
Hierarchical Combination

of Matching Algorithms

(Extended Abstract)

Serdar Erbatur1, Deepak Kapur2 ∗, Andrew M Marshall3 †, Paliath Narendran4 ‡,
and Christophe Ringeissen5

1 Università degli Studi di Verona (Italy)
2 University of New Mexico (USA)
3 Naval Research Laboratory (USA)
4 University at Albany, SUNY (USA)

5 LORIA – INRIA Nancy-Grand Est (France)

1 Introduction

A critical question in matching and unification is how to obtain an algorithm for the combination
of non-disjoint equational theories when there exist algorithms for the constituent theories.
In recent work ([4]) we were able to develop a new approach to the unification problem in
the combination of non-disjoint theories. The approach is based on a new set of restrictions,
for which we can identify a set of properties on the constituent theories, such that theories
characterized by these properties satisfy the restrictions and thus can be combined using the
new algorithm. The main properties of this class are: a hierarchical organization of E1 and E2,
R1 is a left-linear, convergent rewrite system corresponding to E1, and the shared symbols are
“inner constructors” of R1.

Here we consider the matching problem in this new hierarchical framework. Due to the more
restricted nature of the matching problem we obtain several improvements over the unification
problem. One of the improvements is that we are able to relax several restrictions we assumed
for the unification problem. Key among these discarded restrictions is a restriction on the type
of new variables created by the unification algorithm for the first theory in the hierarchical
organization. In the unification setting it was necessary to restrict variables which could cause
reapplication of the first unification algorithm, denoted as ”ping pong” variables. This tricky
restriction can be avoided if most general solutions can be expressed without any new variable.
Because matching problems in regular (variable-preserving) theories have only ground solutions,
we can remove this assumption.

An additional improvement is obtained when constructing a general matching algorithm for
the first theory which satisfies the restrictions of the hierarchical framework. In the unification
case a general procedure was developed but due to the generality of unification problem, ter-
mination had to be checked for each theory. However, for the matching problem we are able
to exploit an interesting relation to the work done on syntactic theories [5, 6, 3]. By assuming
a newly defined resolvent property we are able to construct a terminating and thus general
matching algorithm which can be used in the hierarchical framework for any theory satisfying
the restrictions. The algorithm we present can be seen as an extension of the work done for
matching in disjoint unions of regular/syntactic theories [7, 8, 9].

∗Partially supported by the NSF grant CNS-0905222
†ASEE postdoctoral fellowship under contract to the NRL.
‡Partially supported by the NSF grant CNS-0905286

1



2 Preliminaries

We use the standard notation of equational unification [2] and term rewriting systems [1]. A
term t is linear if each variable of t occurs only once in t. Given a first-order signature Σ, and
a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equational theory =E is the
congruence closure of E under the law of substitutivity. By a slight abuse of terminology, E will
be often called an equational theory. An axiom l = r is variable-preserving if V ar(l) = V ar(r).
An axiom l = r is linear (resp. collapse-free) if l and r are linear (resp. non-variable terms). An
equational theory is variable-preserving (resp. linear/collapse-free) if all its axioms are variable-
preserving (resp. linear/collapse-free). An equational theory E is finite if for each term t, there
are finitely many terms s such that t =E s. A theory E is subterm collapse-free if and only
if for all terms t it is not the case that t =E u where u is a strict subterm of t. Note that a
subterm collapse-free theory is necessarily variable-preserving and collapse-free.

A Σ-equation is a pair of Σ-terms denoted by s =? t. When t is ground, s =? t is denoted
by s ≤? t and called a match-equation. A unification (resp. matching) problem P is a set of
equations (resp. match-equations). An E-unifier of P is a substitution σ such that sσ =E tσ
for each equation s =? t in P .

For a convergent rewrite system R we define a constructor of R to be a function symbol f
which does not appear at the root on the left-hand side of any rewrite rule of R. We define an
inner constructor to be a constructor f that satisfies the following additional restrictions: (1)
f does not appear on the left-hand side on any rule in R. (2) f does not appear as the root
symbol on the right-hand side of any rule in R. (3) there are no function symbols below f on
the right-hand side of any rule in R. We consider two equational theories E1 and E2 built over
the signatures Σ1 and Σ2. Let Σ(1,2) = Σ1 ∩Σ2. In [4], we introduce a hierarchical framework
for a union of equational theories E1 ∪E2 such that E1 is given by a convergent rewrite system
R1 for which Σ(1,2)-symbols are inner constructors. In [4], we study the unification problem in
E1 ∪ E2. In this work, we now consider the matching problem.

3 Hierarchical Combination for Matching

The key principle of the combination algorithm for matching is to purify only the left-hand sides
of matching problems. Thus, this purification introduces a pending solved equation X =? t.
Since X occurs in a match-equation solved by A1 or A2, it will be instantiated by a ground term,
say u, transforming eventually X =? t into a match-equation t ≤? u. Hence, our rule-based
procedures will generate equational problems involving also equations and not only match-
equations. Fortunately, we assume the right properties to solve these equational problems by
using only matching algorithms:

1. Properties of E1: E1 is finite, subterm collapse-free and R1 is a left-linear, convergent
term rewrite system corresponding to E1.

2. Properties of E2: E2 is a linear, finite, collapse-free equational theory.

3. Properties of the shared symbols: If f ∈ Σ(1,2), then f is an inner constructor of R1. If
f and g are inner constructors of R1, then f -rooted terms cannot be equated to g-rooted
terms in E2.

According to the above assumptions, we can show that E1 ∪ E2 is finite, and so we could
take a brute force approach to constructing a E1∪E2-matching algorithm [7]. However, we can
use the constituent algorithms, A1 and A2 to construct a more efficient combination method.

2



We assume that A1 and A2 handle now left pure match-equations: A1 handles match-equations
whose left-hand sides are in (Σ1\Σ1,2), whilst A2 handles match-equations whose left-hand sides
are in Σ2.

We first consider the question of constructing the A1 algorithm. We show how such algo-
rithms can be constructed for a family of theories related to the syntactic theories [5, 6, 3].
Therefore, we assume the following resolvent property for R1.

Restriction 1. (Algorithm A1)
Algorithm A1 is a mutation-based algorithm as depicted in Figure 1, where R1 is a resolvent
rewrite system; that is, any R1-normal form can be reached by applying at most one rewrite
step at the top position.

Note, resolvent does not require that all paths from a term to its normal form use one
topmost rewrite step, only that for each normal form there is at least one rewrite path with
such a property. When R1 is resolvent, the mutation-based A1 algorithm presented in Figure 1 is
sound and complete. For the second algorithm A2, we simply assume it is a matching algorithm.

Restriction 2. (Algorithm A2)
Algorithm A2 is an E2-matching algorithm.

Rule (i) Mutate

{f(s1, . . . , sm) ≤? g(t1, . . . , tn)} ∪ P
−→ {s1 =? l1, . . . , sm =? lm, r1 ≤? t1, . . . , rn ≤? tn} ∪ P

If f(l1, . . . , lm)→ g(r1, . . . , rn) is a fresh variant of a rule in R1.

Rule (ii) Matching Decomposition

{f(s1, . . . , sm) ≤? f(t1, . . . , tm)} ∪ P

−→ {s1 ≤? t1, . . . , sm ≤? tm} ∪ P

Where f ∈ Σ1 rΣ(1,2).

Rule (iii) Matching Clash

{f(s1, . . . , sm) ≤? g(t1, . . . , tn)} ∪ P

−→ Fail

Where f ∈ Σ1 rΣ(1,2), f 6= g and Mutate does not apply.

Figure 1: Mutation-based A1 algorithm

3.1 The Matching Procedure - Hierarchical Combination

We give a new matching procedure for the hierarchical combination. It works as follows. First,
we purify the left-hand sides of match-equations. After this purification step, we can easily
distinguish which left-pure match-equations must be given to A1 and A2. Then, the solutions
computed by A1 and A2 are combined using some replacement and merging rules.

3



Solve1: Run A1

We apply A1 to match-equations having Σ1 rΣ(1,2)-pure left-hand sides

Solve2: Run A2

We apply A2 to match-equations having Σ2-pure left-hand sides

RemEq:
P ] {t =? t′}
P ∪ {t ≤? t′}

if t′ is ground

Rep:
P ] {t =? t′[Y ], Y ≤? u}
P ∪ {t =? t′[u], Y ≤? u}

Merge:
P ] {X ≤? t, X ≤? s}
P ∪ {X ≤? t}

if s =E1∪E2 t

Clash:
P ] {X ≤? t, X ≤? s}

Fail
if s 6=E1∪E2 t

Figure 2: D: inference system for the combination of matching

The matching procedure is given as the inference system D defined in Figure 2 by the set
of inferences rules

{Solve1, Solve2,RemEq,Rep,Merge,Clash}.
We can easily verify that each rule in D preserves the set of E1 ∪E2-solutions. This is clear for
the rules in {RemEq,Rep,Merge,Clash}. Moreover, this is true by definition for Solve1,
and since E2-matching is sound and complete for solving E1 ∪ E2-matching problems whose
left-hand sides are 2-pure, its is also true for Solve2. Furthermore, it can be shown that normal
forms with respect to D are matching problems in solved form and that D terminates for any
input. This implies that the algorithm D is sound and complete, which means that it provides
an E1 ∪ E2-matching algorithm.

Example 3.1. The following theory appears to be a good case-study for the above hierarchical
combination method.

EAC =


exp(exp(x, y), z) = exp(x, y ~ z)
exp(x ∗ y, z) = exp(x, z) ∗ exp(y, z)

}
= E1

(x~ y) ~ z = x~ (y ~ z)
x~ y = y ~ x

}
= E2

The theory EAC has the following AC(~)-convergent system:

R1 =

{
exp(exp(x, y), z) → exp(x, y ~ z)

exp(x ∗ y, z) → exp(x, z) ∗ exp(y, z)

The main task is to construct an A1 algorithm. It can be constructed from an instantiation
of the mutation-based algorithm given in Figure 1. This leads to a set of matching inference
rules dedicated to the particular case of R1.

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, New
York, NY, USA, 1998.

4



[2] Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, pages 445–532. Elsevier and MIT Press, 2001.

[3] Alexandre Boudet and Evelyne Contejean. On n-syntactic equational theories. In Hélène Kirch-
ner and Giorgio Levi, editors, Algebraic and Logic Programming, volume 632 of Lecture Notes in
Computer Science, pages 446–457. Springer Berlin Heidelberg, 1992.

[4] Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Paliath Narendran, and Christophe Ringeis-
sen. Hierarchical combination. In Maria Paola Bonacina, editor, Automated Deduction (CADE-24),
volume 7898 of Lecture Notes in Computer Science, pages 249–266. Springer Berlin Heidelberg, 2013.

[5] Jean-Pierre Jouannaud. Syntactic theories. In Branislav Rovan, editor, Mathematical Foundations
of Computer Science 1990, volume 452 of Lecture Notes in Computer Science, pages 15–25. Springer
Berlin Heidelberg, 1990.

[6] C. Kirchner and F. Klay. Syntactic theories and unification. In Logic in Computer Science, 1990.
LICS ’90, Proceedings., Fifth Annual IEEE Symposium on Logic in Computer Science, pages 270–
277, Jun 1990.

[7] T. Nipkow. Proof transformations for equational theories. In Logic in Computer Science, 1990.
LICS ’90, Proceedings., Fifth Annual IEEE Symposium on Logic in Computer Science, pages 278–
288, Jun 1990.

[8] Tobias Nipkow. Combining matching algorithms: The regular case. J. Symb. Comput., 12(6):633–
654, 1991.

[9] Christophe Ringeissen. Combining decision algorithms for matching in the union of disjoint equa-
tional theories. Inf. Comput., 126(2):144–160, 1996.

5


	Introduction
	Preliminaries
	Hierarchical Combination for Matching
	The Matching Procedure - Hierarchical Combination


