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1 Introduction

We examine the disjoint combination problem in the newly developed paradigm of asymmetric
unification. This new unification problem was developed based on newly identified requirements
arising from symbolic cryptographic protocol analysis [4]. Its application involves unification-
based exploration of a space in which the states obey rich equational theories that can be
expressed as a decomposition R]E, where R is a set of rewrite rules that are confluent, termi-
nating and coherent modulo E. However, in order to apply state space reduction techniques, it
is usually necessary for at least part of this state to be in normal form, and to remain in normal
form even after unification is performed. This requirement can be expressed as an asymmetric
unification problem {s1 =↓ t1, . . . , sn =↓ tn} where the =↓ denotes a unification problem with
the restriction that any unifier leaves the right-hand side of each equation irreducible.

Although asymmetric unification has the potential of playing an important role in cryp-
tographic protocol analysis, and possibly other unification-based state explorations as well,
it is still not that well understood. Until the development of special-purpose algorithms for
exclusive-or and free Abelian group theories, the only known asymmetric unification algorithm
was variant narrowing. One important question is the problem of asymmetric unification in a
combination of theories, in particular how to produce an algorithm for the combined theory by
combining algorithms for the separate theories. This is particularly significant for cryptographic
protocol analysis. Cryptographic protocols generally make use of more than one cryptoalgo-
rithm. Often, these cryptoalgorithms can be described in terms of disjoint equational theories.
In the case in which the algorithm used is variant narrowing, the problem is straightforward.
If the combination of two theories with the finite variant property also has the finite variant
property, then one applies variant narrowing. However, in attempting to combine theories with
special-purpose algorithms, the path is less clear. This is an important point with respect to
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efficiency since special-purpose asymmetric algorithms have the promise of being more efficient
than variant narrowing.

In this work we take the first step to solving this problem, by showing that the combination
method for the unification problem in disjoint equational theories developed by Baader and
Schulz in [2] can be modified and extended to the asymmetric unification paradigm. The only
restrictions on this new method are those inherited from the asymmetric unification problem
and those inherited from Baader and Schulz.

2 Asymmetric Unification

We use the standard notation of equational unification [3] and term rewriting systems [1].

Definition 2.1. Let Γ be an E-unification problem, let X denote the set of variables occurring
in Γ and C the set of free constants occurring in Γ. For a given linear ordering < on X ∪C, and
for each c ∈ C define the set Vc as {x | x is a variable with x < c}. An E-unification problem
with linear constant restriction (LCR) is an E-unification problem with constants, Γ, where
each constant c in Γ is equipped with a set Vc of variables. A solution of the problem is an
E-unifier σ of Γ such that for all c, x with x ∈ Vc, the constant c does not occur in xσ. We call
σ an E-unifier with linear constant restriction.

Definition 2.2. We call (Σ, E, R) a decomposition of an equational theory ∆ over a signature
Σ if ∆ = R]E and R and E satisfy the following conditions: (1) E is variable preserving, i.e.,
for each s = t in E we have V ar(s) = V ar(t). (2) E has a finitary and complete unification
algorithm. That is, an algorithm that produces a finite complete set of unifiers. (3) For each
l → r ∈ R we have V ar(r) ⊆ V ar(l). (4) R is confluent and terminating modulo E, i.e., the
relation→R/E is confluent and terminating. (5)→R,E is E-coherent, i.e., ∀t1, t2, t3 if t1 →R,E t2
and t1 =E t3 then ∃ t4, t5 such that t2 →∗R,E t4, t3 →+

R,E t5, and t4 =E t5.

This definition is inherited directly from [4]. The last restrictions ensure that s →!
R/E t iff

s→!
R,E t, therefore it is sufficient to consider R,E rather then R/E (see [4]).

Definition 2.3 (Asymmetric Unification). Given a decomposition (Σ, E,R) of an equational
theory, a substitution σ is an asymmetric R,E-unifier of a set S of asymmetric equations
{s1 =↓ t1, . . . , sn =↓ tn} iff for each asymmetric equations si =↓ ti, σ is an (E ∪ R)-unifier
of the equation si =? ti and (ti ↓R,E)σ is in R,E-normal form. A set of substitutions Ω is a
complete set of asymmetric R,E-unifiers of S (denoted CSAUR∪E(S) or just CSAU(S) if the
background theory is clear) iff: (i) every member of Ω is an asymmetric R,E-unifier of S, and

(ii) for every asymmetric R,E-unifier θ of S there exists a σ ∈ Ω such that σ ≤V ar(S)
E θ.

Example 2.4. Let R = {x ⊕ 0 → x, x ⊕ x → 0, x ⊕ x ⊕ y → y} and E be the AC theory
for ⊕. Consider the equation y ⊕ x =↓ x⊕ a, the substitution σ1 = {y 7→ a} is an asymmetric
solution but, σ2 = {x 7→ 0, y 7→ a} is not.

Definition 2.5 (Asymmetric Unification with Linear Constant Restriction). Let S be a set of
of asymmetric equations with some LCR. A substitution σ is an asymmetric R,E-unifier of S
with LCR iff σ is an asymmetric solution to S and σ satisfies the LCR.

3 Combining Asymmetric Unification Algorithms

Let ∆1 and ∆2 denote two equational theories with disjoint signatures Σ1 and Σ2. Let ∆ be
the combination, ∆ = ∆1 ∪∆2, of the two theories having signature Σ1 ∪ Σ2. We assume ∆i
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admits a a decomposition (Σi, Ei, Ri), and an asymmetric ∆i-unification with linear constant
restriction algorithm is known for i = 1, 2. In [5], we show that the Baader-Schulz combination
method [2] designed for unification can be reused for asymmetric unification. A slight adaptation
is required to construct combined unifiers that are necessarily asymmetric.

Theorem 3.1. ([5]) Asymmetric ∆1∪∆2-unification is decidable (resp. finitary) if asymmetric
∆i-unification with LCR is decidable (resp. finitary), for i = 1, 2.

As in [2], it can be shown that there exists an asymmetric ∆i-unification algorithm with LCR
if and only if there exists an asymmetric ∆i-unification algorithm with free symbols. Therefore,
the above theorem can be rephrased in terms of asymmetric unification with free symbols.

Example 3.2. Let ∆1 = R1 ∪ E1, where R1 = {e(x, d(x, y)) → y, d(x, e(x, y)) → y} and
E1 = ∅. Let ∆2 = R2 ∪ E2, where R2 = {x ⊕ 0 → x, x ⊕ x → 0, x ⊕ x ⊕ y → y} and
E2 = {x⊕y = y⊕x, (x⊕y)⊕z = x⊕(y⊕z)}}. Consider the set of equations {x0⊕x1⊕x2 =↓ x3⊕
x4, e(x1, d(0, x5)) =↓ x2⊕x0, e(x1, d(x0, e(x2, x6))) =↓ e(x7, x5)}. After purification, we get Γ2:
{x0⊕x1⊕x2 =↓ x3⊕x4, e(x1, d(z0, x5)) =↓ z1, 0 =↓ z0, z1 =↓ x2⊕x0, e(x1, d(x0, e(x2, x6))) =↓

e(x7, x5)}. The next step considers the set of variable partitions, one of which is the following
partition {{x0, x3}, {x2, x4}, {x5, z1}, {x1, z0, x7}, {x6}} Choosing a representative for each set,
we would produce the following Γ3: {x0 ⊕ x1 ⊕ x2 =↓ x0 ⊕ x2, e(x1, d(x1, x5)) =↓ x5, 0 =↓ x1,
x5 =↓ x2 ⊕ x0, e(x1, d(x0, e(x2, x6))) =↓ e(x1, x5)}. The next step considers the possible pairs
of variable orderings and theory indexes. One pair that would be produced is the following:
x6 > x5 > x2 > x1 > x0, index-1 = {x0, x1, x2, x5} and index-2 = {x6}. Next Γ4 is
produced from that pair and split into pure sets to produce Γ5,1 and Γ5,2. Let us denote a
variable, y, being treated as a constant as y. Then, Γ5,1 is the following set of equations:
{x0 ⊕ x1 ⊕ x2 =↓ x0 ⊕ x2, 0 =↓ x1, x5 =↓ x2 ⊕ x0} and Γ5,2 is the following set of equations:
{e(x1, d(x1,x5)) =↓ x5, e(x1, d(x0, e(x2, x6))) =↓ e(x1,x5)}. Next Γ5,i is solved with LCR.
The last step is to combine each pair of substitutions (σ1, σ2) into a substitution σ. One
such pair is σ1 = {x1 7→ 0, x5 7→ x2 ⊕ x0} and σ2 = {x6 7→ d(x2, e(x0,x5))}. Thus, we
get the following asymmetric solution, {x1 7→ 0, x3 7→ x0, x4 7→ x2, x5 7→ x2 ⊕ x0, x6 7→
d(x2, e(x0, x2 ⊕ x0)), x7 7→ 0}, (existential variables z0, z1 are removed).
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