control the semantic units of the document. We identified the semanti
granularity of how the changes are shown when they aueits of the document by their position in the tree and we
reported, the choices being again word, phrase, sentencepvide exact algorithms for maintaining the order between
paragraph. If the user chooses a pinpointing granularity thfe semantic units in the presence of concurrent operations
sentence, then any word differences are shown as an Mdreover, we proposed complete merging algorithms for the
sentence deleted and a new sentence inserted. In contrastytichronisation against a shared repository. The appesach
the above mentioned approaches, our approach is operatiomposed in [16], [17] do not provide any correctness ddter
based and, as previously described, this yields a numbertiodit should be satisfied by the proposed merging matrices
advantages over state-based merging. when used for n-way merging. The criteria for correctness
An operational transformation approach for merging filef the transformation functions which have the same meaning
systems was proposed in [15]. File systems have a hierafchias the merging matrices are well defined [21], [23]. In our
structure, however, for merging of text documents, the@nsth approach we can use any existing transformation functions
proposed using a fixed working unit, i.e. the block unithat satisfy the correctness properties.
consisting of several lines of text. Other operational ¢fan
mation approaches for merging hierarchical documents) suc ~ |V. MULTI-GRANULARITY DOCUMENT MODEL

as SGML [4] or XML [14] documents, have been proposed. gu,ctyring the document into different semantic unitersf

The approaches offer an automatic soluti_or_1_f0r merging ‘m‘?' fsers the possibility to define and resolve conflicts in anaatu
not allow the user to customise the definition and resoluti

of conflicts. We offer both automatic and manual solutions We model a document as a hierarchical structure having

for merging and a mL{Iti-IeveI granularity for the deﬁnit.ionthe following levels of granularity: document (0), paragia
and resol_u'Flon of conflicts. Moreover, our ap_proac_h aclsev), sentence (2), word (3) and character (4), documenigbein
better_ efficiency t_han_ th_e approaches described in [15], [e highest granularity level and character being the lowes
[14] since the log is distributed throughoutt the tree rathan granularity level. Each workspace stores locally a copyhef t
being linear. tree structure of the document. The hierarchical strucisire

A flexiblg object framework_that aIIowg th? definition of the reated when the document is checked out from the repository
merge policy based on a particular application was adopfed d modified while changes are performed locally. Each node

the Suite collaboration system [16]. Merging can be FJ"“'mmat(excluding leaf nodes) keeps a history of insertion or dethet

s_eml-automatlc or interaciive. The ObJeCt.S S_UbJeCt t_‘m_“’?*a' operations associated with its child nodes. The structiitieeo
tion are structured and therefore semantic fine-graineidipsl| document is illustrated in Figure 1

for merging can be specified. A merge matrix defines merge
functions for the possible set of operations. The paperigesv Levels of —
as an example the merge matrix for a sequence object, wh Granularity operations at
the operations considered are the deletion of an elememnt, "*'° %" e
insertion of an element after another element in the seguelLevelt Paragaph| [px [rainis] [Paz]razriot] mpamﬂ -
and the modification of an element. The work described ! R paragraph Pa3
[16] presents how conflicts are handled between two versic Level 2 sentence [soz1[Se21 et | e sezerer]
of a document, but does not provide a solution for an 1
way merging, such as a synchronisation mechanism agai
a repository.

A follow-up work of [16] is the Sync application [17] that Level4 character
provides high-level primitives in the form of predefinedsdas
that enable programmers to create synchronised, replicate Fig. 1. Structure of the document
data objects. The Sync approach for merging is based on the
merge-model described in [16]. An application of Sync for a The set of operations that can be performed are insertion and
drawing-based collaborative tool has been proposed in [1dEletion of the semantic units composing the document, i.e.
Sync allows a merge of a user’s change with the server, lpdragraphs, sentences, words or characters. For instidnece,
requires that the server's change always wins in a conflict. dperation InsertWord(“CollaborateCom”,2,2,3)denotes the
our approach, various policies for merging can be specifigtsertion of word“CollaborateCom” into the 2nd paragraph,
for resolving conflicts, such as executing the local changedd sentence, as the 3rd word. This operation is kept in the
or the changes on the repository or let the user decide on thistory of sentenc&e 2.2 \We are going to refer to the ordered

Level 3 Word [W2.1.1 [w2.1.1 Hist] [W 2.1.2 [W 2.1.2 Hist. | | W 2.1.3 [W 2.1.3 Hist. |
/ N

C21.2.2]

C21.2.3]
o “n”

¢

c21.21
o

c21 2.4‘ c212 5‘0 212 e‘c 2.1.27
i " s e

c2 1.28‘
v

list of positions composing the path from the root to the éargmerging algorithm to update the local version of the documen
element of the operation as the position vector. Consider the scenario where the local user started working

As previously mentioned, our approach is general and cakom version V;, on the repository but cannot commit the
be applied to any document conforming to a hierarchicahanges because meanwhile the version from the repository
structure. For example, it can be applied to documents rephas been updated to versidf.,,. Let us denote by.L the
senting books, the hierarchical structure consisting aptérs, list of operations executed by the user in their local wosaksp
sections, paragraphs, sentences, words and characters. artd byD L the list of operations representing the delta between
proposed approach can also be applied to XML documentgrsionsV;..,, and V. Two basic steps have to be performed.
as shown in [7]. The first step consists of applying the operations frém
on the local copy of the user in order to update the local
document by integrating the changes includedvin.,,. The

In this section we present the synchronisation mechanigperations from the repository, however, cannot be exdcute
over a shared repository by describing the basic methods thatheir original form as they have to be transformed in order
should be offered by a version control system. We then pteséminclude the effect of all the local operations before thap
the basic operational transformation mechanism in order lte executed in the user workspace. The second step consists
understand the basic steps of the update procedure. We aEdransforming the operations if.[in order to include
describe the requirements of an algorithm for dealing witthe effects of the operations iWL. The resulting list of
conflicts. transformed local operations represents the new delta to be

saved in the repository.

V. SYNCHRONISATION OVER ASHARED REPOSITORY

A. Checkout, Commit, Update

The three basic methods supported by a version contfl Operational Transformation
system are: checkout, commit and update. A checkout methodn this subsection we present the general operation trensfo
creates a local working copy of an object from the repositorsnation mechanism that has been used to maintain consistency
A commit method creates in the repository a new version of real-time collaborative editing [5], [21], [25], [23],1R] as
the corresponding object by validating the modificationeedo well as in asynchronous collaborative editing [22], [14].
on the local copy of the object. The condition of performing Firstly, we present the notion of context [22] of an openatio
this method is that the repository does not contain a mofedenoted a€'T, as being the document state on whighs
recent version of the object to be committed than the locdéfined. Two operation®, and O, having the same context,
copy of the object. An update method performs the mergingl,, = CTp,, are denoted), =cr O. An operationO,
of the local copy of the object with the last version of thais context precedingperationO; denoted a®), —cr O, if
object stored in the repository. CTp, = CTp, - O,, i.e. the state of the document on which
In what follows we present the requirements of a®, is defined is equal to the state of the document after the
operation-based implementation of the commit, checkodt aapplication ofO,.
update methods in asynchronous communication with a sharedNext, we explain one of the basic mechanisms of the
repository. operational transformation approach, called inclusiangr
In the commit phase, a check is first performed as to whethfermation. Thelnclusion Transformation 17(O,, Oy) trans-
the user can commit the changes to the repository. If th@ms operationD, against operatio®, such that the effect
base version of the document in the local workspace, i.e. tok O, is included inO,. Consider the following scenario.
last version from the repository that the user started wagrki Suppose the repository contains the document consisting of
on, is equal to the last version in the repository, a comnmone sentencéWe present the merge.and two users check-
can be performed. Otherwise, an update is necessary befauethis version of the document and perform some operations
committing the data. In the case that a commit is allowedh their workspaces. Further, suppoéker; performs the
the repository should simply store the operations that weogerationO;; =InsertWord (“procedure”,5) It is an operation
performed in the local workspace. to insert the word‘procedure” at the end of the sentence,
In the checkout phase, a request should be sent to #wthe 5th word, in order to obtaifwe present the merge
repository to specify the version of the document that jwocedure” Note that due to the fact that the document
intended to be checked out. Using the set of operationsdstomntains only one sentence, we simplified the form of an
in the repository as delta, the system should be able to geovperation targeting this sentence by skipping the number of
to the local workspace either the state of the required eersithe paragraph and of the sentence. Afterwaltis;r; commits
of the document or the set of operations that are the suppibt changes to the repository and the repository stores the
for computing the state of the required version. list of operations performed by/ser; consisting of Oy;.
In the updating phase, the repository should send to thé lo€arrther assume that, concurrentlyser, executes operation
workspace a list of operations representing the delta mtwe),; =InsertWord(“next”,2) of inserting the word‘'next” as
the latest version in the repository and the base versionthre 2nd word into the sentence in order to obtdive next
the local workspace. Upon receiving the list of operatiorzesent the mergeBefore performing a commit/ ser, needs
from the repository, the local workspace should perform ta update their local copy of the document. The operafien

stored in the repository needs to be transformed in order desynchronous communication such as FORCE [22] achieve
include the effect of operatio®,;. Because operatioy; a better performance as shown below.
inserts a word before the insertion position®f;, O,; needs Suppose thatDL = [Og, ..., Og4i—1), Odis Oa(it1), - - - »
to increase its position of insertion by 1. In this way, th€,,,] and LL = Oy, ..., Oyi—1), O, Oiiy1)s - Orm]. The
transformed operation will become an insert operation ef tloperations inDL and in LL are contextually preceding and
word “procedure” as the 6th word, the result beifig/e next O,4; andO;; have the same initial context and all operations in
present the merg@rocedure” The condition of performing DL are concurrent with the operations irl.. Let us analyse
IT(O,,0p) is thatO, =c1 Oy. the number of transformations that have to be performed to
Another form of operation transformation used in thétegrate each operation belonging ol into LL and each
process of updating a local copy of the document is exclusioperation belonging td.L into DL using the SOCT2 [23]
transformation. TheéExclusion Transformation ET(O,,0,) algorithm. Let us analyse first the integration of the opera-
transformsO,, against the operatiof, that precede®), such tions belonging toDL into LL. When Oy, is transformed
that the impact ofD, is excluded fromO,. The condition of against all operations i L, n inclusion transformations will

performing ET(O,, Oy) is thatO, —cr O,. be performed, the result being operatiol;,. When Og.
has to be integrated into the transformed local bf’ =
C. Dealing with Conflicts On,- -+, 01, 0], the operations in the log have to be

reordered such that the first part of the log contains theasper
Not all operations belonging 9L can be executed in thetions that preced®,, and the last part of the log contains the
local workspace as some of these operations may be in conf§grations that are concurrent with,. Therefore0’;, has to
with some of the operations frodiL. Let us consider that pe transposed at the beginning of the history buffer. Eagh st
DL = [Oat,--; Oa(i-1), Odi, Od(i+1), -+ Oam]. In the case of the transposition involves the computation of an in@usi
thatOg; is in conflict with at least one operation frof. and and exclusion transformation and, therefore, the traripos
Oai cannot be executed in the local workspace, a mechanigcess requireg « n transformations. Afterwards),, has
for undoingOq; should be provided such that the effect@f; to be transformed against the concurrent operations and, in
is excluded from the operations that follow itinL. The effect this case,n inclusion transformations will be performed.
of undoingOq; should be reflected on the repository by storingherefore, the integration @,, requires3«n transformations.
a new operation after the operations frdnd that cancels the The integration of all operations iDL into LL requires
effect of Oy;. The reason thadgy; should be excluded from the thereforen + 3 «n (m — 1) = 3%nxm—2xn transformations
operations)g; that follow Og; in DL is that whenOg; has to o be performed. Similarly, the integration of all operato
be transformed against the lift, the form ofO4; has to be pelonging toL L into DL requires3snsxm—2x«m operations to
adapted to illustrate the fact thal;; was cancelled. The fact pe performed. Therefore, the total number of transformatio
that the undoing 00,; should be obtained by executing SOM&re 6 « 1« m — 2 m — 2 * n.
new operations following the operations fraf. is required The FORCE [22] approach transforms each operafign
by the fact that the lisDL is already stored in the repositoryjn pr, in turn with respect to each operatiafy; in LL
and cannot be modified as it represents the delta between {yg| after such a transformation is performed, the symmetri
versions in the repository. The effect of cancellifig; in the tansformation of0;; with respect toO,; is also performed.
repository due to a conflicting local operation can be madge approach requir@sn+m transformations to be performed
visible in the repository only after the local user commiitsit anq the logs have to be traversed only once.
changes to the repository. When a commit is performed, theye therefore applied the FORCE algorithm for our merging
new delta should contain the operations whose effect cangghroach recursively over the document levels.
Ogi.
In the case that a conflict betweé&h,; and an operation VI. OUR APPROACH
in the local logLL occurs and the local operation has to be |n this section, we describe our merging algorithm for
cancelled, the cancelled local operation should be exdludgealing with conflicts applied to hierarchical documents.
from the operations that follow it il L. Then when these The commit phase in the case of the tree representation
local operations are transformed against operatiod3/ithey of documents follows the same principles as in the case of
reflect the fact that an operation preceding them was cantellthe linear representation. The hierarchical represemtaif
Therefore, a mechanism for performing the integration d@fie history of the document is linearised using a breads-fir
an operation into the log and the cancellation of an oparatioraversal of the tree. In this way, the first operations in the
from the log in the way described above has to be providetbg will be the ones belonging to paragraph logs, followed by
In [20], [24], [6] mechanisms for performing undo haveoperations belonging to sentence logs and finally operstion
been proposed, so one of these mechanisms could be useldnging to word logs.
for the cancellation of an operation. For the integration of In the checkout phase the operations from the repository are
an operation into a log, one of the algorithms working foexecuted in the local workspace.
real-time communication such as SOCT2 [23] or GOTO The update procedure presented below achieves the actual
[25] could be applied. However, specialised algorithms farpdate of the local version of the hierarchical documenh wit

the changes that have been committed to the repository by
other users and kept in the remote log. The remote log cantain
a linearisation of the logs that were initially part of a tree
document structure. The goal of the update procedure is the
replacement of the local log associated with each node with
a new one which includes the effects of all non conflicting
operations from the remote log and the execution of a modified
version of the remote log on the local version of the document
in order to update it to the version in the repository. Theaipd

procedure is now presented.

Algorithm wupdate(CN, RL, Conf Level, KeepLocal, Policy) {

LLL := getLog(CN);

bInd := |RL|;

RLL :=);

for(i = 0; i < |RL|; i + +){
O = RL[i];
if(get Level(O) = getLevel(CN)) append(O, RLL);
else{bInd := i; break}

}

updateOpInds(LLL, getInds(CN));

if(Policy = noMerge)
if (KeepLocal)
if (isEmpty(LLL)) NLL = inverse(RLL);
else(NRL,NLL):=merge(RLL,LLL);
else
if (isEmpty(RLL)) NRL = inverse(LLL);
else(NLL, NRL):=merge(LLL, RLL);
else
if(Policy = automatic or Policy = con flictChoice)
if(KeepLocal) (NRL, NLL):=merge(RLL,LLL);
else(NLL, NRL):=merge(LLL, RLL);

for(i = 0;4 < [NRL|; i + +)
applyOperation(N RL[i]);
setLog(CN,NLL);

ChildRL :=[];
for(i=0; ¢ < getNoChildren(CN); i + +)
ChildRL[i] := [];
for(¢ = bInd; ¢ < |RL|; i + +){
O = RL[i];
for(j = 0; j < |NLL|; j ++)
include(O, NLL[j]);
append(O, ChildRL[getInd(O, getLevel(CN))]);

for (i = 0; ¢ < getNoChildren(CN); i ++) {
Childi = getChildAt(CN,i):
RLi = ChildRL[i];
if(level(Childi)! = Level)

update(Childi, RLi, Conf Level, KeepLocal, Policy);

else
if(RL: =[])

update(Childi, RLi, Con f Level, true,noMerge);

else
if(is Empty(get Log(Childi)))

update(Childi, RLi, Conf Level, false,noMerge);

else
if(Policy = automatic or Policy = noMerge)

update(Childi, RLi, Conf Level, KeepLocal,

noMerge);
else{

update(Childi, RLi, Conf Level, true, noMerge);
Vi = getChildAt(CN, 1);
setChildAt(CN,i, Childi);
update(Childi, RLi, Con f Level, false,noMerge);
Vo = getChildAt(CN, i);
setChildAt(CN,i, Childi);
if(chosen(Vi, Vo) = V1)

update(Childi, RLi, Conf Level, true,noMerge);
else

update(Childi, RLi, Con f Level, false,noMerge)

}

The CN argument of the update procedure represents the
current node in the tree traversal, and is equal to the rotbteof
document tree in the initial call. The parameferL represents
the remote logCon f Level is the conflict level set by the user.
For text documents composed of paragraphs, sentencess word
and characters, the conflict level can be paragraph, sentenc
word. Two operations are in conflict if they refer to the same
subtree whose root has been defined to be a conflict unit. By
defining a conflict level, all nodes belonging to that leved ar
considered conflict unitsieepLocal is a boolean indicating
if the local operations or the remote operations are kept in
the case of a conflict. Th2olicy argument indicates the type
of the chosen resolution policy, i.e. automatic or manua, t
corresponding values beirmgitomaticandconflictChoice The
policy is propagated down the tree for each recursive cal. D
ferent actions have to be taken if processing is done ingide o
outside a conflict subtree, i.e. a subtree whose root is aiconfl
unit. We introduced a third policy calledoMergeused when
processing is done inside a conflict subtree. TwMerge
policy chooses the local or remote operations dependingen t
decision taken at the root of the conflict subtree and cancels
the remote or the local operations respectively.

The local level logLLL and the remote level loRLL
contain the parts of the local and remote logs referring & th
current node.RLL is initialised with the remote operations
pertaining to the current node, by iterating over the remote
log and keeping those operations whose level is identical to
the level of the current node. The level of an operation is
equal to the level of the node in whose history the operation
is kept. For instance, amsertParagraphoperation belongs
to the document history and is of level 0, &rsertSentence
operation is of levell, an InsertWordoperation is of levebR
and anlinsertCharoperation is of leveB. The bInd variable
stores the index of the first operation that refers to a lower
level than the level of the current node.

The next step is the update of the indices of all the
operations inLLL so that they correspond to the current
position in the tree of the node to whose log they belong.
During the update algorithm, nodes might get inserted or
deleted from the tree, as we apply the modified remote
operations on the local version of the tree. As the positions
of the nodes change, it is clear that all operations belangin
to the log of the nodes whose positions have changed will
no longer have valid indices. For example, if the local level

log contains the operatiobeleteChar(“d”,1,3,4,5) denoting child of the current node and its corresponding previously
an insertion of charactéid” into paragraph 1, sentence 3gcreated remote log. However, the resolution method propa-
word 4, at position 5 in the word, and paragraph 1 has begated to children depends on the resolution method applied
shifted two positions to the right by the insertion of two newon C N and on the level of the child nodes. If the level of
paragraphs before it, the operation has to be transformedatahild of the current node is not equal with the level of
DeleteChar(“d”,3,3,4,5) conflict, the call of update applied o N is propagated to
Depending on the chosen policy, the merge procedure usedchild. If the level of the child node is equal with the léve
in FORCE [22] is called in order to merg8LL and LLL of conflict, the following checking is performed. If the retao
and generate two new logs, the new remote M@&L and list associated to the child node is empty or if there are no
the new local logV L L, each of which is modified to include local operations targeting the subtree rooted at the claitten
the effects of the operations in the other log. If the poligy iit means that no conflicting operations are targeting thélchi
noMergewith the decision to keep local operations and cancebde. The update procedure is then called with the resalutio
remote operations, the merge procedure is called in itsnadig policy of noMerge with the indication to keep only the local
form. If the local log associated with the current node is gmp or the remote operations, respectively. TreMergepolicy, as
remote operations have to be cancelled. This is achieved wgll as theautomaticpolicy applied on a node whose level is
keeping in NLL inverses of the operations in the remotequal with the conflict level is propagated asaiMergepolicy.
log. The case whetieepLocal is false is symmetric to the If the resolution policy isconflictChoice two versions of the
previously described case. In this case, the merge proeeaslursubtree rooted a€CN have to be computed, one containing
called with the local and remote log arguments switchedh suthe execution of only the local operations and the other one
that, if conflict is detected, remote operations are comsitle containing the execution of only the remote operations. The
Note that for anoMerge policy, all local operations are in two versions are then presented to the user and the oneesklect
conflict with the remote operations. If the policyasitomatic is recomputed.
or conflictChoice the FORCE merge procedure is called in its Transformation functions adapted for linear structures ca
original form. be used in our approach as explained in what follows. As
Afterwards, the operations iV RL are applied to the local shown in the update procedure, when merging is performed
copy of the document in order to update it and the local Icgg the level of the current node of granularity the local
of the current node is then replaced withZ L. We mention level log LLL contains operations of granularity levelnd
that for our merging algorithm we can use any existing lineéine remote log contains both operations of granularity lleve
approach for merging two lists of operations. However, in od from the remote level logRLL and other operations that
current implementation, we have used the FORCE mergingfer to the current node but are of a finer granularity than
algorithm. 1. Transformations between the operations.ihl. and RLL
Next, the remaining part of the remote log, i.e. the operdave to be performed. As these operations are of different
tions frombInd on, needs to be divided among the children dévels of granularity, the inclusion and exclusion tramsfa-
the current node and the update method called recursively fion functions have to deal with operations of differentdisv
each child. Each operation in the remote log, starting froof granularity. However, in what follows we explain how
position bind on, will be transformed in order to includetransformation functions for operations of the same level o
the effects of all operations iV LL. This is necessary asgranularity are used in our approach.
operations in the new local log are of higher level than the Operations fron. LL and RLL are of the same granularity
ones remaining in the remote log and thus can influent®vel i, so the transformations of the operations frdm L
the context of the remote operations. For instance, supp@gminst the operations frolRLL and conversely modify the
that when merging is performed at the paragraph le¥dlL ith index of the position vector of the operations.
contains an operation of insertion of a paragraph as the firsttach operation fromLLL and RLL can be transformed
paragraph in the document and the remote log contains th&o a simple operation of level, the position parameter of
operationO = InsertWord(“conflict”,3,2,2) of insertion the simple operation representing tile index of the position
of word “conflict” into the third paragraph, second sentenceector of the corresponding original operation. We refer to
as the second word. In this case,should be transformed to operations characterised by a position vector as composite
reflect that word‘conflict” should be inserted into the fourthoperations and to operations referring to a certain levéhén
paragraph and not into the third paragraph. tree as simple operations. The same idea of transforming a
Afterwards, the transformed remote operations will beomposite operation into a simple one has been applied for ou
added to the correspondidghild RL lists chosen by analysing algorithm for the real-time communication [9], [10]. Insion
the modified index corresponding to the level of the curreand exclusion transformation functions for simple operadi
node. The functiorgetind(O,L)returns the index of operationcan then be applied to compute the transformed positions for
O corresponding to the level. By the end of the iteration, level i of the composite operations. The transformed position
all remote operations will have been transformed and placefithe simple operations will represent thin index of the
in the correct list. position vector of the transformed form of the correspogdin
Finally, the update method is recursively called for eaatomposite operation.

The operations irR L that follow the operations iR L L are steps, users can specify different definition and resalutio
of a finer granularity tham and they have to include the effectmerge policies.
of the operations in the new local Iy LL. The operations Consider the example described in section Il where two
in NLL are of granularity; and they might affect only the users concurrently modify the documéht:the case of oper-
position of the operations ilRL corresponding to level. ation merging, when a conflict occurs, the operation causing
The operations ilRL are transformed into simple operationshe conflict is presented in context in which it was performed
corresponding to level Transformation functions working for CVS and Subversion present the conflict in line order of the
linear structures can be then applied to find the transformddcument.[...]” The concurrent modifications performed by
form of the simple operations. The simple operations can tiee two users as described in the example in section Il are
then reverted to their corresponding complex operations Wstrated in Figure 2.
modifying theith index in the position vector of the composite

operation with the position parameter of the transformethfo
of the simple operation. fo_Operofiors
[Conflict level: Conflict resolution method:

Therefore, the same transformation functions working f| e
linear structures, such as the ones in the SOCT2 [23] or GO gsemm'm R
. . . . aragraph level conflict unit comparison
[25] algorlthms’ Can be recurs“lely applled In OUf approac InI:E::se:fuperalmr@mergmg,Whena:unﬂl:lut:urs,theDperatlun
Our approach is general and can apply any merging algorith{iis e s sesentsa geortstinwacn s prtemed cve
and any transformation functions working for linear Sttes i paerwe prop e At e

approach based an of File Operations

of the document recursively over the hierarchical Str@Efr | resoven st sitereni g

(@ automatic

Your version: 11

[Conflict level: Conflict resolution method:
the document. @ wort evel S
) sentence level
@ conflict unit comparison
VII. DEFINING AND RESOLVING CONFLICTS FROM THE warauraph vt R — :
Inthe case nfuparalmergmg,when a conflict occurs, the operation Your version: 11
causing the conflictis presented in cnntextinwhichitwas]mr
A P P LICATION I NTER FAC E perfnmged CV8 and S‘ijversinn presentthe conflict in line nrﬂarnfhe .
. . document
In this section, we show how our approach can be used Ear
. . . . Inthis paper we propase a customisable hierarchical-based merging
define and resolve conflicts in a flexible way. Due to the tre S femore
. . . . ¢ ch
model of the document, the conflicts can be defined at differe L
granularity levels: paragraph, sentence, word or charalcte

our current implementation, we defined that two operatiol
are conflicting in the case that they modify the same semantic
unit: paragraph, sentence, word or character. The semantic Fig. 2. Concurrent changes of two users

unit is indicated by the conflict level chosen by the user from
the graphical interface. The conflicts can be visualisechat t Suppose that the first user commits the changes to the
chosen granularity levels or at a higher level of granufaritrepository. When the second user updates the local version
For example, if the user chooses to work at the sentence lewdlthe document, a conflict level and resolution method have
it means that two concurrent operations modifying the sarte be specified. Suppose that the user chooses word as the
sentence are conflicting. The conflicts can be presentectat ginanularity level for the definition of conflicts, meaningath
sentence level such that the user can choose between the ¢hvanges performed in the same word are conflicting. Further
versions of the sentence. It may happen that in order to ehossippose that the user chooses conflict unit comparison as the
the right version, the user has to read the whole paragragsolution method, meaning that when a conflict occurs, the
to which the sentence belongs, i.e. the user can chooseuser is asked which of the two versions to keep, the one from
visualise the conflicts also in the context of the paragraph the repository or the one from the local workspace.
at an upper level. When an update is performed by the second user, as shown
We allow different policies for conflict resolution, suchin Figure 3, the non-conflicting changes from the repository
as automatic resolution where the local changes are keptaie executed and the user is presented with a dialog box to
the case of a conflict or manual resolution, where the usgroose between the conflicting worttgperation-based” and
can choose the modifications to be kept. Concerning mantaperational”. The user can choose to expand the context
resolution policies, the conflict unit comparison policweg for conflict, i.e. to visualise the context where the conflict
a user the possibility to choose between the set of all loaadcurred, both in the local workspace and the repository. In
operations and the set of all remote operations affectieg tthis way, the user can visualise the sentences, the pategrap
selected conflict unit (word, sentence or paragraph). Tlkee usr even the whole document where the changes occurred.
is therefore presented with the two units that are in conflicduppose that the local modification is chosen, and, thexgefor
The policies for the resolution of conflicts can be specified iafter a commit to the repository, the form of the paragraph fo
the graphical interface. The rules for the definition of ciehfl the last version of the document i$n the case of operation-
and the policies for conflict resolution can be specified ligheabased merging, when a conflict occurs, the operation causing
user before an update is performed and they do not have tothe conflict is presented in the context in which it was
uniquely defined for all users. Moreover, for different uggda originally performed. CVS and Subversion present the ainfli

(7]

File

operations
Conflict level: Conflict resolution method: [8]
&) word level =
) automatic

) sentence level

) paragraph level ® conflict unit comparison [9]

In the case of operation-based merging, when a conflict occurs, the operation
causing the conflict is presented in the contextin which itwas ariginally
perforred. CVS and Subversion present the conflictin line arder of the
document,

Your version: 11

(10]

Add

Edit
In this paper we propose a custamisable hierarchical-based merging

approach based on operations, where the conflicts can be specified and
resolved at different granularity levels

Remove

(11]

£ conflict resolution

operation-based operational

(12]

I Cormmit || Select 1 || Select 2 || Expand context |

[13]
Fig. 3. Conflict resolution for word granularity

[14]
in line order of the document.[...]f the first user updates
the local document, this will be the version of the documens)
in their local workspace.

VIIl. CONCLUSIONS [16]

In this paper we proposed a multi-level editing approac[tl'nﬂ
for hierarchical documents that offers support for the de-
finition and resolution of conflicts at different granulgrit [18]
levels corresponding to the document levels. The propo
algorithm recursively applies the same basic mechanism as
the existing operation-based merging algorithms workiog f
linear structures over the different document levels.

Our future plans include developing a multi-level undo
operation to enable users to undo operations referring td2al
particular node of the hierarchical document structure.

An asynchronous collaborative editor working for text doc-
uments has been implemented in our group. We also impléz]
mented an XML editor based on the same ideas described in

[20]

this paper [7]. [23]
REFERENCES
[1] B. Berliner, “CVS II: Parallelizing software developmt&n Proc. of (24]
USENIX Washington D.C., USA, 1990, pp. 341-352
[2] G. Cobena, S. Abiteboul, and A. Marian, “Detecting chemgn XML [25]
documents”,Proc. of the Intl. Conf. on Data Engineeringan Jose,
California, USA, Feb. 2002, pp. 41-52
[3] B. Collins-Sussman, B.W. Fitzpatrick, and C.M. Pilat@rsion Control (26]
with SubversionO’Reilly, 2004
[4] A.H. Davis, C. Sun, and J. Lu, “Generalizing operatiomahsformation (27]
to the standard general markup languadrtic. of CSCWNew Orleans,
Louisiana, USA, Nov. 2002, pp. 58-67
[5] C.A. Ellis and S.J. Gibbs, “Concurrency control in grewgre systems”, (28]

Proc. of the ACM SIGMOD Conf. on Management of DaRartland,
Oregon, USA, May 1989, pp. 399-407

[6] J. Ferre, N. Vidot, and M. Cart, “ Concurrent Undo Operations in
Collaborative Environments Using Operational Transfororti Proc.
of CooplS Larnaca, Cyprus, Oct. 2004, pp. 155-173

C.-L. Ignat and M.C. Norrie, “Flexible Collaboration ew XML Docu-
ments”, Proc. of CDVE Mallorca, Spain, Sept. 2006, pp. 267-274.
C.-L. Ignat and M.C. Norrie, “Supporting Customised Ghloration
over Shared Document Repositoriefroc. of CAISE Luxembourg,
Grand-Duchy of Luxembourg, June 2006, pp. 190-204.

C.-L. Ignat and M.C. Norrie, “Customizable Collaborai#ditor Rely-
ing on treeOPT Algorithm”Proc. of ECSCWHelsinki, Finland, Sept.
2003, pp. 315-334

C.-L. Ignat and M. C. Norrie, “Tree-based model algaritfor maintain-
ing consistency in real-time collaborative editing systerigdrkshop on
Collaborative Editing, CSCW 200Rlew Orleans, Louisiana, USA, Nov.
2002

La Fontaine, R., “A Delta Format for XML: Identifying Chages in XML
Files and Representing the Changes in XMXML Europe Berlin,
Germany, May 2001

D. Li and R. Li, “Preserving Operation Effects Relation Group
Editors”, Proc. of CSCWChicago, lllinois, USA, Nov. 2004, pp. 457-
466

E. Lippe and N. van Oosterom, “Operation-based mergiRgi¢c. of the
5th ACM SIGSOFT Symposium on Software development enermigm
1992, ACM SIGSOFT Softw. Eng. Notes, Vol. 17, No. 5, pp. 78-87
P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain, “San®ynchronous,
asynchronous, multi-synchronous environmenf&c. of CSCWDRio
de Janeiro, Brazil, Sept. 2002, pp.80-85

P. Molli, G. Oster, H. Skaf-Molli, and A. Imine, “Using ¢éhtransforma-
tional approach to build a safe and generic data synchndniReoc. of
Group, Sanibel Island, Florida, USA, Nov. 2003, pp. 212-220

J.P. Munson and P. Dewan, “A flexible object merging framst; Proc.
of CSCW Chapel Hill, North Caroline, USA, 1994, pp. 231-242

J. P. Munson and P. Dewan, “Sync: A Java Framework for Mobi
Collaborative Applications”Computer 30(6), 1997, pp. 59-66

E. Myers, “An O(ND) difference algorithm and its vaii@s”, Algorit-
mica, 1(2), 1986, pp. 251-266

5‘] C. M. Neuwirth, R. Chandhok, D. S. Kaufer, P. Erion, J. g and

D. Miller, “Flexible diff-ing in a collaborative writing sgtem”, Proc. of
CSCW Toronto, Ontario, Nov. 1992, pp. 147-154

A. Prakash and M. J. Knister, “A framework for undoing ians in
collaborative systems’ACM Transactions on Computer-Human Inter-
action, 1(4), 1994, pp. 295-330

M. Ressel, D. Nitsche-Ruhland, and R. GunzZamer”, "An Integrating,
Transformation-Oriented Approach to Concurrency Contnol Bndo in
Group Editors”,Proc. of CSCWBoston, Massachusetts, Nov. 1996, pp.
288-297

H. Shen and C. Sun, “Flexible merging for asynchronoutaborative
systems” Proc. of CooplSCalifornia, Irvine, USA, Nov. 2002, pp. 304-
321

M. Suleiman, M. Cart and J. Fegri “Serialization of Concurrent Op-
erations in a Distributed Collaborative EnvironmerRtpc. of GROUR
Phoenix, Arizona, USA, Nov. 1997, pp. 435-445

C. Sun, “Undo as concurrent inverse in group editoGM Trans.
Comput.-Hum. Interact9(4), 2002, pp. 309-361

C. Sun and C.Ellis, “Operational transformation in réale group
editors: Issues, algorithms, and achievemerfsdc. of CSCWSeattle,
Washington, USA, Nov. 1998, pp. 59-68

W.F. Tichy, “RCS- A system for version controlSoftware - Practice
and Experiencel5(7), Jul. 1985, pp. 637-654

O. Torii, T. Kimura, and J. Segawa, “The consistency mansystem
of XML documents”, Symposium on Applications and the Internet
Orlando, Florida, USA, Jan. 2003, pp. 102-110

Y. Wang, D.J. DeWitt, and J.Y. Cai, “X-Diff: An Effect&zyx Change
Detection Algorithm for XML Documents”Proc. of ICDE Bangalore,
India, March 2003, pp. 519- 530

