

1-4244-0429-0/06/$20.00 ©2006 IEEE

Increasing Awareness in Collaborative Authoring
through Edit Profiling

S. Papadopoulou, C. Ignat, G. Oster and M. Norrie
Department of Computer Science

ETH Zurich

CH-8092 Switzerland

Email: {papadopoulou, ignat, oster, norrie}@inf.ethz.ch

Abstract— Awareness of the activities of other users and
also document evolution is an important part of collaborative
authoring. We introduce the concept of an editing profile that can
be used to maintain and visualise measures of the changes made
across a document by different users in both synchronous and
asynchronous collaborative editing. It provides a simple means of
making users aware of “hot areas” and also who is or has been
active in various parts of the document, as well as a quick access
point into parts of the document that have been changed. The
profile can be adapted to display the most relevant information
based on both user preference and situation.

I. INTRODUCTION

Providing awareness has become an important part of

improving the usability of synchronous and asynchronous

distributed collaborative systems. It is important for people

collaboratively authoring a document to be informed about the

kinds of changes that have been made on the document be-

tween two versions, at which parts of the document they have

been made and by which users. Being aware of the changes

made to a document helps the user to better understand the

evolution of the document, easily cooperate with other users

and avoid possible conflicts.

A lot of work has been devoted to the various kinds of

information users should be aware of while working in a

collaborative environment and how it should be visualised.

For example, telepointers and radar views [19], [9] are used to

provide awareness information about where users are working

on a document. However, little work has been done on

computing overall information about changes made by users

to a document and how this information should be stored in

the system to further be queried and viewed in a flexible way.

It should be possible for a collaborative system to provide the

users with awareness customised according to their preferences

and also their situation. For instance, it should be possible to

provide the user with information about insertions of whole

words or sentences made by a specific user, at a specific

section of the document. Furthermore, it should be possible

to present which parts of the document were heavily changed

by a specific user, or present an overview of the changes made

throughout the whole document.

In current collaborative editing systems, it is difficult to

provide flexible awareness information. We propose a novel

approach that, given two versions of a text document, either

in synchronous or asynchronous collaboration, computes and

stores awareness information in a flexible way and presents

it to the user at different granularity levels, according to the

user’s preferences. Our approach is based on the notion of edit

profiles which represent a profile of editing operations across

a document.

We begin in Section II with a review of existing ap-

proaches to awareness in collaborative authoring systems and

a motivation of our approach. Section III then presents the

requirements imposed by the introduction of edit profiling,

while Sections IV and V detail our methods for computing,

maintaining and adapting the editing profile according to

users’ preferences, for different levels of the text document.

In Section VI we describe how we extended an asynchronous

collaborative text editor to provide awareness information

based on our approach. Concluding remarks and a discussion

of future work is given in Section VII.

II. AWARENESS IN COLLABORATIVE AUTHORING

When many people work on the same document without

the use of collaborative editors, or when a person accesses

a document from different computers, it often occurs that

the users end up with different versions of the document.

Inspecting the differences between two versions of a document

is a very difficult process to perform manually.

To solve that problem, many document comparison tools

have been developed. Some of them, for example Win-

Merge [5], diffDoc [2] and diffDog [1], support the compar-

ison and merging of many text-based document types. The

procedure followed is that the user chooses the documents to

be compared, and the system presents the documents with the

differences highlighted.

Some of these systems present information on the user who

made each change [4], usually through a colour code used

when highlighting the differences, or the type of the changes

made (insertion or deletion). Another expedient feature present

in WinMerge is a bar serving as an overview of the changes

applied to the document, indicating the places where the

changes occurred. The users can click on the bar and navigate

through the differences of the two documents. At the same

time, they are informed about the parts of the documents where

the differences occur.

The disadvantage of these document comparison tools is

that there is almost no semantic comparison between the

documents. Text is treated as an array of characters, without

creating any semantic units in the documents. Even in cases

where paragraph, sentence and word separators are specially

treated so changes to them will not generate differences

between the documents [4], the units are still based on lines

and have no semantic value. This is also true in cases where

words can be merged to generate a line and lines can be

merged to generate a paragraph.

The disadvantage arising from this approach is that no infor-

mation is, for instance, returned to the user about differences

detected at the paragraph level between the documents under

comparison. Another drawback of document comparison tools

is the fact that most of them are used only to visualise the

differences between documents and not to edit the documents.

Even in the tools that offer editing features, for example

WinMerge [5], the operations performed are not stored by the

editor to be further used to compute the difference between

the documents. The difference is recomputed, if needed, based

only on the initial and final states.

When working on a document using a collaborative editor,

there is still the need to present the difference between two

states of the document. The advantage of working with a

collaborative editor is that the operations that transformed the

document from one version to another are recorded by the

editor and, for that reason, can easily be stored and used

to compute the difference. Many collaborative editors [6],

[12], [19], [17], both synchronous and asynchronous, have

been implemented based on that concept. The approach of

keeping the changes made by users in terms of the opera-

tions performed offers better support for merging and conflict

resolution compared to state-based approaches [14] since it

tracks the activity of a user over a certain period of time.

On the other hand, state-based approaches take into account

just the final and initial states of the document and lose

information about the process of the transformation from one

state to the other. We therefore adopted an operation-based

approach for computing and storing awareness information

during collaborative editing.

Suppose that three users, one professor, Jim, who is a native

English speaker and two students, Fred and Mary are using

a collaborative asynchronous text editor to write a paper. For

reasons of simplicity, we will assume that there is a remote

repository in our example where all versions of the document

are kept. However, note that the approach presented in this

paper can also be used if there is no central repository and

users synchronise their versions against other users’ versions,

or, if they are actually using a synchronous rather than asyn-

chronous collaborative editor. Assume all three users in our

example have downloaded the current latest version V0 from

the repository and are working on their local copy. Consider

the case that student Fred is mainly responsible for sections

1 and 2, student Mary for sections 3, 4 and the conclusion,

and the professor Jim is responsible for the introduction and

overall editing of the document.

Assume that while Mary is working on her local copy of

the document, Fred makes some changes to his local copy

and uploads them to the repository creating a new version V1.

Afterwards, Jim applies some more changes, not conflicting

with the ones from Fred, and after updating his version V0

to include the changes that transformed version V0 to V1,

he commits his changes to the repository creating version

V2. When Mary updates her version, a log containing all the

operations transforming version V0 first to version V1 and then

to version V2 is sent by the repository. After these operations

have been applied, Mary has an up-to-date local copy of the

document including the changes made by the other two users.

This scenario is typical when groups of users are collabo-

ratively authoring a document asynchronously. When a user,

such as Mary, updates her copy, she has all the changes

integrated in it. However, it is no easy task to locate where

and what changes have been applied, especially when the

document is large.

We can think of further information of which Mary, in our

example, would like to be aware. Since she is not a native

English speaker, she would like to be separately informed

about spelling mistakes corrected by Jim. This means that she

should be informed about changes on different levels of the

document (in the case of spelling mistakes the changes are at

word level). To see the importance of being aware of changes

at different levels, consider further the typical editing scenario

where the professor is trying to understand and reformulate

a sentence written by one of his students. The number of

character edits may become large as he experiments with

various reformulations of the sentence, and so, as a measure

of the changes made to the student’s sections, the number of

paragraph or sentences edited might make more sense rather

than the number of individual characters edited.

Further, since Mary is mainly responsible for specific sec-

tions of the document, she would like to be informed about

changes that were applied only to those specific parts of the

document, including an indication as to how many insertions

or deletions were performed on those sections. Moreover, she

might want to check which parts of the document were heavily

changed, possibly also which user enforced the changes, and

even have an overview of the changes she personally made on

the document.

Current collaborative authoring systems concentrate on pre-

senting in detail the changes made to a document. Systems

such as Microsoft Word [3], PREP Editor [16] and TeN-

DaX [11] present all the changes directly superimposed on the

text. In some of these systems, the different types of operations

are distinguished, as well as the different users who made the

changes.

In the TeNDaX approach, the document is represented as a

linked list of character objects that are stored in a database.

Editing commands for operations of insertions and deletions of

characters are mapped to database transactions. TeNDaX does

not provide any awareness information associated with the

structure of the document, such as an overview of the changes

made on a certain section or paragraph of the document.

The PREP editor supports visualisation of changes at dif-

ferent document levels. However, PREP editor, similarly to

Microsoft Word, does not provide a global overview of the

changes made by users throughout the document. Users have

to scroll through the document to visualise the parts that

have been modified. This requires explicit actions on behalf

of the user and will be tiresome in the case of very large

documents. Therefore, there is a need for an auxiliary, less

detailed, representation, alongside the main text, that shows a

measure of the changes made across the document, thereby

providing a quick and easy way to make users aware of “hot

areas” with lots of changes, the activities of different users

and, if shown over a longer history, also the evolution of the

document.

A collaborative editing system should monitor user activity

and record all changes made to various parts of the document.

A summary of all edits would then form a global editing

profile. The scale for the representation of changes should

be flexible, allowing it to be adapted according to specified

document levels of sections, paragraphs, sentences and words.

Users should also be allowed to use the global editing profile

to select parts of the document and visualise the changes made

there.

Such an editing profile could also provide better awareness

for users collaboratively editing a document in real-time.

Consider, for instance, an example of two users using a real-

time collaborative editor. The editing profile provides each user

with an overview of the activity of the other users in terms

of both the quantity and location of changes made. Returning

to our previous example, Jim may be working sequentially

through the document correcting language, while Mary works

on the implementation section. In real-time, Mary will be

aware of Jim’s progress through the document and see when

he is approaching the section on which she is working.

The idea of profiles attached to a document can also be

found in information retrieval. Generally, an overview of the

retrieved documents for a given query is provided as a ranked

list of documents. In [7], [8], a new overview for within-

document retrieval was introduced in terms of a relevance

profile that enables users to identify relevant parts of a

document with respect to a query and then select those parts

for browsing. A relevance profile is presented in the form of an

interactive bar graph. Each bar refers to a part of the document

and the height of a bar represents the computed retrieval status
value [7] of the corresponding part of the document. However,

the unit for visualising changes is the so called tile representing

a part of document that consists of a fixed number of words.

Therefore, the granularity unit cannot be varied dynamically

to specify the relevance measures for different semantic levels

within the document, such as paragraph, sentence or word.

The idea of presenting an overview of a project’s evolution

is not new in CSCW. By analysing differences between multi-

ple revisions of one document, history flow visualisations [18]

provide an overview of a document’s evolution. They provide

information about how a group has contributed to a document

or how a modification has influenced the current version of

a document. Unfortunately, this work relies on a state-based

difference approach and the document’s evolution is computed

only on the document level.

Molli et al. [15] proposed a metric to measure divergence

between copies of the same document. By informing users

how their copies are diverging from each other, and presenting

a measure of the conflicts that the changes will cause when

published, it is expected to generate auto-coordination in a

group working collaboratively. Although this approach seems

to be promising, the unit for computing the divergence is

the document, rather than semantic units of the document.

Therefore, it is not possible to provide users with a detailed

view of the modifications performed on document parts.

The idea of computational wear [10] is the closest work

to our proposal. Actions of reading and authoring lines of

a text document are graphically depicted. This is achieved

by counting how many times a line is read or updated, and

presenting this information to the user as bar charts drawn

in the editor scrollbars. The lack of a structured document

model restricts considerably the accuracy of the information

provided. No flexible way is provided to filter the above

information according to user preferences and present it on

different granularity levels.

We propose a flexible way of computing awareness in-

formation on different semantic levels of a text document.

Operations applied to a document, either locally or remotely,

are scanned through and used to evaluate some new metrics

that we introduce in this paper. These metrics will represent

the amount of changes on specific parts and levels of the

document. This information can further be easily filtered to:

• provide an overview of the changes applied throughout

the document or to a part of it,

• inform the user about different types of changes applied

to the document together with the part of the document

where they were applied,

• give an overview of the changes made on the document

by specific users,

• indicate which parts of the document were heavily

changed.

The maintenance of editing profiles requires some changes to

the representation of documents and their operation history in

a collaborative editing system and we present these in the next

section before going on to detail the metrics that we use.

III. SYSTEM REQUIREMENTS FOR EDIT PROFILING

Providing information at different granularity levels about

the changes applied to a document requires a flexible doc-

ument model. We use the hierarchical document model pro-

posed in [12] instead of a linear document model, thereby al-

lowing documents to be accessed on different levels. Consider,

for instance, the case of a book containing chapters composed

of sections. Each section is composed of paragraphs, each

paragraph of sentences, each sentence of words and each word

of characters. In this case the granularity levels associated to

the hierarchical model would be book, chapter, section, para-

graph, sentence, word and character. The same hierarchical

model can be used also in the case of XML documents with

n granularity levels as proposed in [13].

Based on this, we now present the notions of node and

operation used in our collaborative system.

Definition 1 (node) A node N is a structure of the form

N =< level, children, length, history, content >

• level is a granularity level, level ∈ {0, 1, ..., n}, corre-
sponding to the element type represented by the node N.
Granularity level n corresponds to character nodes.

• children is an ordered list of nodes {N1, ..., Nm}, such
that ∀i ∈ {1, ..., m} level(Ni) = level(N) + 1

• length is the length of the node,

length =

⎧⎨
⎩

1 if level = n∑
Ni∈children

length(Ni) otherwise

• history is an ordered list of already executed operations
on nodes in children

• content is the content of the node, defined only for leaf
nodes

content =
{

undefined if level < n
a character if level = n

For generality, we also define a node at the character level,

setting the history and children elements as empty sets.

Definition 2 (operation) An operation op is a structure of the
form

op =< level, type, position, content, userID >

• level is the granularity level of the operation, level ∈
{1, 2, ..., n},

• type is the type of the operation, type ∈
{insertion, deletion},

• position is a vector of node indexes, position[i] is
the node index for the ith granularity level, i ∈
{1, . . . , level},

• content is the node inserted or deleted by the operation,
• userID is the identifier of the user who executed the

operation.

Operations of level n reflect insertions and deletions of

whole characters. The insertion or deletion of the whole

document is not permitted. Note that the level of an operation

is the level of the node N inserted or deleted and that the

operation is kept in the history associated with the parent

of node N . The vector position specifies the indexes that

compose the path in the tree where the operation is applied.

For example, if we have an insertion operation of word level,

we have to specify the sentence, the paragraph, the section

etc. in which the word is located, as well as the position of

the word inside the sentence. The content of an insertion

operation specifies the node to be inserted at the position given

by the position vector. In the case of deletion, content can

be used to support the undoing of operations.

For the sake of simplicity, in the rest of the paper, we assume

that a document is composed of paragraphs, sentences, words

and characters, thus containing only 5 different granularity

levels. In Figure 1 an example of a document with the 5

levels of granularity - document, paragraph, sentence, word

and character - is illustrated. We assign numeric values to each

granularity level, as follows: for the document level, value 0;

for the paragraph level, value 1; for the sentence level, value

2; for the word level, value 3 and, for the character level,

value 4. As shown in Figure 1, a history is assigned to each

node, containing the operations performed on the children of

that node. For example, the log of operations associated with

a paragraph will include insertions and deletions of sentences

in that paragraph.

Paragraph

Word

…

…

Document

Pa 1 Pa 2 Pa 3

Se 3.1 Se 3.2

W 3.1.1 W 3.1.2

C 3.1.2.3
“i”

Doc. Hist

Se 3.1 Hist.…

…

C 3.1.2.4
“g”

History for
operations at
paragraph level

History for
operations on
sentences in
paragraph Pa3

C 3.1.2.2
“e”

Levels

Sentence

Pa1. Hist. Pa2. Hist. Pa3.Hist.

Se 3.2 Hist.

W 3.1.1 Hist. W 3.1.2 Hist.

Character

Document

C 3.1.2.5
“h”

C 3.1.2.1
“w”

C 3.1.2.6
“t”

Fig. 1. The hierarchical document model

Moreover, in what follows, we denote operations by

specifying only their level, type, position and the text con-

version of content, ignoring other attributes. For example,

insertWord([2, 3, 2], “awareness”) denotes an operation of

type insertion that is at word level and has to be applied

to paragraph 2, sentence 3, at word position 2, and has as

content a word node represented by the string “awareness”.

Note that in our simplified notation the type and the level of

the operation are expressed by the name of the operation.

An advantage of using a hierarchical structure for the docu-

ment model is that we can compute awareness information for

different semantic levels of a document. A further advantage is

that the operations performed on a document are not kept in a

single history buffer, but instead are distributed throughout the

tree, associated with the nodes they are targeting. Compared to

other approaches that use a single history buffer, the distribu-

tion of the history offers higher efficiency and the possibility

of querying information at different levels of granularity [12].

IV. COMPUTATION AND MAINTENANCE OF PROFILES

In this section we present details of the information com-

puted for the editing profile and also how we compute it.

Throughout the section, we will use the example presented

in section II of Jim, Fred and Mary writing a paper together

with the help of an asynchronous collaborative text editor. At

any time, the three users can download the latest version of

the document from the repository and work on it. They may

also update their local (older) version, at any time, to arrive at

the latest version in the repository, by including the changes

that were applied by others. Note that the same ideas and

computations can be applied in the case of a synchronous

collaborative editor.

Every time a user performs an update of their local copy,

a set of operations are sent from the repository to be applied

to their local document version. Having chosen to work with

a structured document model and a distributed history, the set

of operations to be applied to the document are the sum of the

operations that need to be applied to each node separately. In

the same manner, local changes made by the user, are applied

to the document and recorded in the history of the node where

the operation was applied.

The sum of operations that need to be applied to each node,

either the local ones, or the remote ones transformed against

the local ones to include their effect [6], represent the changes

made to the node between the two states of the document.

We need to define a metric that measures the effect of each

operation on the node. For that reason, we define the metric

opWeight as follows.

Definition 3 (opWeight) opWeight is defined as the length
of the operation’s content, i.e. the number of characters
inserted or deleted by the operation.

opWeight(op) = length(content(op))

We decided to use the length of an operation’s content as the

metric that shows how much the operation affects the node.

We believe that this item of information is the one that the

user would expect to be used, as it is the most intuitive one. It

could be argued that operations vary in importance depending

on the user performing them. While we agree that this may be

the case in some situations, we believe it is preferable to have a

metric that uniformly evaluates changes made to a document.

Once the changes are uniformly evaluated, we provide the

user with the means to query that information according to

his preferences and the context, for example, to see only the

changes made by a specific user.

However, as we report later in the section on future work, we

plan to investigate the possibilities of extending the metrics to

compute the changes made in a document based on insertions

and deletions of higher level units of the document model.

For example, we could also compute the changes that a user

makes, such as the number of sentences or paragraphs inserted,

and not just the changes in terms of the number of characters

inserted.

After introducing the opWeight metric, we define the

nodeWeight metric to provide information about the changes

made on a document node. The nodeWeight has to include

the weights of all the operations applied to the node. However,

changes made to the node’s children represent changes made

to the node as well. Due to the fact that we use a distributed

history of operations, operations concerning changes to a

node’s children are kept on the children’s logs and not on

the node’s log. For that reason, we add a second factor to the

nodeWeight metric, defined below, representing the changes

made to each of the node’s children.

Definition 4 (nodeWeight) We define nodeWeight as the
sum of two components: the sum of the opWeight of all
the operations applied to the node and the sum of the
nodeWeight of all the node’s children.

nodeWeight(N) =
∑

opi∈history(N)

opWeight(opi)

+
∑

Nj∈children(N)

nodeWeight(Nj)

Note that the nodeWeight of a node at the character level

is equal to zero, since its history and children are empty sets.

For every node, we additionally define an insNodeWeight
and a delNodeWeight as the nodeWeight metric computed

for only the insert and delete operations, respectively.

Definition 5 (insNodeWeight) The insNodeWeight is
defined as the sum of two components: the sum of the
opWeight of all the insertion operations applied to the
node and the sum of the insNodeWeight of all the node’s
children. The delNodeWeight is defined in a similar way.
insNodeWeight(N) =

∑
opi∈history(N),

type(opi)=insert

opWeight(opi)

+
∑

Nj∈children(N)

insNodeWeight(Nj)

For each node we create a table weights containing

information about the identifier of a user, userID, an

insNodeWeight, and a delNodeWeight. Every row in the

table holds information about the number of characters in-

serted at and deleted from that node and its descendants by the

user with identifier userID. The information kept in the table

is updated each time a new operation is applied to that node

or its descendants. For instance, Table I holds the following

information for our editing example. Jim has inserted 23

characters and deleted 15 at the node under investigation,

whereas Mary performed only insertions (18 characters) and

Fred only deletions (4 characters).

TABLE I

Weights TABLE FOR A SPECIFIC NODE

userID insNodeWeight delNodeWeight
Jim 23 15

Mary 18 0
Fred 0 4

In what follows, we will demonstrate with an exam-

ple the computation of the metrics defined above. Con-

sider the case where Fred and Mary collaboratively edit

the latest version Vn of a document. Suppose that the

first sentence of the third paragraph of this document is

“We assign a weigh every document node.” and that

Mary performs the following operations. She first notices

the spelling mistake in the word “weigh” and corrects it by

adding the character “t” at position 6. Then she inserts the

word “to” to be the 5th word of the sentence. The opera-

tions generated are: op1 = InsertCharacter([3, 1, 4, 6],′ t′)
and op2 = InsertWord([3, 1, 5], “to”) meaning insert the

character “t” as the 6th character of the 4th word of the

1st sentence of the 3rd paragraph and insert the word “to”

as the 5th word of the 1st sentence of the 3rd paragraph.

The structure of the document after the execution of these

operations is shown in Figure 2. Due to the distributed history,

operation op1 is kept at the word-level node’s history while

op2 is kept at the sentence-level node’s history. Mary commits

the changes to the repository creating a new version Vn+1 to

be stored as the latest in the repository. Fred then updates his

local version. During the update procedure, a log containing

the operations that transformed version Vn of the document

to version Vn+1 is sent to him, i.e. the two operations

generated by Mary. Afterwards, one by one, the operations are

executed locally. Suppose that the current value of each node’s

insNodeWeight is equal to zero. Operation op1 is applied

and the value of the insNodeWeight for the word W3.1.4
is updated to have value 1, equal to the number of characters

inserted in the word. The insNodeWeight of all the ancestor

nodes is also updated to have the value 1. In the same way,

when operation op2 is applied, the insNodeWeight of the

sentence-level node Se3.1 is updated to 3, reflecting the sum

of all the characters that have been inserted into the sentence.

The final step is to update the insNodeWeight of the ancestor

nodes of sentence Se3.1. The final values of all the document

nodes’ insNodeWeight are shown in Figure 2.

Paragraph

Word

…

Document

Pa 1 Pa 2 Pa 3

Se 3.1

W 3.1.4

C 3.1.4.3
“i”

insNodeWeight=3

insNodeWeight=3… …

C 3.1.4.4
“g”

C 3.1.4.2
“e”

Levels

Sentence

insNodeWeight=0 insNodeWeight=0 insNodeWeight=3

insNodeWeight=1

Character

Document

C 3.1.4.5
“h”

C 3.1.4.1
“w”

C 3.1.4.6
“t”

W 3.1.5 insNodeWeight=0

C 3.1.5.1
“t”

…

C 3.1.5.2
“o”

Fig. 2. Computation of insNodeWeight throughout different document levels

The above procedure is applied throughout the entire doc-

ument. Once an operation is applied at a node and the node’s

weights are up-to-date, we traverse the tree document in a

bottom up manner, updating the weights of all the ancestor

nodes to include the effect of the new operation. This is

achieved by adding to the values of a node’s weights the

corresponding weights of its child nodes.

Note that in the process of writing or reviewing a document,

there is a special case that needs to be taken into account.

As mentioned earlier, it is often the case that a user cannot

decide immediately what to write or how to express an idea.

As a result, the user repeatedly inserts and deletes characters

until they are satisfied with what is written. This retrogression

causes the generation of many insertion and deletion opera-

tions in the specific part of the document, or equally at the

nodes corresponding to that part of the document, although,

in effect, they have performed a single operation such as

the insertion of a new sentence. Applying all the operations

performed would result in large values for the insertion and

deletion weights of the corresponding nodes, although this

does not really reflect the difference between the two states

of the document, especially since many of these operations

nullify each other when applied to the document.

In the case of local operations performed using an asyn-

chronous editor or local and remote operations using a syn-

chronous editor, the operations that nullify each other are

applied in real time, and for that reason we take them all

into account when computing the weights. We believe that

an overload of operations on a specific part of the document

is information that should be provided to the users in such

situations. In the first case (asynchronous collaboration), the

users will be informed about the amount of effort they or other

users invested into that part of the document, and in the second

case (synchronous collaboration), the users will be notified that

a lot of changes occurred at that part and may, for instance,

decide not to work on the same part of the document in order

to avoid conflicts.

However, when we compute the effect on the nodes’ weights

from remote operations in an asynchronous editor, we believe

that the operations that nullify each other should be handled

in a different way. It can be argued that all operations are

needed to provide maximum awareness to the users. Even

operations that nullify each other should be taken into account

when computing the weights for awareness. In such a case, the

awareness information computed would reflect the amount of

time and effort that a user spent on a document, even if they

later decide to discard some of their own changes.

Nevertheless, it can be also argued that, when updating a

document in asynchronous collaboration, the users are working

in privacy and for that reason they may want to publish only

the part of the changes that they have not further cancelled.

To respect the users’ privacy, it is reasonable to provide them

with the right to decide whether all the changes that they made

in the document will be published, or only the ones that were

not discarded afterwards.

For that reason, we decided to provide two options when

publishing local changes to other users. If the users want to

publish only the changes that were not later discarded, they

need to first compress the log with their changes and then

publish. Log compression is a procedure that discards from

the log, all the operations that nullify each other. Otherwise,

they can publish the uncompressed log, providing other users

with information about changes that they applied but later

discarded. Of course, to make it more convenient for the

users, these two possibilities can be specified as general default

preferences.

V. ADAPTING THE PROFILE TO USER PREFERENCES

Computing the weights for each node and storing them

has the advantage that we can further filter them according

to users’ needs and present awareness information in a cus-

tomised editing profile at different granularity levels of the

document. Keeping separately the insNodeWeight from the

delNodeWeight has the advantage that information about

insertions or deletions on a specific node can be presented

separately. The users can decide whether they want to have an

overview of insertions in the document, or deletions, or both

of them.
Using a structured document model enabled us to compute

the different weights for each node at each level of the

document. This provides the system with flexibility to present

changes on different levels of the document. Suppose that a

user chooses to be informed on the paragraph level about

changes, i.e. how much each paragraph was modified. In such

a case, the system will return the corresponding weights of

the nodes on the paragraph level.
It is also possible for a user to require information about

the document’s changes at a more detailed level as well. By

choosing a specific node, the tree document (with the weighted

nodes) is appropriately filtered and the system provides all of

the above information for the corresponding sub-tree of the

document.
Summarising the above, we provide the user with the

possibility to visualise changes:

• on specific types of operations,

• applied at a specific document level,

• applied by specific users,

• applied to a specific part (node) of the document.

We define two functions that filter the weights of all the

nodes in the tree and return only the required weights for the

corresponding node or level of the tree document for specific

types of operations and users.
To illustrate the need to define awareness for a specific level

or node of a document, let us consider the following example.

Mary, after updating her local version, wants to see how much

each paragraph in the document changed. Therefore, she only

needs to specify the level in which she is interested, namely

paragraph. Suppose now that she is interested in changes made

to a particular document node, in terms of the changes made on

finer granularity units belonging to that node. For instance, she

could be interested in changes made on sentences belonging

to a specific paragraph. Filtering awareness information on

the sentence level would provide the user with the weights of

all sentences in that document. To avoid this, we also allow

the user to filter awareness information by specifying only

a certain document node. Based on the user’s choice, either

the awarenessOnLevel function or the awarenessOnNode
function is called.

Definition 6 (awarenessOnLevel) We define the function
awarenessOnLevel(opType, level, userList), where

• opType ∈ {insertion, deletion, both} is the type of the
operations that the user wants to visualise,

• level ∈ {1, 2, ...n − 1} is the level in the document tree
where the changes should be applied to be visualised,

• usersList is a list of users whose changes should be
visualised,

that filters the weights of the nodes on document level level
and returns the weights corresponding to users usersList and
operations with type opType.

Definition 7 (awarenessOnNode) We define the function
awarenessOnNode(opType, node, userList), where

• opType and usersList are defined as in the
awarenessOnLevel function

• node is the document node whose changes should be
visualised,

that filters the weights of the node’s node children and returns
the weights corresponding to users usersList and operations
with type opType.

The functions defined above can be used to extract infor-

mation about users or even roles in collaborative situations.

The information extracted directly are the changes that a

specific user has made. In our example, Mary could decide to

separately see the changes made by Jim, since these changes

could be of greater importance.
However, the information extracted alongside is equally

important. Consider a collaborative situation, where each user

has to write one section of the document and review another.

It could be interesting to recognise users or user roles based

on the parts of the document that they are editing, or based on

the patterns that the users use when authoring or reviewing a

document.
This information is more direct and can be extracted more

easily in the case that the computation of weights is applied

in a synchronous editor where the weights are continuously

updated and presented to the user in real-time. Seeing, for

example, that the weights corresponding to the second section

of the document are increasing, the user is aware that another

user is working on that part of the document. If the weights

of all the sections are slightly increasing one after the other,

it may mean that a reviewer is going through the whole

document making small changes everywhere. We realise that

the potential use of the editing profile that we compute

is greater than the ones presented in this paper, especially

concerning synchronous collaboration, and are investigating

other ways of exploiting this information.
The information returned by the functions presented above

can be visualised in many different ways. One advantage of our

generic model is that it enables us to easily experiment with

different visualisations in terms of both information content

and presentation. In the next section, we present a prototype

of the asynchronous editor we have built, enhanced with a

visualization of editing profiles.

VI. IMPLEMENTATION

The asynchronous text editor that we have developed is

based on the hierarchical document model presented in sec-

tion III. We have extended the editor to include:

• the computation of the insNodeWeight and the

delNodeWeight,
• the collection of the input parameters for functions

awarenessOnLevel and awarenessOnNode as user

defined parameters,

• the visualization, as an interactive histogram, of the

weights returned by the functions.

When the user updates their local version, they receive the

changes made from other users. While applying the changes to

their local copy, the insNodeWeight and delNodeWeight
are computed for every node, as presented in section 4. Further,

the information collected can be filtered by the user according

to their preferences via the editor’s graphical user interface

(GUI).

Fig. 3. Awareness enhanced GUI

We have extended the GUI to include the features shown

in Figure 3. Note that the editor was created based on

the simplified document model consisting of the document,

paragraph, sentence, word and character levels. Therefore,

we provide the user with the possibility of being aware of

changes on paragraph, sentence and word level, i.e. visualise

the weights of document-level, sentence-level and word-level

nodes. Further, they have the possibility of choosing the type

of changes that they want to visualise. They can choose

insertions, deletions or both. Additionally, we provide a table

with an entry for every user who has made changes to the

document. A colour can be assigned to a user and this is used

in the histogram, as described below, to distinguish the changes

according to the user who made them. A user can select a row

in the table, to specify an individual user whose changes they

want to visualise. Multiple selections of rows, i.e. users, is

also possible.

After specifying the document level, the operations type and

the users, the weights of the tree document are filtered as de-

scribed in section 5, and the results presented in the histogram.

A bar is drawn for every node, showing the number of changes

that were made to this node and its children. In the case that

only insertions or only deletions are selected, each bar shows

the number of insertions or deletions, respectively, made to

the corresponding node. Each bar is coloured according to

the user who made the changes. If more than one user is

selected, each bar is horizontally split into subbars. The height

of a subbar is relative to the proportion of the user’s changes

in the total number of changes made to the corresponding

node. If both insertions and deletions are selected, each bar is

vertically separated into two subbars to present the insertions

and deletions separately. The left subbar shows the number

of insertions and the right subbar the number of deletions. If

additionally, more users are selected, the subbars are further

horizontally split and coloured as presented above.

In the rest of this section we will demonstrate, with the

help of an example, how the users can use the awareness

mechanism of our asynchronous editor. Suppose that Fred, Jim

and Mary are working collaboratively on a document with 3

paragraphs. All users have a local copy of the same document’s

version and start working on it. Suppose as well that, after

all three users have stopped working on the document and

committed their changes, the editing profile in Mary’s GUI is

the one shown in Figure 3.

Mary has chosen to see changes made at the sentence level

by all three users. The information displayed in the histogram

can be interpreted as follows. Fred has worked only on the

second half of the document and concentrated mainly on the

last paragraph, where he made most of the changes. Jim has

worked on the whole document making small changes in each

part of it. It could be inferred that he was checking for spelling

mistakes. Mary can also see an overview of her own changes

on the document. She can also detect parts of the document

that were heavily changed and also see the proportion of a

user’s changes in the total changes in a node. For instance,

she can see that the part of the document that changed most

is the last paragraph and that Fred and Jim made almost the

same number of changes to it.

In order to harmonically associate the information displayed

in the histogram with the parts of the text document where

the changes were made, we made the histogram interactive.

The user can click on a bar in the histogram to obtain

detailed information about the node corresponding to the bar.

With a single left-click, the text corresponding to the node is

highlighted. With a double left-click, the histogram displays

the weights of the node’s children. In this way, the user can

be informed as to how the total number of changes made to

that node is distributed to the node’s children. In our example,

Mary has clicked on the bar with the most changes and the

corresponding sentence is highlighted in the text.

When the user is redirected from the histogram to the text,

they should be able to easily identify the changes made in a

specific part of the document. For that reason, we additionally

mark the changes made on the document by highlighting

the corresponding characters in the text. All the changes

made to the document are highlighted, even if they are from

different users. We plan to further extend that feature to

differentiate changes made by different users by highlighting

them according to the colour code used in the histogram and

also extend our prototype by providing a more user-friendly

interface. Summarising the above, it is clear that, by using the

editing profile, a user can easily and quickly have an overview

of the changes made to the document, be informed about parts

of the document where each user was active, be aware of

“hot” areas in the document and navigate quickly through the

changes made to the document without the need of a scrollbar.

VII. CONCLUSION

We have presented a novel approach to increase aware-

ness in synchronous and asynchronous collaborative authoring

tools, based on the notion of editing profiles. These profiles

provide a quick and easy way to inform users about parts of

the document with many changes. It can also be seen as an

overview of the activity of other users in terms of the quantity

and location of changes within a text document.
We introduced metrics for computing awareness information

on the different parts and levels of a hierarchically-modelled

text document as well as ways of filtering this information

according to user preferences. Changes made on the document

can be filtered according to their type, the user who made them

and the level or part of the document where they were applied.

We have extended the prototype of an asynchronous editor to

include the computation and visualisation of the editing profile.
We are currently investigating possible extensions of the

metrics. We would like to compute the changes made to

a document based not only on insertions and deletions of

characters, but also of units at a higher level in a hierar-

chical document structure. Furthermore we plan to extend a

synchronous collaborative editor to provide editing profiles

and then carry out user studies with both the asynchronous

and synchronous collaborative editors. Moreover, we plan to

extend and apply the metrics to other types of hierarchical

documents, such as XML or graphical documents, where more

complex changes than insertions and deletions of nodes occur.
We additionally plan to study the benefits of using profiles

in our asynchronous editor to provide information in real-time

about changes made to the document by other users. In this

way, the user will continue to work on their local copy in

isolation, and at the same time be informed via a continuously

updated profile about activities of other users in various parts

of the document.

REFERENCES

[1] Altova DiffDog, XML-aware differencing and merge tool.
http://www.altova.com/diffdog/.

[2] Diff Doc, the comprehensive document comparison tool.
http://www.softinterface.com/MD/Document-Comparison-
Software.htm.

[3] Microsoft Word. http://office.microsoft.com/word/.
[4] SubVersion, an open source version control system.

http://subversion.tigris.org/.
[5] WinMerge, an open source visual text file differencing and merging tool.

http://winmerge.sourceforge.net/.
[6] C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems.

In Proceedings of the ACM conference on the Management of Data -
SIGMOD’89, pages 399–407, Portland, Oregon, USA, May 1989.

[7] D. J. Harper, S. Coulthard, and Y. Sun. A Language Modelling Approach
to Relevance Profiling for Document Browsing. In Proceedings of the
ACM/IEEE-CS joint conference on Digital libraries - JCDL 2002, pages
76–83, Portland, Oregon, USA, 2002. ACM Press.

[8] D. J. Harper, I. Koychev, and Y. Sun. Query-Based Document Skim-
ming: A User-Centred Evaluation of Relevance Profiling. In Proceedings
of the european conference on Information Retrieval Research - ECIR
2003, volume 2633 of Lecture Notes in Computer Science, pages 377–
392, Pisa, Italy, 2003. Springer Berlin / Heidelberg.

[9] S. Hayne, M. Pendergast, and S. Greenberg. Gesturing Through
Cursors: Implementing Multiple Pointers in Group Support Systems. In
Proceeding of the Hawaii International Conference on System Sciences
- HICSS’93, pages 4–12, Maui, Hawaii, Jan. 1993. IEEE Press.

[10] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless. Edit Wear
and Read Wear. In Proceedings of the ACM SIGCHI conference on
Human Factors in Computing Systems - CHI’92, pages 3–9, Monterey,
California, USA, May 1992. ACM Press.

[11] T. B. Hodel-Widmer and K. R. Dittrich. Concept and Prototype of a
Collaborative Business Process Environment for Document Processing.
Data & Knowledge Engineering, 52:61–120, 2005.

[12] C. L. Ignat and M. C. Norrie. Customizable Collaborative Editor Relying
on treeOPT Algorithm. In Proceedings of the European Conference on
Computer-Supported Cooperative Work - ECSCW 2003, pages 315–334,
Helsinki, Finland, Sept. 2003. Kluwer Academic Publishers.

[13] C.-L. Ignat and M. C. Norrie. Flexible collaboration over xml
documents. In Proceedings of the Third International Conference on
Cooperative Design, Visualization and Engineering (CDVE’06), pages
267–274. Springer Berlin / Heidelberg, 2006.

[14] E. Lippe and N. van Oosterom. Operation-Based Merging. In Pro-
ceedings of the ACM SIGSOFT Symposium on Software Development
Environments - SDE 5, pages 78–87, Tyson’s Corner, Virginia, USA,
Dec. 1992. ACM Press.

[15] P. Molli, H. Skaf-Molli, and G. Oster. Divergence Awareness for Virtual
Team Through the Web. In Proceedings of world conference on the
Integrated Design and Process Technology - IDPT 2002, Pasadena,
California, USA, 2002. Society for Design and Process Science.

[16] C. M. Neuwirth, R. Chandhok, D. S. Kaufer, P. Erion, J. Morris, and
D. Miller. Flexible Diff-ing in a Collaborative Writing System. In Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative
Work - CSCW’92, pages 147–154, Toronto, Ontario, Canada, Nov. 1992.
ACM Press.

[17] H. Shen and C. Sun. Flexible Merging for Asynchronous Collaborative
Systems. In Proceeding of the International Conference on Cooperative
Information Systems - CoopIS’02, volume 2519 of Lecture Notes in
Computer Science, pages 304–321, Irvine, California, USA, 2002.
Springer-Verlag.

[18] F. B. Viégas, M. Wattenberg, and K. Dave. Studying Cooperation
and Conflict Between Authors with History Flow Visualizations. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems - CHI 2004, pages 575–582, Vienna, Austria, 2004. ACM Press.

[19] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leveraging Single-User
Applications for Multi-User Collaboration: The CoWord Approach. In
Proceedings of the ACM Conference on Computer Supported Coopera-
tive Work - CSCW 2004, pages 162–171, Chicago, Illinois, USA, Nov.
2004. ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

