
Cryptogr. Commun.
https://doi.org/10.1007/s12095-017-0264-3

Malleability of the blockchain’s entropy

Cécile Pierrot1 ·Benjamin Wesolowski2

Received: 29 November 2016 / Accepted: 16 October 2017
© Springer Science+Business Media, LLC 2017

Abstract Trustworthy generation of public random numbers is necessary for the security of
a number of cryptographic applications. It was suggested to use the inherent unpredictabil-
ity of blockchains as a source of public randomness. Entropy from the Bitcoin blockchain
in particular has been used in lotteries and has been suggested for a number of other appli-
cations ranging from smart contracts to election auditing. In this Arcticle, we analyse this
idea and show how an adversary could manipulate these random numbers, even with limited
computational power and financial budget.

Keywords Random number generation · Blockchain · Random beacon · Bitcoin · Dyck
language

Mathematics Subject Classification (2010) 94A60 · 65C10

1 Introduction

Randomness is a key concept in cryptography. Even though random numbers are often
meant to be kept secret in cryptographic protocols, a number of applications require a form
of publicly available randomness which cannot be predicted or manipulated. Some straight-
forward examples include draws of national lotteries, sampling of assemblies or citizen
juries, or tie-breaking in sports or elections. This concept also appears in more technical
settings, where a secure public source of randomness can be used to provide trust between
communicating parties while implementing contract signing, confidential disclosures, or

This article is part of the Topical Collection on Recent Trends in Cryptography

� Cécile Pierrot
Cecile.Pierrot@lip6.fr

1 Sorbonne Universités, UPMC Univ Paris 06, LIP6, 4 place Jussieu, 75005 Paris, France

2 EPFL IC LACAL, Station 14, 1015 Lausanne, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-017-0264-3&domain=pdf
http://orcid.org/0000-0002-5965-7424
mailto:Cecile.Pierrot@lip6.fr

Cryptogr. Commun.

certified mail in an electronic mail system. These examples were first proposed by Rabin
in [15], where he defines the source of randomness as a random beacon: an online service
that broadcasts allegedly unpredictable numbers at regular intervals.

In these situations the randomness should be generated in such a way that no one can
willingly bias the outcome to anyone’s advantage or disadvantage. Simple methods hardly
provide any strong guarantee, like a skilled prestidigitator can fool entire crowds while
tossing a coin. The existing online services that make available fresh random numbers at
regular intervals such as [14, 16] can at best be considered as trusted third parties: despite
extensive documentation and audits, they do not provide users with any mechanism that
allows to verify the freshness and correct generation of the published numbers.

A line of research aims at developing and analysing methods to provide trustworthy
public randomness. Clark and Hengartner proposed in [7] a beacon based on stock market
prices, whose security relies on a presumed unmalleability of published financial data –
hardly sufficient to convince the most skeptical users. In [11], Lenstra and Wesolowski
constructed and proved the security of a verifiable beacon that anyone can influence, but no
one can bias or predict, by feeding some public input data to a slow hash function.

In another attempt to build a decentralised beacon with no trusted parties, it has been
suggested to exploit the inherent unpredictability of blockchains, in particular that of the
Bitcoin protocol [13]. In addition to the applications mentioned above, a source of random-
ness internal to Bitcoin – or any other blockchain based currency – allows that randomness
to be used by the currency’s scripting language. This extends the range of implementable
smart contracts considerably. There is currently no possibility in the Bitcoin scripting lan-
guage to allow any form of random execution. It is still not the case in cryptocurrencies with
more powerful scripting languages such as Ethereum [18]. A few Bitcoin protocols [1, 3, 9,
12] are however already relying on the blockchain as a source of randomness.

This idea becoming widespread together with the lack of a security model for the
blockchain’s unpredictibility motivated Bonneau, Clark and Goldfeder [1] to propose an
analysis of the method. They consider a model where the attacker controls all the miners,
and suffers a monetary penalty whenever a miner finds a valid block that the attacker does
not want to see included in the blockchain (see Section 2.1 for a presentation of the notions
of miners and valid blocks). This penalty is meant to compensate for the loss of the reward
going to a miner finding a valid block. This reward currently consists of (12.5
bitcoins1) per block plus some transaction fees in the case of the Bitcoin protocol. The
amount of this reward decays over time: it started at , and is divided by two every
210 000 blocks. In [1], the authors derive that if the next block is used to define a single
random bit – presumably unbiased –, an attacker can force the bit to 1 by having the miners
drop the valid blocks that give a 0, and this attacker would suffer an expected cost of
at the moment the paper was published.

We aim in the present paper at overcoming the limitations of this model. First, we mea-
sure the adversary in terms of computational resources rather than monetary. An associated
cost in bitcoins as in [1] can then be derived, but is not the primary focus. It makes sense
indeed to investigate computational limitations when not only money is at stake in the
random number generation. Also, it allows us to analyse adversaries that do not have con-
trol over the entire pool of miners: it seems unrealistic to assume that the adversary can
bribe any miner, who would systematically and silently cooperate (this is discussed and

1Note that roughly equals US$ 4 260 at the time of writing this article, keeping in mind that the Bitcoin
exchange rate still fluctuates a lot.

Cryptogr. Commun.

nuanced in [4] with models considering the possibility of renting mining power for a lim-
ited amount of time via bribery). We also account for adversaries with limited resources:
whereas in the original analysis the adversary keeps spending money in bribes as long as
its goal is not achieved (e.g., obtaining a bit 1 in the example above), our analysis can mea-
sure the extent to which the adversary can bias the outcome if they have a limited budget.
It also accounts for more general strategies, where the adversary can take advantage of non
canonical phenomenons on the blockchain such as forking.

Whereas the authors of [1] concluded from their analysis that the method is secure
enough to be used in practice, we show that an attacker, even when not controlling the entire
pool of miners and when limited by a budget, can still significantly bias the probability dis-
tribution of the outcome. For instance, again when the blockchain is applied to generate a
single unbiased bit, we show that an adversary controlling only a quarter of the total min-
ing power can increase the probability of having a 1 from 0.5 to 0.6 approximately, for an
expected cost of around , i.e. US$ 53 000. With the same parameters we also pro-
pose a cheaper strategy that permits to increase the probability from 0.5 to about 0.57, with
an expected cost of . We also show how this probability can be further
improved by preparing the attack in advance: a head start of a day increases the probability
to 0.74.

Also, the security properties that we define and analyse might be relevant beyond the
problem of generating public random numbers, as a more general measure of the security
of the blockchain construction. Namely, we study the malleability of the blockchain, a for-
malisation of the capacity of a party to influence the probability distribution of some bits in
the chain. Even though unmalleability is not the primary goal of a secure public ledger, it
comes as a desirable property of an ideal instantiation of the blockchain.

The details of the model, together with a brief introduction to blockchain protocols, are
presented in Section 2. In Section 3, we study the simple case where the adversary simply
wants to influence the next published block with immediate effect, as an example and a
warm-up. The more complex setting is analysed in Section 4. Adversaries limited by a finan-
cial budget are analysed in Section 5 whereas adversaries preparing themselves in advance
are studied in Section 6.

2 A model for the network and the miners

2.1 Blockchains

A blockchain is a form of distributed database, introduced in [13] as the backbone of the
Bitcoin protocol. The protocol involves a set of active participants, called miners, distributed
over a network, whose job consists in maintaining the blockchain: a global ledger of the
history of the system. In the case of Bitcoin, this history is the set of all transactions that
happened. At regular time intervals, a new block is added to the chain, testifying for the
latest transactions or events. In other words, a block consists of the concatenation of various
pieces of information, including a reference to the hash of the previous block, a list of
transactions the miner is willing to account for, and finally a nonce, chosen by the miner.

A block is called valid if its hash is smaller than a target number. This constraint is
controlled by a difficulty parameter d measuring approximately the number of leading zeros
of the hash. The difficulty parameter is continuously adjusted so that it takes an expected
time of 10 minutes for the worldwide mining effort to find a valid block. For instance,
at the time of writing this article, the value of d for Bitcoin was approximately 68. Only

Cryptogr. Commun.

valid blocks can be added to the blockchain. The process of finding a valid block is called
mining, and it simply consists in hashing a block a tremendous amount of times with slight
modifications (for instance, by varying the nonce) until a valid version is found.

In addition to the list of new transactions, a block also contains the hash of the previous
valid block. The set of all broadcast blocks thus forms a tree, whose longest chain is the valid
blockchain on which there is a consensus. In the case of Bitcoin, each block on that longest
chain comes with a reward (some bitcoins) to the miner who mined it. This mechanism
encourages the miners to always work on increasing the longest chain they are aware of,
in order to keep a mostly linear tree: a tree that consists in the longest chain itself and a
few small branches, that quickly stop growing. When such a branching occurs at the tail of
the blockchain, it is called a fork. Miners might work on a different branch of the fork at a
given moment, but if they keep agreeing to work on the longest one, only the branch with a
majority of miners will survive, and consensus is quickly reached again.

It is justified in [1, Paragraph 3.1] that assuming the underlying hash function is secure,
each valid block found via the mining process contains at least d bits of computational min-
entropy, and therefore �d/2� near-uniform bits can securely be extracted by a cryptographic
extractor [8]. An extractor is a function that transforms a random variable with sufficient
entropy into an almost uniformly distributed variable in a smaller domain, which we call
the extract. In this paper we consider an extractor Ext that maps valid blocks to elements
of E , the set of binary strings of length �d/2�. Assuming the hash function used for mining
is secure, we can consider the extract Ext(B) of a freshly generated valid block B to be
uniformly distributed in E .

2.2 Game model

We consider a single instance of a blockchain protocol executed in isolation. The quite
detailed abstraction proposed in [10, Section 2] fits our needs, yet we will not detail it
here. Indeed, such a precise network diffusion model is not necessary as we will not be
dealing with network adversaries: they will not be able to tamper with messages on transit
in the network, or with the network’s structure itself. This weaker adversary receives and
broadcasts messages over the network, and its power will only be measured in terms of its
computational resources.

As in Garay et al.’s formal analysis of the Bitcoin backbone protocol [10], the problem
is made tractable by assuming that communications over the network are instantaneous.
Honest miners are always working with the longest blockchain that they know of, and the
broadcast messages are always received by all the miners. Therefore forks can appear when
a valid block is found simultaneously by two miners, but the fork will disappear as soon
as one of the branches will be lengthened before the other. This matches the real world sit-
uation, where the notion of simultaneity is loosened to take into account communication
and processing delays: a fork only survives as long as new blocks are added simultane-
ously to both branches, which cannot happen for very long. We argue that accidental forks
among the honest miners can only help the adversary, and therefore we assume for the
rest of the paper that such forks do not occur. Even without accidental forks, malicious
forks are still possible: an adversary can secretly work on a branch longer than the pub-
lic one, and once this branch is revealed, it will completely replace the old one as the new
longest chain. Other models such as [17] propose to look at adversaries that are highly con-
nected to the rest of the network, giving them a timing advantage when sending or receiving

Cryptogr. Commun.

new blocks. Again, this would only make the adversary stronger, so we do not consider
this possibility.

The game involves a set of honest miners and an adversary A. Honest miners simply
aim at growing the blockchain, by broadcasting valid blocks to get the associated reward.
Meanwhile, the goal of the adversary is to bias the probability distribution of the extract of
an upcoming block in the chain, which we call the decisive block. For illustration, say that
the extract x of that decisive block is a lottery draw: the adversary wins whenever x falls in
a given subset of E , the “winning tickets”. Let χ : E → {0, 1} be the characteristic function
of that subset of the set of possible extract values. The adversary A wins if, at the end of
the game, χ(x) = 1 where x is the extract of the decisive block, which we call pleasant
in this case. Note that it does not matter whether that decisive block was broadcast by the
adversary or by a honest miner. We denote by PA the probability that A wins.

The game starts at the round where a fixed initial block indexed by 0 is received and
ends when the blockchain reaches a length of n + �, for some predefined integers n and �.
The n-th block is the decisive block, whose extract determines whether or not the adversary
wins. Since that block determines the outcome of the game, it might first seem surprising
to continue for � additional blocks. But the value of any specific block can be changed via
forking: in blockchain protocols, consensus does not go to the version of a block that arrived
first, but to the version of the block that belongs to the longest chain. An adversary could
try to take advantage of that by attempting to create a fork to modify an unpleasant decisive
block. The positive parameter � takes into account the possibility that the decisive block
can still be modified until the blockchain has been lengthened by � blocks.

Finally we denote by μ the probability for a uniformly distributed extract value x ∈ E to
satisfy χ(x) = 1. We clearly have μ = |{χ(x) = 1 | x ∈ E}|/|E |.
2.3 Adversary model

We consider a weak adversary that cannot change the content of the messages traveling
around the network nor prevent them from being delivered. The adversary can mine on the
blockchain and, unlike honest miners, they are not assumed to always work on extending
the longest chain, nor to broadcast all the valid blocks they find. Thus, in this context, the
critical property of the adversary is their computing power, or more precisely, their relative
power with respect to the total power of the miners. Concretely, this power is measured as
a number sA (respectively s) of hashes per second that the adversary (respectively the total
set of miners, including A), is able to compute. Let

α = sA
s

measure the relative power of A. Such hash computations can be modelled as calls to
a random oracle. The number of random oracle calls to be done before finding a valid
block follows a Poisson distribution, and at any point in time, α can be interpreted as the
probability that the next oracle request giving a valid block has been done by the adversary.

Remark 1 The adversary could be a single entity as well as a set of colluding, corrupted
miners. It therefore extends the model of [1], where all the miners are ready to accept bribes
to collaborate: this corresponds to α = 1 in our setting. We can still account for the money
it takes to corrupt the miners, via the notion of virtual cost (see Section 3.4), yet it is not the
only metric available anymore.

Cryptogr. Commun.

3 A warm-up: manipulating the next published block

3.1 Delay-free games

As a first example, let us look at the simple case where n = 1 and � = 0. The adversary
aims at manipulating the next broadcast block, without bothering whether it will survive
potential future forks. This case occurs whenever the extracted randomness is meant to be
used immediately, such as a random beacon that broadcasts the random numbers as soon
as they are available, or a simple national lottery. Indeed, a random beacon is meant to be
unpredictable, and its output cannot be changed in the future – unlike a blockchain where
forks can “change the past”. The beacon must broadcast a number as soon as it is available,
which does not permit to wait for a safety delay � > 0 before outputting the numbers.

3.2 Strategy

The adversary’s strategy here is straightforward: they will focus all their computational
power on mining the next block. Whenever they find an unpleasant valid block B such that
χ(Ext(B)) = 0, they throw it away and continue to mine. The game ends whenever a
honest miner finds a valid block or the adversary finds one that satisfies χ(Ext(B)) = 1,
which they immediately broadcast. In this context, it is clearly an optimal strategy as valid
blocks can only be found by mining (which is a classical assumption for blockchains, and
can be enforced by the random oracle model), and an adversary who would themselves
publish a block such that χ(Ext(B)) = 0 would only decrease their winning probability, as
well as an adversary who would not publish instantly a valid block such that χ(Ext(B)) =
1. Note that this strategy has a certain cost, as a dropped block is a lost reward. A rational
adversary with a financial incentive will want to compare the cost of dropping a block with
the expected reward of winning the game. We analyse this cost in Section 3.4.

3.3 The winning probability PA

Let us compute the probability PA that the adversary wins that game. The event that they
win the game is denoted w. The possible outcomes can be split into the infinite family of
disjoint events ea , for any a ≥ 0, that the adversary found and threw away exactly a valid
blocks. The event ea ∧w further requires that the final block B, i.e. the (a +1)-th block that
is found, satisfies χ(hB) = 1 (and it does not matter who found that last one). The winning
probability can now be expressed as:

PA =
∑

a≥0

Pr(ea ∧ w) =
∑

a≥0

(α(1 − μ))aμ = μ

1 − α(1 − μ)
.

Since α ≥ 0 and μ ≤ 1 this is clearly better than μ. For instance, when μ = 1/2, and
α = 1/4, the probability that A wins is increased from 0.5 to 4/7 ≈ 0.57. Note that
α = 1/4 is a realistic assumption: for instance, the relative computational power α of the
four actual most influent mining pools Antpool, F2Pool, BitFury, and BTCChinaPool vary
between 13% and 27% each, depending on sources and dates.

3.4 Virtual cost expectation for the adversary

The virtual cost refers to the number of blocks the adversary has to drop, thereby giving
up the associated reward. We emphasise that this virtual cost does not take into account

Cryptogr. Commun.

potential profits related to the outcome of the game. It is only a measure of the amount of
mining power they sacrificed to play the game: namely, the difference between the expected
reward they would have had by behaving as a honest miner, and the reward resulting from
playing the described strategy. For each event ea , exactly a blocks are dropped, therefore
the expected virtual cost E is:

E =
∑

a≥0

a Pr(ea) =
∑

a≥0

a(α(1 − μ))a(1 − α(1 − μ)) = α(1 − μ)

1 − α(1 − μ)
.

Again, to illustrate this virtual cost we look at the example where μ = 1/2 and α = 1/4.
It gives 1/7 expected lost blocks. In terms of money, the actual mining reward at the time
of writing is . Thus this strategy can be approximately evaluated to have an
expected cost of US$ 7 600. The case where α = 1 ensures the victory as long as μ > 0, for
an expected cost of (1 − μ)/μ. This is the situation in [1] where all the miners are assumed
to collude with the adversary, and they indeed found the same expected cost.

3.5 Financial game

In some situations, the goal of the adversary can be modelled as a monetary reward RW

associated to winning the game. In this situation, whenever they find a unpleasant block,
a rational adversary will be comparing their expected earnings if they stick to the strategy
(i.e., the expected reward minus the virtual cost, PA ·RW −E ·RM) with the mining reward
they would get by publishing the block (i.e., RM). The adversary can take the decision
of following the strategy or not once and for all at the beginning of the game since these
quantities do not evolve until the decisive block finally gets published.

4 Reaching consensus

4.1 Games with delay

We now deal with the case where n = 1 and � > 0. Delaying the end of the game
later than the broadcast of the decisive block is necessary to measure the security of
protocols involving several parties that would base an agreement on the extract value
of this decisive block. Smart contracts are a good example for such worries. Indeed,
unlike in our first naive delay-free games model, forking can interfere and change the
initial execution of the contract, thereby modifying the outcome of the contract itself
after its execution. Here, the random value is only considered valid when it is deep
enough in the chain. More precisely, choosing a sufficiently large � helps to reach
consensus, when it is considered impossible to create a fork of length strictly larger
than �. Then the parties involved in the contract gain confidence that the outcome is
definitive.

4.2 Relevant values for �

Relevant values for the delay � can be deduced from the analysis performed in [10] where
the authors evaluate the probability to have a fork of two branches of a given length. From
a practical point of view, a look back to the history of broadcast Bitcoin blocks permits to
find all the accidental forks that have ever been observed. For instance, from [2] we see that

Cryptogr. Commun.

540 forks were noticed since the block number2 142 257: two branches of length 4, four of
length 3, fourteen of length 2, and what remains are orphan blocks. Thus, keeping a safety
margin, � = 6 seems sufficient to make sure that no fork will alter the decisive block after
the end of the game. This value of � is already suggested in [13].

4.3 Strategy

The adversary’s strategy begins as previously: they first focus all their computational power
on mining the first block (that is also the decisive block since n = 1) and throw away all
valid blocks B they find as long as χ(Ext(B)) = 0. At the first broadcast of the decisive
block Bd two cases can occur. If it satisfies χ(Ext(Bd)) = 1 then A starts to act as a
honest miner. Namely, they continue to mine on this chain and the game ends when the
(1 +�)-th valid block is found, leading to the success of A. Otherwise, if one honest miner
broadcasts a decisive block satisfying χ(Ext(Bd)) = 0, A continues to secretly mine on
the previous block as if they received nothing. Again, they throw away all valid decisive
blocks that would lead to their failure. If they find one such that χ(Ext(Bd)) = 1 they
keep it secret,3 create a fork and continue to mine on their new chain, hoping to develop a
branch longer than the current public one containing the unpleasant decisive block. If they
manage to do so, they broadcast their fork, and all miners switch to that new longest chain
and proceed to mine on that one, thereby including the cheated pleasant decisive block in
the new consensus chain. The game ends when a miner finds a valid final block, whether it
is on the original chain, or on the branch later appeared.

4.4 Computing the probability PA

To compute the probability that A wins we consider a partition of our universe as follows.
Let w1, f0, f01 and w01 (w implicitly stands for A wins and f for A fails) be the events
defined as:

– w1: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 1.
– f0: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 0 and A fails to

find any decisive block B ′
d such that χ(Ext(B ′

d)) = 1.
– f01: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 0, A manages

to find a decisive block B ′
d such that χ(Ext(B ′

d)) = 1 but not to compute a branch
sufficiently long to replace the main one.

– w01: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 0 but the adver-
sary manages to find one B ′

d verifying χ(Ext(B ′
d)) = 1, and to have it replace the

original one.

So the event that A wins, denoted w, is the union of w1 and w01. Note that the probability
of w1 has already been computed in Section 3, as:

Pr(w1) = μ

1 − α(1 − μ)
. (1)

For convenience we also define e0 as e0 = f0 ∨ f01 ∨ w01.

2At the time of writing the last blocks are around number 400 000.
3Note that keeping it secret is not critical in the strategy: the adversary could be completely public about this
special fork, in the hope that some honest miners get confused and start unknowingly helping them (due to
bad timing and propagation delays for instance).

Cryptogr. Commun.

Probability of f0 Since f0 is a sub-event of e0, its probability can be expressed as:

Pr(f0) = Pre0(f0) × Pr(e0) = Pre0(f0) × (1 − Pr(w1)),

where we denote by PrB(A) the conditional probability of event A given that event B

occurred.
Figure 1 represents the situation for a fixed number a of valid blocks mined by A. The

probability that A fails precisely a times knowing e0 is given by the product:
(

a + � − 1

a

)
(α(1 − μ))a(1 − α)�−1(1 − α).

Thus the formula for Pre0(f0) is:

(1 − α)�
∑

a∈N

(
k + � − 1

a

)
(α(1 − μ))a.

The summation over a can be simplified using the fact that for any positive integer h, and
any x �= 1:

∑

a∈N

(
a + h

a

)
xa = 1

(1 − x)h+1
. (2)

From (2) we get the final value of the probability of f0 knowing e0:

Pre0(f0) =
(

1 − α

1 − α(1 − μ)

)�

. (3)

Probability of f01 Again we compute Pre0(f01) the probability of f01 knowing e0 in order
to find the probability of f01 that satisfies:

Pr(f01) = Pre0(f01) × (1 − Pr(w1)).

Figure 2 represents the situation and gives an indication of the various parameters we need
to express this probability. We define:

– a2 as the number of valid decisive blocks mined by A after the first decisive block
is broadcast by a honest miner and before A finds a valid decisive block verifying
χ(Ext(Bd)) = 1.

Fig. 1 Secret and public blocks mined during the event f0. White blocks represent the blockchain integrally
mined by honest miners whereas black ones correspond to the k valid decisive blocks (secretly) found by A,
all such that χ(Ext(B)) = 0. A bit inside a block indicates the value of χ for its extract. It is only indicated
on blocks that are meant to be decisive: here, the first broadcast block, and the adversary’s failed attempts at
finding a pleasant one. In this example, a = 12 and � = 6

Cryptogr. Commun.

Fig. 2 Secret and public blocks mined during the event f0. White blocks represent the blockchain integrally
mined by honest miners whereas black ones correspond to the a2 +1+a3 valid blocks (secretly) found by A.
Again a number inside a block corresponds to the value of χ for its extract, when the block is meant to be a
decisive one. In this example � = 6, a2 = 4, h2 = 1 and a3 = 5

– h2 as the number of valid blocks mined by all honest miners in the blockchain in the
meantime, namely after the first decisive block is broadcast by a honest miner, and
before the adversary manages to find a decisive block verifying χ(Ext(Bd)) = 1.

– a3 as the number of valid blocks mined by A on its chain after A finds a valid decisive
block verifying χ(Ext(Bd)) = 1 and before the last block is mined.

With this in hands, we see that the number of valid blocks mined by all honest miners,
after A finds a pleasant valid decisive block, and before the last block is mined, is given by
� − 1 − h2. Besides, some parameters are upper bounded: we have h2 < � and a3 < �.

The probability, knowing e0, that A finds a pleasant valid decisive block exactly after a2
trials that failed, and to get h2 blocks mined by the honest miners before this new decisive
block is:

(
a2 + h2

a2

)
αa2+1(1 − α)h2(1 − μ)a2μ.

To complete the computation of Pre0(f01) we need to count the number of possible cases in
which A mines a3 valid blocks but fails to ever create a chain longer that the main one. This
number in hand, it will only remain to sum over the possible values of the three variables
a2, a3 and h2. Fixing these parameters, an outcome where the adversary fails to replace the
main blockchain with its own corresponds to a sequence where at every point in time, the
adversary’s chain is shorter that the main one. The insightful reader might have observed
that this situation shares similarities with Dyck words. A word in two letters H and A is a
Dyck word if no initial segment contains more A’s than H ’s. Here the situation is slightly
different as the honest main chain (whose blocks correspond to the letter H) starts growing
as soon as a honest miner finds a first valid block, while the adversary’s chain (the A’s)
starts growing only when the adversary finds a first valid block such that χ(Ext(B)) = 1.
Therefore we define generalised Dyck words as follows.

Definition 1 Let �, a and h be three non-negative integers such that a < � and h < �.
We call generalised Dyck words (for the parameters �, a, and h) words with a + h letters
formed with exactly a letters A and h letters H that verify the following property: for any
prefix of the word, we have #A ≤ #H + � − h − 1 where #H (respectively #A) represents
the number of H ’s (respectively A’s) in that prefix.

Cryptogr. Commun.

Lemma 1 Let �, a and h be three non-negative integers, and suppose a < � and h < �.
Defining D(�, a, h) as the number of generalised Dyck words, we exactly have:

D(�, a, h) =
(

a + h

a

)
−

(
a + h

�

)
.

Proof The proof follows a classical idea developed to count Dyck words. We first look at
words with exactly a letters A and h letters H that are not generalised Dyck words. For each
such word, there exists a first A that breaks the property. Changing each A into an H and
each H into an A strictly after this special A leads to write a word4 with exactly a − � + h

letters H and � letters A. Thus for a fixed � this process describes an injection:

f : E −→ F

that sends E (the set of all the words with a letters A, h letters H that are not generalised
Dyck words) into F (the set of words with a − � + h letters H , � letters A). Besides,
the map f is surjective. Indeed, let us consider a word w in F . From a < � we see that
� > (a−�+h)+�−h−1, which means that w breaks the condition #A ≤ #H +�−h−1.
Hence considering the first letter A in w that breaks the condition, and changing each A into
an H and each H into an A strictly after this special A, we obtain a word in E such that the
image of this word is exactly w. The bijection f yields #E = (

a+h
�

)
, and at the end:

D(�, a, h) =
(

a + h

a

)
−

(
a + h

�

)
.

Summing over the possible values of the three variables a2, a3 and h2, we obtain:

Pre0(f01) = αμ(1−α)�
∑

0 ≤ a2
0 ≤ a3, h2 < �

(α(1−μ))a2

(
a2 + h2

a2

)
αa3D(�, a3,�−1−h2),

where D is the function in 3 variables defined in Lemma 1 that counts the number of pos-
sible cases in which the chain mined by A never overtakes the honest one. The probability
Pre0(f01) can be rewritten as:

Pre0(f01) = αμ(1 − α)�
∑

0≤a3,h2<�

αa3D(�, a3,� − 1 − h2)
∑

0≤a2

(
a2 + h2

a2

)
(α(1 − μ))a2 .

We can simplify the inner sum using Formula (2) and get:

Pre0(f01) = αμ(1 − α)�

1 − α(1 − μ)

∑

0≤a3,h2<�

αa3

(1 − α(1 − μ))h2
D(�, a3,� − 1 − h2). (4)

To conclude, we can put everything together using PA = 1 − Pr(f0) − Pr(f01), with the
formula

PA = 1 − (1 − Pr(w1)) · (Pre0(f0) + Pre0(f01)), (5)

4For instance, if h = 3, a = 5 and � = 6 the word HAAAAHHA becomes HAAAAAAH that has 6 letters
A and 5 − 6 + 3 = 2 letters H .

Cryptogr. Commun.

where Pr(w1), Pre0(f0) and Pre0(f01) are functions in α,μ and � respectively given in (1),
(3) and (4). To compare again with μ we plot several of these probabilities. Figure 3 gives
the probability that A wins as a function of their relative computational power α, for a fixed
value of μ = 1/2 on the left or μ = 1/16 on the right. For instance, if μ = 1/2, α = 1/4
and � = 6 – which are three arguably realistic parameters – then the probability that the
adversary wins is increased from 50% to approximately 60%. Figure 4 takes the other point
of view and considers how the probability PA varies with μ when α is fixed to 1/4.

4.5 Virtual cost expectation for the adversary

Again, the virtual cost refers to the number of blocks the adversary has to drop, thereby
giving up the associated reward. To compute the expected virtual cost E we consider three

Fig. 3 Probabilities PA as
functions of α when μ = 1/2
(first graph) and μ = 1/16
(second graph). The
corresponding values for �,
ranging from 0 to 12, are
indicated on the curves. For
information purposes, the red
curves correspond to Pr(f01) and
the purple ones to Pr(f0), both
with � = 12

Cryptogr. Commun.

Fig. 4 Probabilities PA as functions of μ when α = 1/4. Values for � are indicated on the curves. Again
the red curve corresponds to Pr(f01) and the purple one to Pr(f0) both with � = 12. The black line indicates
the probability that a honest player wins

cases. In the event w1, such blocks only appear before the first decisive block is mined.
Thus the expected number of dropped blocks that correspond to this case is:

E1 =
∑

a≥0

a Pr(ea ∧ w) =
∑

a≥0

a(α(1 − μ))aμ = μα(1 − μ)

(1 − α(1 − μ))2
. (6)

Besides, considering the union of f0 and f01, we see that in both cases the chain making
the consensus at the end has entirely been mined by honest miners and consists in � + 1
valid blocks. Since the relative computing power of A is α, it yields that A dropped in
average (� + 1)α/(1 − α) valid blocks. So the expected number of lost blocks related to
those two events is:

E2 = (1 − PA) · (� + 1)α

1 − α
. (7)

where PA is given in (5). Last but not least, we can see the event w01 as the union of all ea
for a ∈ N where ea is the event: A finds precisely a valid blocks with an unpleasant extract,
then mines a pleasant decisive block and manages to mine a chain longer than the current
honest one. The expected number of dropped blocks related to this last case is:

E3 =
∑

a≥0

a Pr(ea).

Cryptogr. Commun.

To compute Pr(ea) we denote by h2 the number of honest valid blocks broadcast (strictly)
between the two decisive blocks and by h3 the number of honest valid blocks broadcast
after the pleasant decisive one is mined by A. We get:

Pr(ea) = αa(1 − μ))a+1μ
∑

0≤h2<�

(
a + h2

h2

)
(1 − α)h2+1

∑

0≤h3≤�

D̄(h2 + h3 + 1, �, h3)α
�(1 − α)h3

where D̄(h2 + h3 + 1,�, h3) is the number of words with � letters A and h3 letters H that
are not generalised Dyck words (with the correspontding parameters). Since we have the
equality D̄(h2 + h3 + 1,�, h3) = (

h2+h3+1
�+h3

)
we can write:

E3 = α�(1 − α)(1 − μ)μ

×
∑

a≥0

a(α(1 − μ))a
∑

0≤h2<�

(
a + h2

h2

)
(1 − α)h2

∑

0≤h3≤�

(
h2 + h3 + 1

� + h3

)
(1 − α)h3

(8)
Therefore the expected virtual cost E is given by:

E = E1 + E2 + E3,

where E1, E2 and E3 are respectively given in (6), (7) and (8). To illustrate this virtual
cost we plot in Fig. 5 the expected number of blocks that are dropped by the adversary as a
function of their relative computational power α, in the case where μ = 1/2. For instance,

Fig. 5 Expected number of dropped blocks as functions of the relative computational power α, when μ =
1/2. The black curve corresponds to the basic case with no delay, i.e. � = 0. The other curves correspond to
values of � that vary from 1 to 7

Cryptogr. Commun.

when α = 1/4 and considering � = 6 it gives roughly 1.017 expected lost blocks. Thus
this strategy can be approximately evaluated to have an expected cost of US$ 53 000.

4.6 Financial game

Consider again the situation where a monetary reward RW is associated to winning the
game. The above strategy is still valid, yet a rational adversary would adapt it a bit in order
to maximize his earnings. We give here the basic ideas of this particular strategy, but do not
provide a full analysis as the previous one already shows that the game is not resistant to
malicious behaviors.

Dealing with a financial game,A could compute at each step the expected cost of sticking
to the previous strategy and decide whether or not to pursue their attack. More precisely,
each time a block is found (either by A, or broadcast by a honest miner), A could reckon
the two following expected earnings, in term of bitcoins:

– G1, their expected earnings at the end of the game, assuming they keep mining in secret
on their chain, if they have any, or try to create a pleasant valid block

– G2, their expected earnings at the end of the game, assuming they withdraw from min-
ing their current chain (if they managed to have one), and start mining as a honest
miner.

Then A keeps attacking the game as long as it is worth it, namely as long as:

G2 < G1.

Note that G1 and G2 are expressed in term of bitcoins, and not as dropped blocks anymore.
Another situation might occur and prevent A from carrying on their attack: if they have a
budget, a limited amount of money they are ready to loose before aborting the strategy. We
study this situation in more details in the next section.

5 Adversaries with a budget

A budget is the amount of money the adversary is ready to lose by not publishing valid
blocks they found. In situations where winning the game cannot be easily modelled by a
monetary reward, or the adversary’s goal is not to maximize some earnings, considering a
budget is a meaningful way to limit the power of an adversary. An adversary with a budget
enforces a bound on the virtual cost, and thereby on the number of abandoned blocks. The
analysis is similar to the previous case, but now, when the adversary runs out of budget, they
must stop mining blocks that do not directly contribute to the longest chain.

Let b be the maximal number of blocks the adversary can drop, i.e., its budget. Then, the
probability of w1 becomes:

Pr(w1) =
b∑

a=0

(α(1 − μ))aμ = μ(1 − (α(1 − μ))b+1)

1 − α(1 − μ)
.

This is the probability to win when � = 0, generalising the results of [1] to adversaries with
a budget. Let us compute the winning probability for � > 0. Now, we cannot forget about
what happened before the publication of the first decisive block as we did previously by
conditioning over e0, as we need to keep track of how many blocks the adversary dropped
during that period.

Cryptogr. Commun.

Let f be the event that A fails the game, b the event that A used its full budget during the
game, and o be the event that the blocks found by the adversary within their budget are all
unpleasant. The event f is partitioned into four disjoint events:

Pr(f) = Pr(f ∧ b ∧ o) + Pr(f ∧ ¬b ∧ o) + Pr(f ∧ ¬b ∧ ¬o) + Pr(f ∧ b ∧ ¬o).

Let us first focus on the event f ∧ b ∧ o. Look at the prefix of the sequence of found blocks
up to the point where the adversary went out of budget. If b = 0, that prefix is empty
and the probability of failure is 1 − μ; otherwise, the last block of that prefix is the bth
block found by A. Let h denote the number of blocks honestly mined during that period.
Then:

Pr(f ∧ b ∧ o) =
{

1 − μ if b = 0,

(1 − μ)(α(1 − μ))b
∑�

h=0

(
b+h−1

b−1

)
(1 − α)h otherwise.

(9)

Now, let us compute the probability of f ∧ ¬b ∧ o. Look at the full sequence of found
blocks, � + 1 of which are honestly mined, and a < b are found by the adversary. The
probability can then be written as:

Pr(f ∧ ¬b ∧ o) = (1 − μ)(1 − α)�+1
b−1∑

a=0

(
� + a

a

)
(α(1 − μ))a. (10)

We now look at f∧¬b∧¬o. Split the sequence of found blocks into two parts: the initial
segment up to the pleasant block found by the adversary, and the rest of the sequence until
the end. Let a1 be the number of blocks found by A during the initial part, excluding the
last one (i.e., only the unpleasant blocks), and h1 the number of blocks honestly mined in
the meantime, including the unpleasant broadcast decisive block. Let a2 be the number of
blocks found by A during the second phase. Since we suppose ¬b, we have a1 +1+a2 < b.
The number of blocks honestly mined in the second phase is �+ 1 −h1, including the final
block. Observe that since A loses, the second part is a generalised Dyck word. Then, the
probability can be computed as:

Pr(f∧¬b∧¬o) = (1−μ)αμ(1−α)�+1
∑

0 ≤ a1 < b − 1
1 ≤ h1 ≤ �

0 ≤ a2 < b − a1

(
a1 + h1

a1

)
(α(1−μ))a1D(�, a2,�−h1)α

a1 .

(11)

The last event f ∧ b ∧ ¬o needs to be further split into two events: the case u where
the pleasant decisive block found by A is the last block in there budget, and the case v

where A still has some budget after that pleasant block was found. Then, Pr(f ∧ b ∧ ¬o) =
Pr(u) + Pr(v). We first focus on u. Look at the prefix of the sequence of blocks up to the
pleasant decisive block. That prefix contains exactly b blocks found by A (including the
last one), and a number h ≤ � of blocks honestly mined (including the unpleasant decisive
block). The probability is then:

Pr(u) = αbμ(1 − μ)b
�∑

h=1

(
b + h − 1

h

)
(1 − α)h. (12)

It only remains to compute Pr(v). Again, focus on the prefix of the sequence of found
blocks which stops when the adversary runs out of budget, i.e. when they mine their bth
block. Split that prefix into two parts: the initial part up to the pleasant decisive block found

Cryptogr. Commun.

by the adversary, and the second part, from that pleasant block to the end, i.e., the bth block
of A. Let a1 be the number of blocks found by the adversary during the first part, excluding
the last one (i.e., only the unpleasant blocks), h1 the number of blocks honestly mined in
the meantime, including again the unpleasant decisive block, and h2 the number of blocks
honestly mined in the second part. The number of blocks found by A in that part is b−a1−1.
The probability is then:

Pr(v) = (1 − μ)αbμ
∑

0 ≤ a1 < b − 1
1 ≤ h1 ≤ �

0 ≤ h2 ≤ � − h1

(
a1 + h1

a1

)
(1 − μ)a1 (1 − α)h1+h2D(h1 + h2, b − a1 − 2, h2).

(13)

Finally, the winning probability is computed by subtracting all the possible failure
probabilities:

PA = 1 − Pr(f ∧ b ∧ o) − Pr(f ∧ ¬b ∧ o) − Pr(f ∧ ¬b ∧ ¬o) − Pr(u) − Pr(v),

where Pr(f∧ b∧ o), Pr(f∧¬b∧ o), Pr(f∧¬b∧¬o), Pr(u) and Pr(v) are respectively given
in (9), (10), (11), (12) and (13). Figure 6 details how PA varies as a function of the number

Fig. 6 Probabilities as functions of the budget (number of blocks that can be dropped), when α = 1/4 and
μ = 1/2. The two highest curves correspond to PA in the delay-free case (� = 0) and when � = 6. The
lowest curves are the four components that permit to compute PA when � = 6: the purple curve corresponds
to Pr(f ∧ b ∧ o), the orange one to Pr(f ∧ ¬b ∧ o), the blue one to Pr(f ∧ ¬b ∧ ¬o), and the yellow one to
Pr(f ∧ b ∧ ¬o)

Cryptogr. Commun.

of blocks that can be dropped in the two cases � = 0 (no delay) and � = 6. Note that
these probabilities tend to 0.57 (resp. 0.6) which were the probabilities previously found in
Section 3.3 (resp. Section 4.4), when the budget was unlimited. Moreover, we can see that
the winning probability converges fast enough so that even a small budget is sufficient to
significantly cheat the game.

6 Provident adversaries

6.1 Games with early start and delay

Let us consider the more general case where not only there is a final delay � ≥ 1 as
previously, but the game also starts early, i.e. the decisive block is not the next one, but
the n-th one, where n > 1. This corresponds to the real world situation where an attacker
knows in advance which future block will be decisive for the goal he tries to achieve. This
case is relevant when a far-sighted adversary may get ahead of the game to manipulate
an upcoming decisive block. In truth, nothing prevents adversaries that already cheat from
preparing themselves several blocks in advance, without waiting for the beginning of the
game to start mining in secret.

The analysis of this situation is essential to applications where some parties commit on an
upcoming random number. In a lottery, the ticket seller should announce in advance which
(future) block will determine the winner, giving the adversary a head start to manipulate that
precise block. It is also crucial in electronic voting systems, where unpredictable, verifiable,
public randomness is required for the security of the random auditing after the election [6].

6.2 Strategy

For the adversary, the goal will be to obtain a chain of length n − 1 as soon as possible. If
they can obtain such a branch before the honest miners – and keeps it secret –, they can start
mining for a pleasant n-th block (the decisive one) while the honest miners are still working
on building the initial segment of the chain. The adversary tries to build a chain longer than
the honest one as follows: on one hand there is the public, honestly mined chain, and on the
other hand there is the secret branch of the adversary. The adversary only mined on their
own secret branch. At any point, if the honest chain becomes longer than the adversary’s
branch, the latter is thrown away and replaced by the longer honest chain. With this strategy,
the adversary’s branch is never shorter than the public one.

When an n − 1-th block has finally been found (either by A, or by the honest miners if
A has not been fast enough) the adversary starts following the same strategy as in the pre-
vious game – see Section 4.3. Again, they focus all their computational power on mining
the decisive block and throw away all valid but unpleasant blocks. At the first broadcast of
the decisive block Bd two cases can occur. If it satisfies χ(Ext(Bd)) = 1 then A starts
to act as a honest miner. Otherwise, if one honest miner broadcasts a decisive block sat-
isfying χ(Ext(Bd)) = 0, A continues to secretly mine on the previous block as if they
received nothing. Again, they throw away all valid decisive blocks that would lead to their
failure. If they find a pleasant one, they keep it secret, create a fork and continue to mine
on their new chain, hoping to develop a branch longer than the current public one contain-
ing the unpleasant decisive block. If they manage to do so, they broadcast their fork, and all
miners switch to that new longest chain and proceed to mine on that one, thereby includ-
ing the cheated pleasant decisive block in the new consensus chain. The game ends when

Cryptogr. Commun.

a miner finds a valid final block, whether it is on the original chain, or on the branch later
appeared.

6.3 Computing the probability PA

To evaluate the probability that A wins, we consider again the event e0 that the first decisive
broadcast block is an unpleasant one. As in (5), PA is given by:

PA = 1 − Pr(e0) · (Pre0(f0) + Pre0(f01)), (14)

where Pre0(f0) and Pre0(f01) are functions given in (3) and (4). Yet in this far-sighted
adversary case, the analysis differs when computing the probability of e0.

Let us consider the family of disjoint events ak that A finds an n − 1-th block with
an advantage of k blocks over the public branch, where k varies from 0 (meaning that the
n − 1-th block is mined by a honest miner) to n − 1 (when A has computed the entire chain
from blocks 1 to n − 1 while the honest miners did not find a single valid block). This
leads to:

Pr(e0) =
n−1∑

k=0

Prak
(e0) · Pr(ak).

If a denotes the number of blocks dropped by A while the honest miners broadcast all the
blocks needed to complete their chain up to the unpleasant decisive block, Prak

(e0) is given
by the sum (1 − α)k+1(1 − μ)

∑
a≥0

(
a+k
a

)
(α(1 − μ))a . Using (2) we find:

Prak
(e0) = (1 − μ) ·

(
1 − α

1 − α(1 − μ)

)k+1

. (15)

Thus it suffices now to evaluate the probabilities Pr(ak).
Probability Pr(ak) for a fixed k Let k be an integer between 0 and n − 1. The different
outcomes that lead the adversary to obtain an advantage of k blocks can be modelled as
paths on an (n−1)×(n−1) grid of blocks from the point (0, 0) to the point (n−1, n−1−k)

as in Fig. 7, Appendix. Following certain constraints.
Each point (a, h) of a path corresponds to the moment at which A has a valid branch from

block 0 to block a whereas the honest chain only goes up to the block h. The adversary’s
strategy enforces h ≤ a, i.e. the path never overpasses the diagonal line. The short arrows
forming the path represent the events that a new valid block has been found. The arrow is
black if the block was found by A and light gray if it was found by a honest miner. There
are only three kinds of arrows:

1. Black arrows to the right: when A finds a block, it only increases their own secret
branch.

2. Gray arrows that go up, without overpassing the diagonal: when a honest miner
finds a new block but A’s chain is longer, this block only increases the honest
branch.

3. Gray arrows on the diagonal: when a honest miner finds a new block and A’s branch
coincides with the honest chain, this block increases both chains.

Also, the path never follows the blue line: once the blue line has been reached, the next phase
of A’s strategy begins. To determine the probability of ak , the strategy will consist in com-
puting the number of such paths to (n − 1, n − 1 − k) for any specified number of black
arrows.

Cryptogr. Commun.

Let Cx,y,r denote the number of paths from (0, 0) to (x, y) that follow all the previous
requirements and go through r black arrows precisely. Cx,y,r can be computed thanks to the
following recursive formulae:

Cx,y,r =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if y = 0, r �= x

1 if y = 0, r = x

Cx−1,y,r−1 if x = n − 1, y �= n − 1
Cx−1,y−1,r if x = n − 1 = y

Cx,y−1,r + Cx−1,y−1,r if x = y, y �= n − 1
Cx,y−1,r + Cx−1,y,r−1 otherwise.

At the end, since the number r of black arrows to go to (n − 1, n − 1 − k) varies between k

and n − 1, the probability of ak is given by:

Pr(ak) =
n−1∑

r=k

(1 − α)n−1−kαrCn−1,n−1−k,r .

Together with (15), we find:

Pr(e0) = (1 − μ)(1 − α)n

1 − α(1 − μ)

n−1∑

k=0

(
1

1 − α(1 − μ)

)k n−1∑

r=k

αrCn−1,n−1−k,r . (16)

The probability PA that A wins is so computed thanks to (14), using (3), (4) and (16)
as explicit formulae for the inner probabilities Pre0(f0), Pre0(f01) and Pr(e0). Figure 8, in
Appendix, shows how PA varies with α, for μ = 1/2 and a fixed value of n = 144 that
roughly corresponds to an adversary that starts mining with a day in advance. Note that
with a relative computational power α = 1/4, the probability that a provident adversary
wins takes off from 50% to 74% in the realistic case when � = 6. Figure 8 also suggests
that being too provident is not necessary. Indeed, Pr(e0) is the only parameter that governs
the variations of the probability PA when the adversary mines more or less in advance. We
note that this probability stabilises very quickly, as mining with half-a-day, a day or a week
in advance is roughly the same in terms of success.

7 Conclusion

We have shown that a random beacon producing random numbers by extracting entropy
from the last block of a blockchain does not provide a strong level of security. Their
“random” output can easily be biased by large groups of miners.

We have been studying a beacon that outputs the hash of the very last block of the
chain. One could naturally wonder if a stronger beacon could be build by hashing the last
n blocks BN−n+1, . . . , BN for n > 1, say H(BN−n+1, . . . , BN) for a secure hash func-
tion H . Unfortunately, any bit of such a beacon could be manipulated in the very same
way, with the same resulting biases, by still considering the last block as the decisive
one. Indeed, once the blocks BN−n+1, . . . , BN−1 are determined, the function H ′(x) =
H(BN−n+1, . . . , BN−1, x) is a hash function with security properties as good as H itself
(assuming H is cryptographically secure).

Other games could use the randomness of the last n blocks without first hashing them
together. A lot of naturally occurring games seem susceptible to a form of “last block

Cryptogr. Commun.

attack”, yet each game would require a case-by-case analysis. In particular, we do not claim
that it is impossible to generate secure random numbers from the blockchain. On the con-
trary, it seems to be possible by incorporating ideas from [11] in a blockchain protocol
(see [5] for an informal discussion).

Acknowledgements We would like to thank Arjen Lenstra for his comments and Antoine Joux for both
his technical and financial support. A special thanks goes to Direction Générale de l’Armement and CNRS
for funding the first author, and to the Swiss National Science Foundation for supporting the second author
via grant number 200021-156420.

Appendix: Figures for the provident adversary

Fig. 7 Secret and public blocks mined during the event ak . White blocks (or light gray arrows) represent
the blockchain integrally mined by honest miners whereas black blocks (or black arrows) are those secretly
mined by A. On this example, n = 17 and A finds the block number n− 1 with a head start of k = 6 blocks.
The number inside each block (or near each arrow) indicates the order in which the corresponding block was
mined, irrespective of whether it was broadcast or kept secret

Cryptogr. Commun.

Fig. 8 Probability PA as a function of α when μ = 1/2 and n = 144 (in the case of Bitcoin, 144 blocks are
found in an expected time of one day). The corresponding values of � are 0, 1, 3, 6 and 12 as suggested on
the curves. The lower curves represent the inner probability Pr(e0) as a function of α for μ = 1/2 and various
choices of n. The black one corresponds to Pr(e0) when n = 6 (corresponding, in Bitcoin, to an expected
time of one hour), the blue one when n = 36 (six hours), the purple one when n = 144 (one day) and the red
one when n = 1008 (one week)

References

1. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source. IACR Cryptology ePrint
Archive, 2015:1015 (2015)

2. Blockchain Luxembourg SARL. https://blockchain.info (2016)
3. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: Anonymity

for bitcoin with accountable mixes. In: Financial Cryptography and Data Security: 18th International
Conference, FC 2014, pp. 486–504. Springer, Berlin (2014)

4. Bonneau, J.: Why buy when you can rent? - bribery attacks on bitcoin-style consensus. In: Financial
Cryptography and Data Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC,
Christ Church, Barbados, February 26, 2016, Revised Selected Papers, pp. 19–26 (2016)

5. Buterin, V.: Could Ethereum do this better? [Tor Project is working on a web-wide random number
generator] Reddit post. Accessed 25 Aug 2017 (2016)

6. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan, P.Y.A., Shen, E.,
Sherman, A.T.: Scantegrity ii: End-to-end verifiability for optical scan election systems using invisi-
ble ink confirmation codes. In: USENIX/ACCURATE Electronic Voting Technology Workshop (EVT)
(2008)

7. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In: USENIX EVT/WOTE.
USENIX Association (2010)

https://blockchain.info

Cryptogr. Commun.

8. Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness extraction and key derivation
using the cbc, cascade and hmac modes. In: Advances in Cryptology – CRYPTO 2004: 24th Annual
International Cryptology Conference, pp. 494–510. Springer, Berlin (2004)

9. Garman, C., Green, M., Miers, I., Rubin, A.D.: Rational zero: Economic security for zerocoin with
everlasting anonymity. In: Financial Cryptography and Data Security: BITCOIN, pp. 140–155. Springer,
Berlin (2014)

10. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and applications. In:
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, 2015, Proceedings, Part II, pp. 281–310
(2015)

11. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryptology ePrint Archive, Report
2015/366. http://eprint.iacr.org/2015/366 (2015)

12. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-cash from bitcoin.
In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 397–411 (2013)

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf (2009)
14. NIST randomness beacon. https://beacon.nist.gov (2011)
15. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–267 (1983)
16. RANDOM.ORG. https://www.random.org (1998)
17. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Financial

Cryptography and Data Security - 20th International Conference, FC 2016, Christ Church, Barbados,
February 22-26, 2016, Revised Selected Papers, pp. 515–532 (2016)

18. Ethereum, G.W.: A secure decentralized transaction ledger. http://gavwood.com/paper.pdf (2014)

http://eprint.iacr.org/2015/366
http://bitcoin.org/bitcoin.pdf
https://beacon.nist.gov
https://www.random.org
http://gavwood.com/paper.pdf

	Malleability of the blockchain's entropy
	Abstract
	Introduction
	A model for the network and the miners
	Blockchains
	Game model
	Adversary model*-.5pt

	A warm-up: manipulating the next published block
	Delay-free games
	Strategy
	The winning probability PA
	Virtual cost expectation for the adversary
	Financial game

	Reaching consensus
	Games with delay
	Relevant values for
	Strategy
	Computing the probability PA
	Probability of f0
	Probability of f01

	Virtual cost expectation for the adversary
	Financial game

	Adversaries with a budget
	Provident adversaries
	Games with early start and delay
	Strategy
	Computing the probability PA
	Probability Pr(ak) for a fixed k

	Conclusion
	Acknowledgements
	Appendix 1 Figures for the provident adversary
	References

