
Two-sided unification is NP-complete

Tatyana A. Novikova1 and Vladimir A. Zakharov2

1 Kazakhstan Branch of Lomonosov Moscow State University
2 Lomonosov Moscow State University
(taniaelf@mail.ru, zakh@cs.msu.su)

Abstract

It is generally accepted that to unify a pair of substitutions θ1 and θ2 means to find out
a pair of substitutions η′ and η′′ such that the compositions θ1η

′ and θ2η
′′ are the same.

Actually, unification is the problem of solving linear equations of the form θ1X = θ2Y in
the semigroup of substitutions. But some other linear equations on substitutions may be
also viewed as less common variants of unification problem. In this paper we introduce a
two-sided unification as the process of bringing a given substitution θ1 to another given
substitution θ2 from both sides by giving a solution to an equation Xθ1Y = θ2. Two-
sided unification finds some applications in software refactoring as a means for extracting
instances of library subroutines in arbitrary pieces of program code. In this paper we
study the complexity of two-sided unification and show that this problem is NP-complete
by reducing to it the bounded tiling problem.

1 Introduction

To unify a pair of expressions E1 and E2 means to compute such instances of these expressions
that are identical (syntactical unification) or have the same meaning (semantical unification).
Such common instances of E1 and E2 can be obtained by replacing some variables in E1 and
E2 by appropriate terms, i.e. by applying some substitutions to these expressions. Unification
algorithms have found a wide utility in theorem proving, logic programming, term rewriting,
type inference, language processing, etc. (see [1, 2]). In [9] it was shown that unification problem
is also meaningful and efficiently decidable when expressions E1 and E2 are some formal models
in imperative programs. If the programs are unifiable then their behaviors are somewhat similar;
therefore, some results of the analysis of one program (proofs of its correctness, termination,
etc.) can be easily adapted to the other.

But a similarity of programs can be formalized differently. Suppose that one has a library
subroutine π0(~x : input; ~y :output) with a set of formal input arguments ~x and a set of formal
output parameters ~y. Given some piece of program code π1 one may wonder if it is possible to
replace it with an appropriate subroutine call. Such a replacement would make the program
both succinct and uniform which is very much helpful for program understanding and analysis.
To this end one could try to find such instantiation η′′ of input arguments ~x and such special-
ization η′ of output parameters ~y as to make the composition of η′, π0, and η′′ equivalent to π1.
In some formal models of programs (see [4, 8, 9]) a behavior of a program π can be specified
by a substitution θπ which assigns terms on input arguments ~x to output parameters ~y. Thus,
we can set up the following problem: given a pair of substitutions θπ0 and θπ1 find a pair of
substitutions η′′ (input instantiation) and η′ (output specialization) such that the composition
η′θπ0

η′′ is equal to θπ1
, or, in other words, solve the equation Xθπ0

Y = θπ1
in the semigroup of

substitutions. It is worth noticing that the conventional unification problem may be regarded
as that of solving linear equations of the form θ1X = θ2Y in the semigroup of substitutions
when both unknown substitutions are applied to θ1 and θ2 from the one side. Therefore, we
call the solving of equations of the form Xθ0Y = θ1 when unknowns appear on both sides of

1

Two-sided unification is NP-complete T.A. Novikova, V.A. Zakharov

θ0 two-sided unification of substitutions θ0 and θ1. In this paper we show that the problem of
two-sided unification for first-order substitutions is NP-complete.

The paper is organized as follows. In Section 2 we recall briefly the basic notions concerning
first-order substitutions, set up formally two-sided unification problem, and show that it is in
NP. Afterward, in Section 3 we consider BOUNDED TILING problem which is widely used
in complexity theory (see [3]) as an alternative to SATISFIABILITY. Finally, in Section 3 we
prove that BOUNDED TILING is reducible to two-sided unifiability problem.

2 Preliminaries.

We deal with the first-order language over some fixed sets of functional symbols F . Letters
U ,X ,Y,Z . . . will be used for pairwise disjoint finite sets of variables. The set of terms Term[X]
over a set of variables is defined as usual.

Let X = {x1, . . . , xn} and Y = {y1, y2, . . . } be two sets of variables. A X -Y-substitution is
any mapping θ : X → Term[Y]. Every such mapping can be represented as a set of bindings
θ = {x1/θ(x1), . . . xn/θ(xn)}. We write Subst[X ,Y] for the set of all X -Y-substitutions. An
application of a substitution θ to a term t(x1, . . . , xn) yields the term tθ = t(θ(x1), . . . , θ(xn))
obtained from t by replacing all occurrences of every variable xi, 1 ≤ i ≤ n, with the term
θ(xi). A composition of a X -Y-substitution θ and a Y-Z-substitution η is a X -Z-substitution
ξ such that the equality xξ = (xθ)η (or, in other notation, ξ(x) = (θ(x))η) holds for every
x, x ∈ X . To denote the composition of θ and η we use an expression θη; since t(θη) = (tθ)η
holds for every term t, t ∈ Term[X], this notation makes it possible to skip parentheses when
writing tθη for the application of a composition of substitutions to a term. A X -X -substitution
ρ is called a renaming iff ρ is a bijection on the set of variables X . Two X -Z-substitutions θ1
and θ2 are equivalent if θ1 = θ2ρ for some X -X -renaming ρ. If θ1 is a composition of θ2 and η
then θ1 is called an instant of θ2, and θ2 is called a pattern of θ1.

Let θ0 be a X -Y-substitution and θ1 be a Z-U-substitution. Then a pair of substitutions
η′ and η′′ from Subst[Z,X] and Subst[Y,U] respectively is called a two-sided unifier of (θ0, θ1)
iff η′θ0η

′′ = θ1. Two-sided unification problem is that of finding, given a pair of substitutions
(θ0, θ1), a two-sided unifier (η′, η′′) of (θ0, θ1). It must be noticed that two-sided unification,
unlike usual unification, is asymmetric, since substitutions θ0 and θ1 play different roles in the
equation Xθ0Y = θ1. Another important aspect of two-sided unification to be emphasized is
that a substitution η′′ does not affect directly the variables from X but only through the terms
from θ0 via the set of variables Y. This is due to the software engineering application two-sided
unification problem stems from: η′′ only initializes input variables of θ0 but does not interfere
in the computation of θ0.

Two-sided unification problem for a pair of substitutions (θ0, θ1) may have several solu-
tions. For example, if θ0 = {x1/f(y1, y2), x2/y3}, θ1 = {z/f(f(u, u), f(u, u))} then two-sided
unifiers of (θ0, θ1) are non-equivalent pairs (η′ = {z/f(x1, x1)}, η′′ = {y1/u, y2/u}), (η′ =
{z/f(f(x2, x2), x1)}, η′′ = {y1/u, y2/u}) and (η′ = {z/x1}, η′′ = {y1/f(u, u), y2/f(u, u)}).
Since the first component η′ of every such pair is a pattern of θ1 and the set of non-equivalent
patterns of every substitution is finite, the set of non-equivalent two-sided unifiers of every pair
of substitutions (θ0, θ1) is also finite.

When the complexity issues of decision problems for substitutions are concerned, the rep-
resentation of terms in a set of bindings θ = {x1/t1, . . . xn/tn} is of prime importance. We
will assume that terms t1, . . . , tn in every substitution θ are represented by labeled trees. A
representation of a composition θη can be obtained from representations of θ and η just by
attaching the terms from η to the corresponding leaves in the representations of terms from θ.

2

Two-sided unification is NP-complete T.A. Novikova, V.A. Zakharov

Lemma 1. The problem of two-sided unifiability of pairs of substitutions represented by trees
is in NP.

Proof. It is easy to see that two-sided unifiability of (θ0, θ1) can be non-deterministically checked
in polynomial time. It is sufficient

1. to guess a cut of tree representation Tθ1 of θ1 into three pieces T1, T2, and T3 in such a
way that the leaves of every tree in T1 and T2 become the roots in the tree representations
of T2 and T3 respectively.

2. to assign consistently variables from X and Y to all leaves of T1 and T2 respectively (the
same variable can be assigned to different leaf nodes v1, v2 of a piece Ti, i = 1, 2, only if
v1 and v2 are the roots of equal subtrees in Ti+1), and

3. to check that all trees from the middle piece T2 represent only terms from θ0.

Clearly, such cut of T1, T2, and T3 of Tθ1 do exist iff θ1 = η′θ0η
′′ for some substitutions η′ and

η′′. It is easy to see that the consistency of variable assignment and the inclusion of T2 in Tθ0
can be checked in polynomial time.

NP-hardness of two-sided unifiability problem follows from NP-completeness of BOUNDED
TILING problem which is formally defined in the next section.

3 Bounded tiling problem

To define the bounded tiling problem imagine 1 × 1 square tiles whose edges are coloured.
Suppose that only finitely many types of tiles are available. Consider a n×m rectangular area
whose border is divided into segments of length 1 and assume that all such segments are also
colored. The problem is to determine if it is possible to cover this area with the tiles (i.e. make
a tiling) in such a manner that every pair of adjacent edges of two tiles has the same colour
and every border segment has the same colour as the edge of a tile adjacent to it.

Formally BOUNDED TILING problem is specified as follows. Let Colours = {1, 2, . . . ,K}
be a finite set of colours. A tile is a quadruple tile = 〈a1, a2, a3, a4〉 of colours. The components
of tile are denoted by tile[0,−1], tile[−1, 0], tile[0, 1], tile[1, 0] respectively; they identify the
colours of the top, right, bottom and left edges of the tile. A n × m area is the set of pairs
Area = {(i, j) : 0 ≤ i ≤ n+ 1, 0 ≤ j ≤ m+ 1}; the elements of this set are called squares. The
set of squares Inter = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is the interior of the area. The border
of the area is the set of squares Border = Area \ Inter. Two squares (i1, j1) and (i2, j2) in
the Area are called adjacent iff |i1 − i2|+ |j1 − j2| = 1. A boundary constraint is any mapping
B : Border → Colours. If B(i, j) = a then this means that the ”innermost” edge of a border
square (i, j) is painted colour a. Let Tiles = {tile1, . . . , tileL} be a finite set of tiles. Then a
tiling of an Area is any mapping T : Inter → Tiles. Given a boundary constraint B, a tiling
T is called B-consistent if the following two requirements are satisfied:

1. for every pair of adjacent interior squares (i1, j1) and (i2, j2) the equality T (i1, j1)[i1 −
i2, j1 − j2] = T (i2, j2)[i2 − i1, j2 − j1] holds; this equality means that the adjacent edges
of the tiles inserted on these squares have the same colour;

2. for every interior square (i1, j1) which is adjacent to a border square (i2, j2) the equality
T (i1, j1)[i1−i2, j1−j2] = B(i2, j2) holds; this equality means that the colour of the border
segment matches the colour of the adjacent edge of the tile.

3

Two-sided unification is NP-complete T.A. Novikova, V.A. Zakharov

An instance of the BOUNDED TILING problem is a tuple BT = (n,m, T iles,B); this
instance is accepted iff there exists a B-consistent tiling of n ×m Area with tiles from Tiles.
For the first time the TILING problem has been introduced in [10]. The complexity of this
problem depends on the area to be tiled. Thus, in [11] it has been shown that if Area is a
quadrant of infinite plane then TILING problem is undecidable. In [3] it has been proved that
BOUNDED TILING problem is NP-complete. We use this fact to prove NP-hardness of the
two-sided unifiability problem.

4 NP-hardness of two-sided unification

Let Colours = {1, . . . ,K}. Consider an instance of the BOUNDED TILING problem BT =
(n,m, T iles,B), where Tiles = {tile1, . . . , tileL}. We show how to build such a pair of substi-
tutions θ0 and θ1 that their two-sided unification (η′, η′′), if any, gives a solution to BT . The
bindings of X -Y-substitution θ0 represent the boundary constraint B and all possible insertions
of tiles from Tiles onto interior squares of the Area. The Z-U-substitution θ1 represents the
tiling of the same area with monochromatic tiles whose edges are painted colour K. The first
component η′ of a two-sided unifier specifies a choice of some possible tiling T of the Area, and
the second component η′′ checks the consistency of this tiling by simulating an attempt to ”re-
paint” consistently the edges of all tiles and border segments to achieve monochromatic tiling.
The key feature of the substitution θ0 is that the terms in its bindings share variables in such a
manner that the colours of the adjacent edges of tiles can be changed only in common and by
the same value. Therefore, a monochromatic ”re-painting” η′′ is possible only for B-consistent
tilings.

To define θ0 and θ1 formally we introduce a set of functional symbols F which includes

• a binary function g(2) to build a n×m area,

• a 6-ary function h(6) to construct border constraints and instances of tiles,

• a unary function f (1) to enumerate colours and squares.

As for the sets of variables the substitutions θ0 and θ1 operate with, we assume that

• X = X ′ ∪ X ′′, where

– X ′ = {x′i,j : (i, j) ∈ Border}: every variable x′i,j is associated with a border square
(i, j) in the Area,

– X ′′ = {x′′i,j,` : (i, j) ∈ Interior, 1 ≤ ` ≤ L}: every variable x′′i,j,` is associated with
an instant of a tile tile` inserted onto the square (i, j);

• Y = {y0} ∪ Y ′, where

– y0 is a common ”dummy” variable;

– Y ′ = {yi1,j1,i2,j2 : 0 ≤ i1 ≤ i2 ≤ n+ 1, 0 ≤ j1 ≤ j2 ≤ m+ 1, |i1 − i2|+ |j1 − j2| = 1}:
every variable yi1,j1,i2,j2 is associated with a pair of adjacent squares (i1, j1) and
(i2, j2) in the Area;

• Z = {z}, and U = {u}.

4

Two-sided unification is NP-complete T.A. Novikova, V.A. Zakharov

By means of functional symbol f (1) we define recursively numerals fn(y) for every integer
n as follows: f0(y) = y and fn+1(y) = f(fn(y)) for every n, n ≥ 0. Numerals will be used to
enumerate squares and colours. Clearly, fn(fm(y)) = fn+m(y) holds for every pair of integers
n,m. We will say that a numeral fn(y) has a rank n.

The terms that represent the boundary constraint B and all possible insertions of individual
tiles from Tiles onto interior squares are defined as follows.

If a border square (i, j) is such that (i, j) ∈ {(0, 0), (n+ 1, 0), (n+ 1,m+ 1), (0,m+ 1)} (i.e.
(i, j) is a corner square of Area) then we assign the term

ti,j = h(fi(y0), fj(y0), fK(y0), fK(y0), fK(y0), fK(y0))

to the variable xi,j associated with the square (i, j). This term indicates that all edges of this
square are painted colour K.

Suppose that (i, j) ∈ Border \ {(0, 0), (n+ 1, 0), (n+ 1,m+ 1), (0,m+ 1)} and B(i, j) = k.
Then there exists the only interior square (i′, j′) which is adjacent to (i, j). Let yi1,j1,i2,j2 be
the variable from Y ′ which is associated with the pair (i, j), (i′, j′). Then we assign the term

ti,j = h(fi(y0), fj(y0), fK(y0), fK(y0), fK(y0), fk(yi1,j1,i2,j2))

to the variable xi,j associated with the border square (i, j). This term indicates that the
interior edge of this square (border segment) is painted colour B(i, j), whereas all other edges
are painted colour K.

Suppose that (i, j) ∈ Interior. Then there are exactly four squares in the Area that are
adjacent to the square (i, j) on the top, on the right, on the bottom, and on the left. Let
yi1,j1,i′1,j′1 , yi2,j2,i′2,j′2 , yi3,j3,i′3,j′3 , and yi4,j4,i′4,j′4 be all those variables from Y ′ that are associated
with these pairs of adjacent squares respectively. Then for every tile tile` = 〈k1, k2, k3, k4〉, 1 ≤
` ≤ L, from Tiles we assign the term

ti,j,` = h(fi(y0), fj(y0), fk1(yi1,j1,i′1,j′1), fk2(yi2,j2,i′2,j′2), fk3(yi3,j3,i′3,j′3), fk4(yi4,j4,i′4,j′4))

to the variable xi,j,` associated with the interior square (i, j) and the tile tile`.
With terms ti,j and ti,j,` at hand, we define the substitution θ0:

θ0 = {xi,j/ti,j : (i, j) ∈ Border} ∪ {xi,j,`/ti,j,` : (i, j) ∈ Interior, 1 ≤ ` ≤ L}.

It worth noticing that every variable from the set Y ′ occurred as an argument of numerals
exactly in two terms from the range of substitution θ0. We say that an occurrence of a variable
y has a depth n iff n is the maximal rank of a numeral which includes this occurrence of y.

Using functional symbol g(2) we can build a (arbitrary) term tarea which has (n+ 2)(m+ 2)
argument positions (leaves in the tree representation of the term); every argument position in
this term stands for a square in the Area. For every square (i, j) in the Area we introduce
the term t̂i,j = h(fi(u), fj(u), fK(u), fK(u), fK(u), fK(u)) and define the substitution θ1 =
{z/tarea(t̂0,0, t̂0,1, . . . , t̂n+1,m+1)} (monochromatic tiling of Area).

Lemma 2. An instance of the BOUNDED TILING problem BT = (n,m, T iles,B) is accept-
able iff the substitutions θ0 and θ1 defined above are two-sided unifiable.

Proof. 1) Suppose that the instance BT is acceptable. Then there exists a B-consistent tiling
T of Area with the tiles from the set Tiles. For every pair of adjacent squares (i, j) and (i′, j′)
in the interior of the area (assuming that i ≤ i′, j ≤ j′) denote by c(i, j, i′, j′) the common
colour of the adjacent edges of the tiles T (i, j) and T (i′, j′) installed onto these squares. The

5

Two-sided unification is NP-complete T.A. Novikova, V.A. Zakharov

same notation will be used for the common colour of a tile’s edge and an adjacent segment
of the boarder. By the definition of the terms ti,j,` both occurrences of a variable yi,j,i′,j′ in
terms ti,j,T (i,j) and ti′,j′,T (i′,j′) have the same depth c(i, j, i′, j′). Then a two-sided unification
of (θ0, θ1) is a pair (η′, η′′) such that

η′ = {z/tarea(x0,0, x0,1, . . . , x0,m+1, x1,0, x1,1,T (1,1), . . . , x1,m,T (1,m), x1,m+1, . . . , xn+1,m+1)},
η′′ = {y0/u, y0,1,1,1/fK−c(0,1,1,1)(u), . . . , yi,j,i′,j′/fK−c(i,j,i′,j′)(u), . . . }.

In substitution η′ every argument of the term tarea corresponding to a square (i, j) is either a
variable xi,j in the event that (i, j) is a boarder square, or a variable xi,j,T (i,j) in the event that
(i, j) is an interior square. In the latter case the variable xi,j,T (i,j) indicates that a tile tileT (i,j)

is placed onto the square (i, j). The substitution η′′ assigns to every variable yi,j,i′,j′ associated
with a pair of adjacent edges of two squares a numeral fK−c(i,j,i′,j′)(u) to complement the
common colour c(i, j, i′, j′) of the adjacent edges of the tiles T (i, j) and T (i′, j′) to the maximal
colour K. By taking into account the fact that the tiling T is B-consistent we arrive at the
conclusion that θ1 = η′θ0η

′′.

2) Suppose that θ1 = η′θ0η
′′ holds for a pair of substitutions (η′, η′′). Consider a sequence

of functional symbols assigned to the nodes in an arbitrary branch in a tree representation of
substitution θ1. As it follows from the definition of θ1, this sequence is g, g, . . . , g, h, f . . . , f .
Moreover, for every square (i, j) the term in the range of θ1 contains the only term of the form
h(fi(y0), fj(y0), . . .). At the same time all terms in the range of θ0 contain only functional
symbols h and f . Thus, the substitution η′ takes the form:

η′ = {z/tarea(x0,0, x0,1, . . . , x0,m+1, x1,0, x1,1,`1,1 , . . . , x1,m,`1,m , x1,m+1, , xn+1,m+1)},

and η′′ is a substitution of the form:

η′′ = {y0/u, y0,1,1,1/fk0,1,1,1(u), . . . , yi,j,i′,j′/fki,j,i′,j′ (u), . . . }.

Consider a tiling T such that T (i, j) = `i,j holds for every square (i, j) iff some term of the
substitution η′ includes a variable xi,j,li,j . We show that this tiling is B-consistent.

Assume the contrary. Then there exists a pair of squares (i1, j1) and (i2, j2) in the Area
such that either the adjacent edges of the tiles T (i1, j1) and T (i2, j2) inserted into these squares
have different colours, or the adjacent edges of the tile T (i1, j1) and the boarder square (i2, j2)
are coloured differently. Without loss of generality we consider only the former case. Then
the occurrences of the shared variable yi1,j1,i2,j2 in the terms ti1,j1,`i1j1

and ti2,j2,`i2,j2
have

different depths. Therefore, both occurrences of yi1,j1,i2,j2 in the terms of substitutions η′θ0 =
{z/tarea(x0,0, . . . , xn+1,m+1)θ0} also have different depths. Since η′′ substitutes the same term
instead of both occurrences of yi1,j1,i2,j2 , the numerals that indicate the colour of adjacent
edges in the terms of composition η′θ0η

′′ have different ranks as well. In view of the fact that
θ1 = η′θ0η

′′ the latter seems contrary to the definition of θ1: all numerals that indicate the
colour of edges must have the same rank K.

Thus, the tiling T defined above is B-consistent.

Lemma 3. BOUNDED TILING problem is log − space reducible to the problem of two-sided
unifiability of first-order substitutions.

Proof. Suppose that an instance of the BOUNDED TILING problem BT = (n,m, T iles,B) has
a size N . As it can be seen from the definition of terms ti,j , ti,j,`, and t̂i,j , a tree representation
of every such term can be built by a deterministic procedure which operates on an auxiliary
space of the size O(logN). Hence, tree representation of substitutions θ0 and θ1 as defined
above can be also built within the same space.

6

Two-sided unification is NP-complete T.A. Novikova, V.A. Zakharov

The main theorem follows from Lemmas 1 and 3.

Theorem 1. Two-sided unifiability problem for first-order substitutions is NP-complete.

5 Conclusion

This theorem completes the complexity picture in the study of solvability problem for equations
of the form Xσ1

1 θXσ2
2 = Xσ3

1 ηXσ4
4 in the semigroup of first-order substitutions, where σi ∈

{0, 1}, and Xσ is either X in the case of σ = 1, or empty substitution in the case of σ = 0.
It is obvious that equations X1θX2 = X3ηX4, X1θX2 = ηX4, and X1θX2 = X3η are trivially
solvable for every pair of substitutions θ, η. Equations θX2 = ηX4 and θX2 = η correspond
to conventional unification problem; it is known that they are decidable in almost linear time
(see [5, 6, 7]). Equations X1θ = X3η and X1θ = η appeared in [12] with regard to equivalence
checking problem in some class of sequential programs; they are decidable in polynomial time.
Finally, in this paper we prove that only the solvability of equations of the form X1θX2 = η
(two-sided unification) is NP-complete problem.

References

[1] F. Baader, W. Snyder: Unification theory. In J.A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, 2001, v. 1, p. 447-533.

[2] K. Knight: Unification: a multidisciplinary survey. ACM Computing Surveys, 1989, v. 21, N 1, p.
93-124.

[3] C.H. Lewis: Complexity of solvable cases of the decision problem for predicate calculus. Proceed-
ings of the 19-th Annual Symposium on Foundations of Computer Science, 1978, p. 35-47.

[4] D.C. Luckham, D.M. Park, M.S. Paterson: On formalized computer programs. Journal of Com-
puter and System Science, 1970, v. 4, N 3, p. 220-249.

[5] Z. Manna, R. Waldinger: Deductive synthesis of the unification algorithm. Science of Computer
Programming. 1981, v. 1, N 1-2, p. 5-48.

[6] A. Martelli, U. Montanari: An efficient unification algorithm. ACM Transactions on Programming
Languages and Systems, 1982, v. 4, N 2, p. 258-282.

[7] M.S. Paterson, M.N. Wegman: Linear unification. The Journal of Computer and System Science,
v. 16, N 2, 1978, p. 158–167.

[8] V.K. Sabelfeld: The logic-termal equivalence is polynomial-time decidable. Information Processing
Letters, 1980, v. 10, N 2, p. 57-62.

[9] T.A. Novikova, V.A. Zakharov: Is it possible to unify programs?. The 27-th International Work-
shop on Unification, Epic Series, v. 19, 2013, p. 35-45.

[10] Wang Hao: Proving theorems by pattern recognition. Bell System Technical Journal. 1961, v. 40,
N 1, p. 1-41.

[11] R. Berger: The undecidability of domino problem. Memoirs of American Mathematical Society,
v. 66.

[12] V.A. Zakharov: On the decidability of the equivalence problem for orthogonal sequential programs.
Grammars, v 2, N 3, p. 271-281.

7

	Introduction
	Preliminaries.
	Bounded tiling problem
	NP-hardness of two-sided unification
	Conclusion

