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Abstract

Motivated by the study of admissible rules, a new hierarchy of “exact” unification
types is introduced where a unifier is more general than another unifier if all identities
unified by the first are unified by the second. A Ghilardi-style algebraic interpretation of
this hierarchy is presented that features exact algebras rather than projective algebras.
Examples of equational classes distinguishing the two hierarchies are also provided.

1 Introduction

It has long been recognized that the study of admissible rules is inextricably bound up with the
study of equational unification (see, e.g., [23, 10, 11]). Indeed, from an algebraic perspective,
admissibility in an equational class (variety) of algebras may be viewed as a generalization of
unifiability in that class.1 Let us fix an equational class of algebras V for a language L and
denote by FmL(X), the formula algebra (absolutely free algebra or term algebra) of L over a
set of variables X ⊆ ω. A substitution (homomorphism) σ : FmL(X) → FmL(ω) is called a
V-unifier (over X) of a set of L-identities Σ with variables in X if V |= σ(ϕ) ≈ σ(ψ) for all
ϕ ≈ ψ in Σ. A clause Σ⇒ ∆ (an ordered pair of finite sets of L-identities Σ,∆) is V-admissible
if every V-unifier of Σ is a V-unifier of a member of ∆. In particular, Σ is V-unifiable if and
only if Σ⇒ ∅ is not V-admissible.

In certain cases, V-admissibility may also be reduced to V-unifiability. Suppose that the
unification type of V is at most finitary, meaning that every V-unifier of a set of L-identities Σ
over the variables in Σ is a substitution instance of one of a finite set S of L-unifiers of Σ. Then a
clause Σ⇒ ∆ is V-admissible if each member of S is an L-unifier of a member of ∆. If there is an
algorithm for determining the finite basis set S for Σ and the equational theory of V is decidable,
then checking V-admissibility is also decidable. This observation, together with the pioneering
work of Ghilardi on equational unification for classes of Heyting and modal algebras [10, 11],
has led to a wealth of decidability, complexity, and axiomatization results for admissibility in
these classes and corresponding modal and intermediate logics [12, 13, 15, 7, 3, 2, 21, 18].

The success of this approach to admissibility appears to rely on considering varieties with
at most finitary unification type. That this is not the case, however, is illustrated by the
case of MV-algebras, the algebraic semantics of  Lukasiewicz infinite-valued logic. Decidability,
complexity, and axiomatization results for admissibility in this class have been established by
Jeřábek [16, 17, 18] via a similar reduction of finite sets of identities to finite approximating sets
of identities. On the other hand, it has been shown by Marra and Spada [20] that the variety of
MV-algebras has nullary unification type, which means in particular that there are finite sets
of identities for which no finite basis of unifiers exists. Further examples of this discrepancy

1We refer the reader to [4] and [19] for undefined notions of universal algebra and category theory, respectively.
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may be found in [6], including the very simple example of the class of distributive lattices where
admissibility and validity of clauses coincide but unification is nullary.

As mentioned above, it is possible to check the V-admissibility of a clause Σ⇒ ∆ by checking
that every V-unifier of Σ in a certain “basis set” V-unifies ∆. Such a basis set S typically has
the property that every other V-unifier of Σ is a substitution instance of a member of S.
The starting point for this paper is the observation that a weaker condition on S suffices,
leading potentially to smaller sets. What is really required for checking admissibility is the
property that every V-unifier of Σ V-unifies all identities V-unified by some member of S. Then
Σ ⇒ ∆ is V-admissible if each member of S is a V-unifier of a member of ∆. This leads to
a new ordering of V-unifiers and hierarchy of exact (unification) types. Moreover, we obtain
a Ghilardi-style algebraic characterization making use of exact algebras rather than projective
algebras. Crucially, we also show that an equational class can have an exact type that is “better
than” its unification type. For example, MV-algebras have finitary exact type and distributive
lattices have unitary exact type.

2 Equational Unification and Projective Algebras

Let us first recall some basic notions for equational unification, referring to [1] for further details.
We then provide a short overview of the algebraic approach to equational unification developed
by Ghilardi in [9].

Let P = 〈P,≤〉 be a preordered set. A complete set for P is a subset M ⊆ P such that
for every x ∈ P , there exists y ∈ M such that x ≤ y. A complete set M for P is called a
µ-set for P if x 6≤ y and y 6≤ x for all distinct x, y ∈ M . It is easily seen that if P has a
µ-set, then every µ-set of P has the same cardinality. P is said to be nullary if it has no µ-sets
(type(P) = 0), infinitary if it has a µ-set of infinite cardinality (type(P) = ∞), finitary if it
has a finite µ-set of cardinality greater than 1 (type(P) = ω), and unitary if it has a µ-set of
cardinality 1 (type(P) = 1). These types are ordered as follows: 1 < ω <∞ < 0.

Now let L be a language and X ⊆ ω a set of variables, and consider substitutions
σi : FmL(X)→ FmL(ω) for i = 1, 2. We say that σ1 is more general than σ2 (written σ2 4 σ1)
if there exists a substitution σ′ : FmL(ω) → FmL(ω) such that σ′ ◦ σ1 = σ2. Let V be an
equational class of algebras for L and Σ a finite set of L-identities with variables denoted by
Var(Σ). Then UV(Σ) is defined as the set of V-unifiers of Σ over Var(Σ) preordered by 4. For
UV(Σ) 6= ∅, the V-unification type of Σ is defined as type(UV(Σ)). The unification type of V is
the maximal type of a V-unifiable finite set Σ of L-identities.

We now recall Ghilardi’s algebraic account of equational unification. Let FV(X) denote the
free algebra of L over a set of variables X and let hV : FmL(X) → FV(X) be the canonical
homomorphism. Given a finite set of L-identities Σ and a finite X ⊇ Var(Σ), we denote
by FpV(Σ, X) the algebra in V finitely presented by Σ and X: that is, the quotient algebra
FV(X)/ΘΣ where ΘΣ is the congruence generated by {(hV(ϕ), hV(ψ)) : ϕ ≈ ψ ∈ Σ}. The class
of finitely presented algebras in V is denoted by FP(V).

Given A ∈ FP(V), a homomorphism u : A → B is called a unifier for A if B ∈ FP(V) is
projective in V (i.e., there exist homomorphisms i : B → FV(ω) and j : FV(ω) → B such that
j ◦ i is the identity map on B). Let ui : A → Bi for i = 1, 2 be unifiers for A. Then u1 is
more general than u2, written u2 ≤ u1, if there exists a homomorphism f : B1 → B2 such that
f ◦ u1 = u2. Let UV(A) be the set of unifiers of A preordered by ≤. For UV(A) 6= ∅, the
unification type of A in V is defined as type(UV(A)) and the algebraic unification type of V is
the maximal type of A in FP(V) such that UV(A) 6= ∅. In [9], Ghilardi proved that type(UV(Σ))
coincides with type(UV(FpV(Σ,Var(Σ)))), for each V-unifiable finite set of identities Σ. Hence



the algebraic unification type of V coincides with the unification type of V.

3 A New Hierarchy

Let us begin by pointing out the relevance of finitely presented algebras for admissibility. We
freely identify L-identities with pairs of L-formulas and recall that the kernel of a homomor-
phism h : A→ B is defined as ker(h) = {(a, b) ∈ A2 : h(a) = h(b)}.

Lemma 1. The following are equivalent for any L-clause Σ⇒ ∆ with X = Var(Σ ∪∆):

(1) Σ⇒ ∆ is admissible in V.

(2) If σ : FmL(X)→ FmL(ω) satisfies Σ ⊆ ker(hV ◦ σ), then ∆ ∩ ker(hV ◦ σ) 6= ∅.

Let X be a set of variables and let σi : FmL(X) → FmL(ω) be substitutions for i = 1, 2.
We write σ2 v σ1 if all identities V-unified by σ1 are V-unified by σ2. More precisely:

σ2 v σ1 ⇔ ker(hV ◦ σ1) ⊆ ker(hV ◦ σ2).

Observe immediately that σ2 4 σ1 implies σ2 v σ1.
Given an equational class of algebras V for L and a finite set Σ of L-identities, EV(Σ, X) is

defined as the set of V-unifiers of Σ over X ⊇ Var(Σ) preordered by v. For X = Var(Σ), we
simply write EV(Σ) instead of EV(Σ, X).

We define the exact type of Σ in V to be type(EV(Σ))) (for EV(Σ) 6= ∅). Note that, because
σ2 4 σ1 implies σ2 v σ1, every complete set for UV(Σ) is also a complete set for EV(Σ).
Therefore, if type(UV(Σ)) ∈ {1, ω}, we have

type(EV(Σ)) ≤ type(UV(Σ)).

We observe also that the choice of EV(Σ) = EV(Σ,Var(Σ)) to define the exact type of Σ, is not
restrictive; that is, for each X ⊇ Var(Σ),

type(EV(Σ)) = type(EV(Σ, X)).

Using Lemma 1, we obtain the desired relationship with admissibility: namely, to check the
V-admissibility of an L-clause Σ ⇒ ∆, it suffices to find a complete set (preferably a µ-set) S
for UV(Σ) then check that each σ ∈ S is a V-unifier of some L-identity in ∆.

Let us now give the algebraic characterization of exact unification. We call an algebra E
exact in V if it is isomorphic to a finitely generated subalgebra of FV(ω) (see also [8] for a
syntactic characterization). Given A ∈ FP(V), an onto homomorphism u : A → E is called a
coexact unifier for A if E is exact. Coexact unifiers are ordered in the same way as algebraic
unifiers, that is, if ui : A → Ei for i = 1, 2 are coexact unifiers for A, then u1 ≤ u2, if there
exists a homomorphism f : E1 → E2 such that f ◦ u1 = u2.

Let EUV(A) be the set of coexact unifiers for A preordered by ≤. If EUV(A) 6= ∅, then the
exact type of A is defined as the type of EUV(A). We obtain the following Ghilardi-style result.

Theorem 2. Let V be an equational class and Σ a finite set of V-unifiable L-identities. Then
for any X ⊇ Var(Σ),

type(EV(Σ)) = type(EV(Σ, X)) = type(EUV(FpV(Σ, X)).



Class of Algebras Unification Type Exact Type

Boolean Algebras Unitary Unitary

Heyting Algebras Finitary Finitary

Semigroups Infinitary Infinitary or Nullary

Modal algebras Nullary Nullary

Distributive Lattices Nullary Unitary

Stone Algebras Nullary Unitary

Bounded Distributive Lattices Nullary Finitary

Idempotent Semigroups Nullary Finitary

MV-algebras Nullary Finitary

Table 1: Comparison of unification types and exact types

We define the exact unification type of V to be the maximal exact type of a V-unifiable finite
set Σ of L-identities. Similarly, the exact algebraic unification type of V is the maximal exact
type of A in V such that EUV(A) 6= ∅. By Theorem 2, the exact unification type and the exact
algebraic unification type of V coincide.

The close connection between coexact unifiers and congruences has as a byproduct that if a
finitely presented algebra A has a finite set of congruences, then type(EV(Σ)) is 1 or ω. Hence
we obtain the following useful corollary.

Corollary 3. If V is a locally finite variety, then V has exact unification type 1 or ω.

4 Examples

Any unitary equational class such as the class of Boolean algebras also has exact unitary type,
and any finitary equational class will have unitary or finitary exact type. For example, the class
of Heyting algebras is finitary [10] and hence also has finitary exact type: consider the identity
x ∨ y ≈ > and unifiers σ1 with σ1(x) = >, σ1(y) = y and σ2 with σ2(x) = x, σ2(y) = >.

Minor changes to the original proofs that the class of semigroups has infinitary unification
type [22] and that the class of modal algebras (for the logic K) has nullary unification type [14]
establish that the former has infinitary or nullary exact type and the latter has nullary exact
type. However, the class of distributive lattices, which is known to have nullary unification
type [9], has unitary exact type as all finitely presented distributive lattices are exact. Similarly,
the class of Stone algebras has nullary unification type but unitary exact type. The classes of
bounded distributive lattices and idempotent semigroups are also both nullary, but because
they are locally finite, they have at most – and indeed, it can be shown via suitable cases,
precisely – finitary exact type.

In [20] it is proved that the equational class of MV-algebras has nullary unification type. This
class is not locally finite so we cannot apply Corollary 3; however, combining results from [17]
and [5], we can still prove that MV-algebras have finitary exact type. We observe that because
finitely presented MV-algebras admit a presentation of the form {α ≈ >} and [5, Theorem 4.18]
proves that every admissible saturated formula ([16, Definition 3.1]) is exact, [17, Theorem 3.8]
effectively provides a bound on the exact type of a finitely presented algebra. Note, moreover,
that each formula in the admissible saturated approximation (defined in [16, 17]) of a formula



α corresponds to an exact unifier of the identity α ≈ >. Similarly in [6], the current authors
present axiomatizations for admissible rules of several locally finite (and hence of finitary exact
unification type) equational classes with classical unification type 0. In all these cases a complete
description of exact algebras, and the finite exact unification type plays a central (if implicit)
role. We therefore expect this approach to be useful for tackling other classes of algebras that
have unitary or finitary exact type, independently of their unification type.

These examples are collected in Table 1, noting that we do not know if there are examples
of equational classes of (i) finitary unification type that have unitary exact type, (ii) infinitary
unification type that have unitary, finitary, or nullary exact type, (iii) nullary unification type
that have infinitary exact type.
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